11 Commits

Author SHA1 Message Date
Paul Mackerras
d2b65ac652 powerpc: Emulate load/store floating point as integer word instructions
This adds emulation for the lfiwax, lfiwzx and stfiwx instructions.
This necessitated adding a new flag to indicate whether a floating
point or an integer conversion was needed for LOAD_FP and STORE_FP,
so this moves the size field in op->type up 4 bits.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:42:44 +10:00
Paul Mackerras
a53d5182e2 powerpc: Separate out load/store emulation into its own function
This moves the parts of emulate_step() that deal with emulating
load and store instructions into a new function called
emulate_loadstore().  This is to make it possible to reuse this
code in the alignment handler.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:42:41 +10:00
Paul Mackerras
d955189ae4 powerpc: Handle opposite-endian processes in emulation code
This adds code to the load and store emulation code to byte-swap
the data appropriately when the process being emulated is set to
the opposite endianness to that of the kernel.

This also enables the emulation for the multiple-register loads
and stores (lmw, stmw, lswi, stswi, lswx, stswx) to work for
little-endian.  In little-endian mode, the partial word at the
end of a transfer for lsw*/stsw* (when the byte count is not a
multiple of 4) is loaded/stored at the least-significant end of
the register.  Additionally, this fixes a bug in the previous
code in that it could call read_mem/write_mem with a byte count
that was not 1, 2, 4 or 8.

Note that this only works correctly on processors with "true"
little-endian mode, such as IBM POWER processors from POWER6 on, not
the so-called "PowerPC" little-endian mode that uses address swizzling
as implemented on the old 32-bit 603, 604, 740/750, 74xx CPUs.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:39:55 +10:00
Paul Mackerras
b2543f7b20 powerpc: Emulate the dcbz instruction
This adds code to analyse_instr() and emulate_step() to understand the
dcbz (data cache block zero) instruction.  The emulate_dcbz() function
is made public so it can be used by the alignment handler in future.
(The apparently unnecessary cropping of the address to 32 bits is
there because it will be needed in that situation.)

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:39:54 +10:00
Paul Mackerras
c22435a5f3 powerpc: Emulate FP/vector/VSX loads/stores correctly when regs not live
At present, the analyse_instr/emulate_step code checks for the
relevant MSR_FP/VEC/VSX bit being set when a FP/VMX/VSX load
or store is decoded, but doesn't recheck the bit before reading or
writing the relevant FP/VMX/VSX register in emulate_step().

Since we don't have preemption disabled, it is possible that we get
preempted between checking the MSR bit and doing the register access.
If that happened, then the registers would have been saved to the
thread_struct for the current process.  Accesses to the CPU registers
would then potentially read stale values, or write values that would
never be seen by the user process.

Another way that the registers can become non-live is if a page
fault occurs when accessing user memory, and the page fault code
calls a copy routine that wants to use the VMX or VSX registers.

To fix this, the code for all the FP/VMX/VSX loads gets restructured
so that it forms an image in a local variable of the desired register
contents, then disables preemption, checks the MSR bit and either
sets the CPU register or writes the value to the thread struct.
Similarly, the code for stores checks the MSR bit, copies either the
CPU register or the thread struct to a local variable, then reenables
preemption and then copies the register image to memory.

If the instruction being emulated is in the kernel, then we must not
use the register values in the thread_struct.  In this case, if the
relevant MSR enable bit is not set, then emulate_step refuses to
emulate the instruction.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:39:52 +10:00
Paul Mackerras
d120cdbce6 powerpc/64: Fix update forms of loads and stores to write 64-bit EA
When a 64-bit processor is executing in 32-bit mode, the update forms
of load and store instructions are required by the architecture to
write the full 64-bit effective address into the RA register, though
only the bottom 32 bits are used to address memory.  Currently,
the instruction emulation code writes the truncated address to the
RA register.  This fixes it by keeping the full 64-bit EA in the
instruction_op structure, truncating the address in emulate_step()
where it is used to address memory, rather than in the address
computations in analyse_instr().

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:39:49 +10:00
Paul Mackerras
350779a29f powerpc: Handle most loads and stores in instruction emulation code
This extends the instruction emulation infrastructure in sstep.c to
handle all the load and store instructions defined in the Power ISA
v3.0, except for the atomic memory operations, ldmx (which was never
implemented), lfdp/stfdp, and the vector element load/stores.

The instructions added are:

Integer loads and stores: lbarx, lharx, lqarx, stbcx., sthcx., stqcx.,
lq, stq.

VSX loads and stores: lxsiwzx, lxsiwax, stxsiwx, lxvx, lxvl, lxvll,
lxvdsx, lxvwsx, stxvx, stxvl, stxvll, lxsspx, lxsdx, stxsspx, stxsdx,
lxvw4x, lxsibzx, lxvh8x, lxsihzx, lxvb16x, stxvw4x, stxsibx, stxvh8x,
stxsihx, stxvb16x, lxsd, lxssp, lxv, stxsd, stxssp, stxv.

These instructions are handled both in the analyse_instr phase and in
the emulate_step phase.

The code for lxvd2ux and stxvd2ux has been taken out, as those
instructions were never implemented in any processor and have been
taken out of the architecture, and their opcodes have been reused for
other instructions in POWER9 (lxvb16x and stxvb16x).

The emulation for the VSX loads and stores uses helper functions
which don't access registers or memory directly, which can hopefully
be reused by KVM later.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:39:48 +10:00
Paul Mackerras
3cdfcbfd32 powerpc: Change analyse_instr so it doesn't modify *regs
The analyse_instr function currently doesn't just work out what an
instruction does, it also executes those instructions whose effect
is only to update CPU registers that are stored in struct pt_regs.
This is undesirable because optprobes uses analyse_instr to work out
if an instruction could be successfully emulated in future.

This changes analyse_instr so it doesn't modify *regs; instead it
stores information in the instruction_op structure to indicate what
registers (GPRs, CR, XER, LR) would be set and what value they would
be set to.  A companion function called emulate_update_regs() can
then use that information to update a pt_regs struct appropriately.

As a minor cleanup, this replaces inline asm using the cntlzw and
cntlzd instructions with calls to __builtin_clz() and __builtin_clzl().

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-01 16:39:27 +10:00
Paul Mackerras
cf87c3f6b6 powerpc: Emulate icbi, mcrf and conditional-trap instructions
This extends the instruction emulation done by analyse_instr() and
emulate_step() to handle a few more instructions that are found in
the kernel.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-09-25 23:14:51 +10:00
Paul Mackerras
be96f63375 powerpc: Split out instruction analysis part of emulate_step()
This splits out the instruction analysis part of emulate_step() into
a separate analyse_instr() function, which decodes the instruction,
but doesn't execute any load or store instructions.  It does execute
integer instructions and branches which can be executed purely by
updating register values in the pt_regs struct.  For other instructions,
it returns the instruction type and other details in a new
instruction_op struct.  emulate_step() then uses that information
to execute loads, stores, cache operations, mfmsr, mtmsr[d], and
(on 64-bit) sc instructions.

The reason for doing this is so that the KVM code can use it instead
of having its own separate instruction emulation code.  Possibly the
alignment interrupt handler could also use this.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-09-25 23:14:51 +10:00
Stephen Rothwell
b8b572e101 powerpc: Move include files to arch/powerpc/include/asm
from include/asm-powerpc.  This is the result of a

mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm

Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly.  Of the latter only
one was outside the arch code and it is a driver only built for powerpc.

Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-04 12:02:00 +10:00