mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 21:35:07 +00:00
243 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Vlastimil Babka
|
afe0c26d19 |
mm, slub: move slub_debug static key enabling outside slab_mutex
Paul E. McKenney reported [1] that commit 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") results in the lockdep complaint: ====================================================== WARNING: possible circular locking dependency detected 5.12.0+ #15 Not tainted ------------------------------------------------------ rcu_torture_sta/109 is trying to acquire lock: ffffffff96063cd0 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_enable+0x9/0x20 but task is already holding lock: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (slab_mutex){+.+.}-{3:3}: lock_acquire+0xb9/0x3a0 __mutex_lock+0x8d/0x920 slub_cpu_dead+0x15/0xf0 cpuhp_invoke_callback+0x17a/0x7c0 cpuhp_invoke_callback_range+0x3b/0x80 _cpu_down+0xdf/0x2a0 cpu_down+0x2c/0x50 device_offline+0x82/0xb0 remove_cpu+0x1a/0x30 torture_offline+0x80/0x140 torture_onoff+0x147/0x260 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 cpus_read_lock+0x21/0xa0 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(slab_mutex); lock(cpu_hotplug_lock); lock(slab_mutex); lock(cpu_hotplug_lock); *** DEADLOCK *** 1 lock held by rcu_torture_sta/109: #0: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250 stack backtrace: CPU: 3 PID: 109 Comm: rcu_torture_sta Not tainted 5.12.0+ #15 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: dump_stack+0x6d/0x89 check_noncircular+0xfe/0x110 ? lock_is_held_type+0x98/0x110 check_prev_add+0x8f/0xbf0 __lock_acquire+0x13f0/0x1d80 lock_acquire+0xb9/0x3a0 ? static_key_enable+0x9/0x20 ? mark_held_locks+0x49/0x70 cpus_read_lock+0x21/0xa0 ? static_key_enable+0x9/0x20 static_key_enable+0x9/0x20 __kmem_cache_create+0x38d/0x430 kmem_cache_create_usercopy+0x146/0x250 ? rcu_torture_stats_print+0xd0/0xd0 kmem_cache_create+0xd/0x10 rcu_torture_stats+0x79/0x280 ? rcu_torture_stats_print+0xd0/0xd0 kthread+0x10a/0x140 ? kthread_park+0x80/0x80 ret_from_fork+0x22/0x30 This is because there's one order of locking from the hotplug callbacks: lock(cpu_hotplug_lock); // from hotplug machinery itself lock(slab_mutex); // in e.g. slab_mem_going_offline_callback() And commit 1f0723a4c0df made the reverse sequence possible: lock(slab_mutex); // in kmem_cache_create_usercopy() lock(cpu_hotplug_lock); // kmem_cache_open() -> static_key_enable() The simplest fix is to move static_key_enable() to a place before slab_mutex is taken. That means kmem_cache_create_usercopy() in mm/slab_common.c which is not ideal for SLUB-specific code, but the #ifdef CONFIG_SLUB_DEBUG makes it at least self-contained and obvious. [1] https://lore.kernel.org/lkml/20210502171827.GA3670492@paulmck-ThinkPad-P17-Gen-1/ Link: https://lkml.kernel.org/r/20210504120019.26791-1-vbabka@suse.cz Fixes: 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rafael Aquini
|
82edd9d52e |
mm/slab_common: provide "slab_merge" option for !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT) builds
This is a minor addition to the allocator setup options to provide a simple way to on demand enable back cache merging for builds that by default run with CONFIG_SLAB_MERGE_DEFAULT not set. Link: https://lkml.kernel.org/r/20210319194506.200159-1-aquini@redhat.com Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Paul E. McKenney
|
0d3dd2c8ea |
rcutorture: Add crude tests for mem_dump_obj()
This commit adds a few crude tests for mem_dump_obj() to rcutorture runs. Just to prevent bitrot, you understand! Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
||
Paul E. McKenney
|
5bb1bb353c |
mm: Don't build mm_dump_obj() on CONFIG_PRINTK=n kernels
The mem_dump_obj() functionality adds a few hundred bytes, which is a small price to pay. Except on kernels built with CONFIG_PRINTK=n, in which mem_dump_obj() messages will be suppressed. This commit therefore makes mem_dump_obj() be a static inline empty function on kernels built with CONFIG_PRINTK=n and excludes all of its support functions as well. This avoids kernel bloat on systems that cannot use mem_dump_obj(). Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <linux-mm@kvack.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
||
Andrey Konovalov
|
d12d9ad816 |
kasan, mm: optimize krealloc poisoning
Currently, krealloc() always calls ksize(), which unpoisons the whole object including the redzone. This is inefficient, as kasan_krealloc() repoisons the redzone for objects that fit into the same buffer. This patch changes krealloc() instrumentation to use uninstrumented __ksize() that doesn't unpoison the memory. Instead, kasan_kreallos() is changed to unpoison the memory excluding the redzone. For objects that don't fit into the old allocation, this patch disables KASAN accessibility checks when copying memory into a new object instead of unpoisoning it. Link: https://lkml.kernel.org/r/9bef90327c9cb109d736c40115684fd32f49e6b0.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
26a5ca7a73 |
kasan, mm: fail krealloc on freed objects
Currently, if krealloc() is called on a freed object with KASAN enabled, it allocates and returns a new object, but doesn't copy any memory from the old one as ksize() returns 0. This makes the caller believe that krealloc() succeeded (KASAN report is printed though). This patch adds an accessibility check into __do_krealloc(). If the check fails, krealloc() returns NULL. This check duplicates the one in ksize(); this is fixed in the following patch. This patch also adds a KASAN-KUnit test to check krealloc() behaviour when it's called on a freed object. Link: https://lkml.kernel.org/r/cbcf7b02be0a1ca11de4f833f2ff0b3f2c9b00c8.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
928501344f |
kasan, mm: don't save alloc stacks twice
Patch series "kasan: optimizations and fixes for HW_TAGS", v4. This patchset makes the HW_TAGS mode more efficient, mostly by reworking poisoning approaches and simplifying/inlining some internal helpers. With this change, the overhead of HW_TAGS annotations excluding setting and checking memory tags is ~3%. The performance impact caused by tags will be unknown until we have hardware that supports MTE. As a side-effect, this patchset speeds up generic KASAN by ~15%. This patch (of 13): Currently KASAN saves allocation stacks in both kasan_slab_alloc() and kasan_kmalloc() annotations. This patch changes KASAN to save allocation stacks for slab objects from kmalloc caches in kasan_kmalloc() only, and stacks for other slab objects in kasan_slab_alloc() only. This change requires ____kasan_kmalloc() knowing whether the object belongs to a kmalloc cache. This is implemented by adding a flag field to the kasan_info structure. That flag is only set for kmalloc caches via a new kasan_cache_create_kmalloc() annotation. Link: https://lkml.kernel.org/r/cover.1612546384.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/7c673ebca8d00f40a7ad6f04ab9a2bddeeae2097.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
d3fb45f370 |
mm, kfence: insert KFENCE hooks for SLAB
Inserts KFENCE hooks into the SLAB allocator. To pass the originally requested size to KFENCE, add an argument 'orig_size' to slab_alloc*(). The additional argument is required to preserve the requested original size for kmalloc() allocations, which uses size classes (e.g. an allocation of 272 bytes will return an object of size 512). Therefore, kmem_cache::size does not represent the kmalloc-caller's requested size, and we must introduce the argument 'orig_size' to propagate the originally requested size to KFENCE. Without the originally requested size, we would not be able to detect out-of-bounds accesses for objects placed at the end of a KFENCE object page if that object is not equal to the kmalloc-size class it was bucketed into. When KFENCE is disabled, there is no additional overhead, since slab_alloc*() functions are __always_inline. Link: https://lkml.kernel.org/r/20201103175841.3495947-5-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
611806b4bf |
kasan: fix bug detection via ksize for HW_TAGS mode
The currently existing kasan_check_read/write() annotations are intended to be used for kernel modules that have KASAN compiler instrumentation disabled. Thus, they are only relevant for the software KASAN modes that rely on compiler instrumentation. However there's another use case for these annotations: ksize() checks that the object passed to it is indeed accessible before unpoisoning the whole object. This is currently done via __kasan_check_read(), which is compiled away for the hardware tag-based mode that doesn't rely on compiler instrumentation. This leads to KASAN missing detecting some memory corruptions. Provide another annotation called kasan_check_byte() that is available for all KASAN modes. As the implementation rename and reuse kasan_check_invalid_free(). Use this new annotation in ksize(). To avoid having ksize() as the top frame in the reported stack trace pass _RET_IP_ to __kasan_check_byte(). Also add a new ksize_uaf() test that checks that a use-after-free is detected via ksize() itself, and via plain accesses that happen later. Link: https://linux-review.googlesource.com/id/Iaabf771881d0f9ce1b969f2a62938e99d3308ec5 Link: https://lkml.kernel.org/r/f32ad74a60b28d8402482a38476f02bb7600f620.1610733117.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
96403bfe50 |
mm: memcontrol: fix slub memory accounting
SLUB currently account kmalloc() and kmalloc_node() allocations larger than order-1 page per-node. But it forget to update the per-memcg vmstats. So it can lead to inaccurate statistics of "slab_unreclaimable" which is from memory.stat. Fix it by using mod_lruvec_page_state instead of mod_node_page_state. Link: https://lkml.kernel.org/r/20210223092423.42420-1-songmuchun@bytedance.com Fixes: 6a486c0ad4dc ("mm, sl[ou]b: improve memory accounting") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Michal Koutný <mkoutny@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
59450bbc12 |
mm, slab, slub: stop taking cpu hotplug lock
SLAB has been using get/put_online_cpus() around creating, destroying and shrinking kmem caches since 95402b382901 ("cpu-hotplug: replace per-subsystem mutexes with get_online_cpus()") in 2008, which is supposed to be replacing a private mutex (cache_chain_mutex, called slab_mutex today) with system-wide mechanism, but in case of SLAB it's in fact used in addition to the existing mutex, without explanation why. SLUB appears to have avoided the cpu hotplug lock initially, but gained it due to common code unification, such as 20cea9683ecc ("mm, sl[aou]b: Move kmem_cache_create mutex handling to common code"). Regardless of the history, checking if the hotplug lock is actually needed today suggests that it's not, and therefore it's better to avoid this system-wide lock and the ordering this imposes wrt other locks (such as slab_mutex). Specifically, in SLAB we have for_each_online_cpu() in do_tune_cpucache() protected by slab_mutex, and cpu hotplug callbacks that also take the slab_mutex, which is also taken by the common slab function that currently also take the hotplug lock. Thus the slab_mutex protection should be sufficient. Also per-cpu array caches are allocated for each possible cpu, so not affected by their online/offline state. In SLUB we have for_each_online_cpu() in functions that show statistics and are already unprotected today, as racing with hotplug is not harmful. Otherwise SLUB relies on percpu allocator. The slub_cpu_dead() hotplug callback takes the slab_mutex. To sum up, this patch removes get/put_online_cpus() calls from slab as it should be safe without further adjustments. Link: https://lkml.kernel.org/r/20210113131634.3671-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Qian Cai <cai@redhat.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
7e1fa93def |
mm, slab, slub: stop taking memory hotplug lock
Since commit 03afc0e25f7f ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}") we are taking memory hotplug lock for SLAB and SLUB when creating, destroying or shrinking a cache. It is quite a heavy lock and it's best to avoid it if possible, as we had several issues with lockdep complaining about ordering in the past, see e.g. e4f8e513c3d3 ("mm/slub: fix a deadlock in show_slab_objects()"). The problem scenario in 03afc0e25f7f (solved by the memory hotplug lock) can be summarized as follows: while there's slab_mutex synchronizing new kmem cache creation and SLUB's MEM_GOING_ONLINE callback slab_mem_going_online_callback(), we may miss creation of kmem_cache_node for the hotplugged node in the new kmem cache, because the hotplug callback doesn't yet see the new cache, and cache creation in init_kmem_cache_nodes() only inits kmem_cache_node for nodes in the N_NORMAL_MEMORY nodemask, which however may not yet include the new node, as that happens only later after the MEM_GOING_ONLINE callback. Instead of using get/put_online_mems(), the problem can be solved by SLUB maintaining its own nodemask of nodes for which it has allocated the per-node kmem_cache_node structures. This nodemask would generally mirror the N_NORMAL_MEMORY nodemask, but would be updated only in under SLUB's control in its memory hotplug callbacks under the slab_mutex. This patch adds such nodemask and its handling. Commit 03afc0e25f7f mentiones "issues like [the one above]", but there don't appear to be further issues. All the paths (shared for SLAB and SLUB) taking the memory hotplug locks are also taking the slab_mutex, except kmem_cache_shrink() where 03afc0e25f7f replaced slab_mutex with get/put_online_mems(). We however cannot simply restore slab_mutex in kmem_cache_shrink(), as SLUB can enters the function from a write to sysfs 'shrink' file, thus holding kernfs lock, and in kmem_cache_create() the kernfs lock is nested within slab_mutex. But on closer inspection we don't actually need to protect kmem_cache_shrink() from hotplug callbacks: While SLUB's __kmem_cache_shrink() does for_each_kmem_cache_node(), missing a new node added in parallel hotplug is not fatal, and parallel hotremove does not free kmem_cache_node's anymore after the previous patch, so use-after free cannot happen. The per-node shrinking itself is protected by n->list_lock. Same is true for SLAB, and SLOB is no-op. SLAB also doesn't need the memory hotplug locking, which it only gained by 03afc0e25f7f through the shared paths in slab_common.c. Its memory hotplug callbacks are also protected by slab_mutex against races with these paths. The problem of SLUB relying on N_NORMAL_MEMORY doesn't apply to SLAB, as its setup_kmem_cache_nodes relies on N_ONLINE, and the new node is already set there during the MEM_GOING_ONLINE callback, so no special care is needed for SLAB. As such, this patch removes all get/put_online_mems() usage by the slab subsystem. Link: https://lkml.kernel.org/r/20210113131634.3671-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Qian Cai <cai@redhat.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nikolay Borisov
|
3754000872 |
mm/sl?b.c: remove ctor argument from kmem_cache_flags
This argument hasn't been used since e153362a50a3 ("slub: Remove objsize check in kmem_cache_flags()") so simply remove it. Link: https://lkml.kernel.org/r/20210126095733.974665-1-nborisov@suse.com Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Paul E. McKenney
|
8e7f37f2aa |
mm: Add mem_dump_obj() to print source of memory block
There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
||
Andrey Konovalov
|
e86f8b09f2 |
kasan, mm: allow cache merging with no metadata
The reason cache merging is disabled with KASAN is because KASAN puts its metadata right after the allocated object. When the merged caches have slightly different sizes, the metadata ends up in different places, which KASAN doesn't support. It might be possible to adjust the metadata allocation algorithm and make it friendly to the cache merging code. Instead this change takes a simpler approach and allows merging caches when no metadata is present. Which is the case for hardware tag-based KASAN with kasan.mode=prod. Link: https://lkml.kernel.org/r/37497e940bfd4b32c0a93a702a9ae4cf061d5392.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Ia114847dfb2244f297d2cb82d592bf6a07455dba Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Marco Elver <elver@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
cebd0eb29a |
kasan: rename (un)poison_shadow to (un)poison_range
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. The new mode won't be using shadow memory. Rename external annotation kasan_unpoison_shadow() to kasan_unpoison_range(), and introduce internal functions (un)poison_range() (without kasan_ prefix). Co-developed-by: Marco Elver <elver@google.com> Link: https://lkml.kernel.org/r/fccdcaa13dc6b2211bf363d6c6d499279a54fe3a.1606161801.git.andreyknvl@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Bartosz Golaszewski
|
15d5de496b |
mm: slab: clarify krealloc()'s behavior with __GFP_ZERO
Patch series "slab: provide and use krealloc_array()", v3. Andy brought to my attention the fact that users allocating an array of equally sized elements should check if the size multiplication doesn't overflow. This is why we have helpers like kmalloc_array(). However we don't have krealloc_array() equivalent and there are many users who do their own multiplication when calling krealloc() for arrays. This series provides krealloc_array() and uses it in a couple places. A separate series will follow adding devm_krealloc_array() which is needed in the xilinx adc driver. This patch (of 9): __GFP_ZERO is ignored by krealloc() (unless we fall-back to kmalloc() path, in which case it's honored). Point that out in the kerneldoc. Link: https://lkml.kernel.org/r/20201109110654.12547-1-brgl@bgdev.pl Link: https://lkml.kernel.org/r/20201109110654.12547-2-brgl@bgdev.pl Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Gustavo Padovan <gustavo@padovan.org> Cc: Christian Knig <christian.koenig@amd.com> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Cc: James Morse <james.morse@arm.com> Cc: Robert Richter <rric@kernel.org> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Maxime Ripard <mripard@kernel.org> Cc: Thomas Zimmermann <tzimmermann@suse.de> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: "Michael S . Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Cc: Borislav Petkov <bp@suse.de> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Takashi Iwai <tiwai@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hui Su
|
7714304f3b |
mm/slab_common.c: use list_for_each_entry in dump_unreclaimable_slab()
dump_unreclaimable_slab() acquires the slab_mutex first, and it won't remove any slab_caches list entry when itering the slab_caches lists. Thus we do not need list_for_each_entry_safe here, which is against removal of list entry. Link: https://lkml.kernel.org/r/20200926043440.GA180545@rlk Signed-off-by: Hui Su <sh_def@163.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Randy Dunlap
|
081a06fa29 |
mm/slab_common.c: delete duplicated word
Drop the repeated word "and". Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200801173822.14973-12-rdunlap@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
10befea91b |
mm: memcg/slab: use a single set of kmem_caches for all allocations
Instead of having two sets of kmem_caches: one for system-wide and non-accounted allocations and the second one shared by all accounted allocations, we can use just one. The idea is simple: space for obj_cgroup metadata can be allocated on demand and filled only for accounted allocations. It allows to remove a bunch of code which is required to handle kmem_cache clones for accounted allocations. There is no more need to create them, accumulate statistics, propagate attributes, etc. It's a quite significant simplification. Also, because the total number of slab_caches is reduced almost twice (not all kmem_caches have a memcg clone), some additional memory savings are expected. On my devvm it additionally saves about 3.5% of slab memory. [guro@fb.com: fix build on MIPS] Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
15999eef7f |
mm: memcg/slab: remove redundant check in memcg_accumulate_slabinfo()
memcg_accumulate_slabinfo() is never called with a non-root kmem_cache as a first argument, so the is_root_cache(s) check is redundant and can be removed without any functional change. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-17-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
c7094406fc |
mm: memcg/slab: deprecate slab_root_caches
Currently there are two lists of kmem_caches: 1) slab_caches, which contains all kmem_caches, 2) slab_root_caches, which contains only root kmem_caches. And there is some preprocessor magic to have a single list if CONFIG_MEMCG_KMEM isn't enabled. It was required earlier because the number of non-root kmem_caches was proportional to the number of memory cgroups and could reach really big values. Now, when it cannot exceed the number of root kmem_caches, there is really no reason to maintain two lists. We never iterate over the slab_root_caches list on any hot paths, so it's perfectly fine to iterate over slab_caches and filter out non-root kmem_caches. It allows to remove a lot of config-dependent code and two pointers from the kmem_cache structure. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-16-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
272911a4ad |
mm: memcg/slab: remove memcg_kmem_get_cache()
The memcg_kmem_get_cache() function became really trivial, so let's just inline it into the single call point: memcg_slab_pre_alloc_hook(). It will make the code less bulky and can also help the compiler to generate a better code. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
d797b7d054 |
mm: memcg/slab: simplify memcg cache creation
Because the number of non-root kmem_caches doesn't depend on the number of memory cgroups anymore and is generally not very big, there is no more need for a dedicated workqueue. Also, as there is no more need to pass any arguments to the memcg_create_kmem_cache() except the root kmem_cache, it's possible to just embed the work structure into the kmem_cache and avoid the dynamic allocation of the work structure. This will also simplify the synchronization: for each root kmem_cache there is only one work. So there will be no more concurrent attempts to create a non-root kmem_cache for a root kmem_cache: the second and all following attempts to queue the work will fail. On the kmem_cache destruction path there is no more need to call the expensive flush_workqueue() and wait for all pending works to be finished. Instead, cancel_work_sync() can be used to cancel/wait for only one work. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
9855609bde |
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
4330a26bc4 |
mm: memcg/slab: deprecate memory.kmem.slabinfo
Deprecate memory.kmem.slabinfo. An empty file will be presented if corresponding config options are enabled. The interface is implementation dependent, isn't present in cgroup v2, and is generally useful only for core mm debugging purposes. In other words, it doesn't provide any value for the absolute majority of users. A drgn-based replacement can be found in tools/cgroup/memcg_slabinfo.py. It does support cgroup v1 and v2, mimics memory.kmem.slabinfo output and also allows to get any additional information without a need to recompile the kernel. If a drgn-based solution is too slow for a task, a bpf-based tracing tool can be used, which can easily keep track of all slab allocations belonging to a memory cgroup. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
d42f3245c7 |
mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Long Li
|
444050990d |
mm, slab: check GFP_SLAB_BUG_MASK before alloc_pages in kmalloc_order
kmalloc cannot allocate memory from HIGHMEM. Allocating large amounts of memory currently bypasses the check and will simply leak the memory when page_address() returns NULL. To fix this, factor the GFP_SLAB_BUG_MASK check out of slab & slub, and call it from kmalloc_order() as well. In order to make the code clear, the warning message is put in one place. Signed-off-by: Long Li <lonuxli.64@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200704035027.GA62481@lilong Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
William Kucharski
|
fa9ba3aa89 |
mm: ksize() should silently accept a NULL pointer
Other mm routines such as kfree() and kzfree() silently do the right thing if passed a NULL pointer, so ksize() should do the same. Signed-off-by: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200616225409.4670-1-william.kucharski@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
453431a549 |
mm, treewide: rename kzfree() to kfree_sensitive()
As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
d38a2b7a9c |
mm: memcg/slab: fix memory leak at non-root kmem_cache destroy
If the kmem_cache refcount is greater than one, we should not mark the root kmem_cache as dying. If we mark the root kmem_cache dying incorrectly, the non-root kmem_cache can never be destroyed. It resulted in memory leak when memcg was destroyed. We can use the following steps to reproduce. 1) Use kmem_cache_create() to create a new kmem_cache named A. 2) Coincidentally, the kmem_cache A is an alias for kmem_cache B, so the refcount of B is just increased. 3) Use kmem_cache_destroy() to destroy the kmem_cache A, just decrease the B's refcount but mark the B as dying. 4) Create a new memory cgroup and alloc memory from the kmem_cache B. It leads to create a non-root kmem_cache for allocating memory. 5) When destroy the memory cgroup created in the step 4), the non-root kmem_cache can never be destroyed. If we repeat steps 4) and 5), this will cause a lot of memory leak. So only when refcount reach zero, we mark the root kmem_cache as dying. Fixes: 92ee383f6daa ("mm: fix race between kmem_cache destroy, create and deactivate") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20200716165103.83462-1-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
8982ae527f |
mm/slab: use memzero_explicit() in kzfree()
The kzfree() function is normally used to clear some sensitive information, like encryption keys, in the buffer before freeing it back to the pool. Memset() is currently used for buffer clearing. However unlikely, there is still a non-zero probability that the compiler may choose to optimize away the memory clearing especially if LTO is being used in the future. To make sure that this optimization will never happen, memzero_explicit(), which is introduced in v3.18, is now used in kzfree() to future-proof it. Link: http://lkml.kernel.org/r/20200616154311.12314-2-longman@redhat.com Fixes: 3ef0e5ba4673 ("slab: introduce kzfree()") Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Howells <dhowells@redhat.com> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
49f2d2419d |
usercopy: mark dma-kmalloc caches as usercopy caches
We have seen a "usercopy: Kernel memory overwrite attempt detected to SLUB object 'dma-kmalloc-1 k' (offset 0, size 11)!" error on s390x, as IUCV uses kmalloc() with __GFP_DMA because of memory address restrictions. The issue has been discussed [2] and it has been noted that if all the kmalloc caches are marked as usercopy, there's little reason not to mark dma-kmalloc caches too. The 'dma' part merely means that __GFP_DMA is used to restrict memory address range. As Jann Horn put it [3]: "I think dma-kmalloc slabs should be handled the same way as normal kmalloc slabs. When a dma-kmalloc allocation is freshly created, it is just normal kernel memory - even if it might later be used for DMA -, and it should be perfectly fine to copy_from_user() into such allocations at that point, and to copy_to_user() out of them at the end. If you look at the places where such allocations are created, you can see things like kmemdup(), memcpy() and so on - all normal operations that shouldn't conceptually be different from usercopy in any relevant way." Thus this patch marks the dma-kmalloc-* caches as usercopy. [1] https://bugzilla.suse.com/show_bug.cgi?id=1156053 [2] https://lore.kernel.org/kernel-hardening/bfca96db-bbd0-d958-7732-76e36c667c68@suse.cz/ [3] https://lore.kernel.org/kernel-hardening/CAG48ez1a4waGk9kB0WLaSbs4muSoK0AYAVk8=XYaKj4_+6e6Hg@mail.gmail.com/ Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Jiri Slaby <jslaby@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Christopher Lameter <cl@linux.com> Cc: Julian Wiedmann <jwi@linux.ibm.com> Cc: Ursula Braun <ubraun@linux.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: David Windsor <dave@nullcore.net> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Laura Abbott <labbott@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Dave Kleikamp <dave.kleikamp@oracle.com> Cc: Jan Kara <jack@suse.cz> Cc: Luis de Bethencourt <luisbg@kernel.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rik van Riel <riel@surriel.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Michal Kubecek <mkubecek@suse.cz> Link: http://lkml.kernel.org/r/7d810f6d-8085-ea2f-7805-47ba3842dc50@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qiujun Huang
|
b991cee567 |
mm, slab_common: fix a typo in comment "eariler"->"earlier"
There is a typo in comment, fix it. s/eariler/earlier/ Signed-off-by: Qiujun Huang <hqjagain@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux.com> Link: http://lkml.kernel.org/r/20200405160544.1246-1-hqjagain@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
d919b33daf |
proc: faster open/read/close with "permanent" files
Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
a87425a36f |
mm, memcg: fix build error around the usage of kmem_caches
When I manually set default n to MEMCG_KMEM in init/Kconfig, bellow error occurs, mm/slab_common.c: In function 'memcg_slab_start': mm/slab_common.c:1530:30: error: 'struct mem_cgroup' has no member named 'kmem_caches' return seq_list_start(&memcg->kmem_caches, *pos); ^ mm/slab_common.c: In function 'memcg_slab_next': mm/slab_common.c:1537:32: error: 'struct mem_cgroup' has no member named 'kmem_caches' return seq_list_next(p, &memcg->kmem_caches, pos); ^ mm/slab_common.c: In function 'memcg_slab_show': mm/slab_common.c:1551:16: error: 'struct mem_cgroup' has no member named 'kmem_caches' if (p == memcg->kmem_caches.next) ^ CC arch/x86/xen/smp.o mm/slab_common.c: In function 'memcg_slab_start': mm/slab_common.c:1531:1: warning: control reaches end of non-void function [-Wreturn-type] } ^ mm/slab_common.c: In function 'memcg_slab_next': mm/slab_common.c:1538:1: warning: control reaches end of non-void function [-Wreturn-type] } ^ That's because kmem_caches is defined only when CONFIG_MEMCG_KMEM is set, while memcg_slab_start() will use it no matter CONFIG_MEMCG_KMEM is defined or not. By the way, the reason I mannuly undefined CONFIG_MEMCG_KMEM is to verify whether my some other code change is still stable when CONFIG_MEMCG_KMEM is not set. Unfortunately, the existing code has been already unstable since v4.11. Fixes: bc2791f857e1 ("slab: link memcg kmem_caches on their associated memory cgroup") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/1580970260-2045-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
97a32539b9 |
proc: convert everything to "struct proc_ops"
The most notable change is DEFINE_SHOW_ATTRIBUTE macro split in seq_file.h. Conversion rule is: llseek => proc_lseek unlocked_ioctl => proc_ioctl xxx => proc_xxx delete ".owner = THIS_MODULE" line [akpm@linux-foundation.org: fix drivers/isdn/capi/kcapi_proc.c] [sfr@canb.auug.org.au: fix kernel/sched/psi.c] Link: http://lkml.kernel.org/r/20200122180545.36222f50@canb.auug.org.au Link: http://lkml.kernel.org/r/20191225172546.GB13378@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Florian Westphal
|
1c948715a1 |
mm: remove __krealloc
Since 5.5-rc1 the last user of this function is gone, so remove the functionality. See commit 2ad9d7747c10 ("netfilter: conntrack: free extension area immediately") for details. Link: http://lkml.kernel.org/r/20191212223442.22141-1-fw@strlen.de Signed-off-by: Florian Westphal <fw@strlen.de> Acked-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Adrian Huang
|
2fe20210fc |
mm: memcg/slab: call flush_memcg_workqueue() only if memcg workqueue is valid
When booting with amd_iommu=off, the following WARNING message appears: AMD-Vi: AMD IOMMU disabled on kernel command-line ------------[ cut here ]------------ WARNING: CPU: 0 PID: 0 at kernel/workqueue.c:2772 flush_workqueue+0x42e/0x450 Modules linked in: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.5.0-rc3-amd-iommu #6 Hardware name: Lenovo ThinkSystem SR655-2S/7D2WRCZ000, BIOS D8E101L-1.00 12/05/2019 RIP: 0010:flush_workqueue+0x42e/0x450 Code: ff 0f 0b e9 7a fd ff ff 4d 89 ef e9 33 fe ff ff 0f 0b e9 7f fd ff ff 0f 0b e9 bc fd ff ff 0f 0b e9 a8 fd ff ff e8 52 2c fe ff <0f> 0b 31 d2 48 c7 c6 e0 88 c5 95 48 c7 c7 d8 ad f0 95 e8 19 f5 04 Call Trace: kmem_cache_destroy+0x69/0x260 iommu_go_to_state+0x40c/0x5ab amd_iommu_prepare+0x16/0x2a irq_remapping_prepare+0x36/0x5f enable_IR_x2apic+0x21/0x172 default_setup_apic_routing+0x12/0x6f apic_intr_mode_init+0x1a1/0x1f1 x86_late_time_init+0x17/0x1c start_kernel+0x480/0x53f secondary_startup_64+0xb6/0xc0 ---[ end trace 30894107c3749449 ]--- x2apic: IRQ remapping doesn't support X2APIC mode x2apic disabled The warning is caused by the calling of 'kmem_cache_destroy()' in free_iommu_resources(). Here is the call path: free_iommu_resources kmem_cache_destroy flush_memcg_workqueue flush_workqueue The root cause is that the IOMMU subsystem runs before the workqueue subsystem, which the variable 'wq_online' is still 'false'. This leads to the statement 'if (WARN_ON(!wq_online))' in flush_workqueue() is 'true'. Since the variable 'memcg_kmem_cache_wq' is not allocated during the time, it is unnecessary to call flush_memcg_workqueue(). This prevents the WARNING message triggered by flush_workqueue(). Link: http://lkml.kernel.org/r/20200103085503.1665-1-ahuang12@lenovo.com Fixes: 92ee383f6daab ("mm: fix race between kmem_cache destroy, create and deactivate") Signed-off-by: Adrian Huang <ahuang12@lenovo.com> Reported-by: Xiaochun Lee <lixc17@lenovo.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
a264df74df |
mm: memcg/slab: wait for !root kmem_cache refcnt killing on root kmem_cache destruction
Christian reported a warning like the following obtained during running some KVM-related tests on s390: WARNING: CPU: 8 PID: 208 at lib/percpu-refcount.c:108 percpu_ref_exit+0x50/0x58 Modules linked in: kvm(-) xt_CHECKSUM xt_MASQUERADE bonding xt_tcpudp ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ip6table_na> CPU: 8 PID: 208 Comm: kworker/8:1 Not tainted 5.2.0+ #66 Hardware name: IBM 2964 NC9 712 (LPAR) Workqueue: events sysfs_slab_remove_workfn Krnl PSW : 0704e00180000000 0000001529746850 (percpu_ref_exit+0x50/0x58) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 00000000ffff8808 0000001529746740 000003f4e30e8e18 0036008100000000 0000001f00000000 0035008100000000 0000001fb3573ab8 0000000000000000 0000001fbdb6de00 0000000000000000 0000001529f01328 0000001fb3573b00 0000001fbb27e000 0000001fbdb69300 000003e009263d00 000003e009263cd0 Krnl Code: 0000001529746842: f0a0000407fe srp 4(11,%r0),2046,0 0000001529746848: 47000700 bc 0,1792 #000000152974684c: a7f40001 brc 15,152974684e >0000001529746850: a7f4fff2 brc 15,1529746834 0000001529746854: 0707 bcr 0,%r7 0000001529746856: 0707 bcr 0,%r7 0000001529746858: eb8ff0580024 stmg %r8,%r15,88(%r15) 000000152974685e: a738ffff lhi %r3,-1 Call Trace: ([<000003e009263d00>] 0x3e009263d00) [<00000015293252ea>] slab_kmem_cache_release+0x3a/0x70 [<0000001529b04882>] kobject_put+0xaa/0xe8 [<000000152918cf28>] process_one_work+0x1e8/0x428 [<000000152918d1b0>] worker_thread+0x48/0x460 [<00000015291942c6>] kthread+0x126/0x160 [<0000001529b22344>] ret_from_fork+0x28/0x30 [<0000001529b2234c>] kernel_thread_starter+0x0/0x10 Last Breaking-Event-Address: [<000000152974684c>] percpu_ref_exit+0x4c/0x58 ---[ end trace b035e7da5788eb09 ]--- The problem occurs because kmem_cache_destroy() is called immediately after deleting of a memcg, so it races with the memcg kmem_cache deactivation. flush_memcg_workqueue() at the beginning of kmem_cache_destroy() is supposed to guarantee that all deactivation processes are finished, but failed to do so. It waits for an rcu grace period, after which all children kmem_caches should be deactivated. During the deactivation percpu_ref_kill() is called for non root kmem_cache refcounters, but it requires yet another rcu grace period to finish the transition to the atomic (dead) state. So in a rare case when not all children kmem_caches are destroyed at the moment when the root kmem_cache is about to be gone, we need to wait another rcu grace period before destroying the root kmem_cache. This issue can be triggered only with dynamically created kmem_caches which are used with memcg accounting. In this case per-memcg child kmem_caches are created. They are deactivated from the cgroup removing path. If the destruction of the root kmem_cache is racing with the removal of the cgroup (both are quite complicated multi-stage processes), the described issue can occur. The only known way to trigger it in the real life, is to unload some kernel module which creates a dedicated kmem_cache, used from different memory cgroups with GFP_ACCOUNT flag. If the unloading happens immediately after calling rmdir on the corresponding cgroup, there is some chance to trigger the issue. Link: http://lkml.kernel.org/r/20191129025011.3076017-1-guro@fb.com Fixes: f0a3a24b532d ("mm: memcg/slab: rework non-root kmem_cache lifecycle management") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Christian Borntraeger <borntraeger@de.ibm.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pengfei Li
|
13657d0ad9 |
mm, slab_common: use enum kmalloc_cache_type to iterate over kmalloc caches
The type of local variable *type* of new_kmalloc_cache() should be enum kmalloc_cache_type instead of int, so correct it. Link: http://lkml.kernel.org/r/1569241648-26908-4-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pengfei Li
|
dc0a7f7558 |
mm, slab: remove unused kmalloc_size()
The size of kmalloc can be obtained from kmalloc_info[], so remove kmalloc_size() that will not be used anymore. Link: http://lkml.kernel.org/r/1569241648-26908-3-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pengfei Li
|
cb5d9fb38c |
mm, slab: make kmalloc_info[] contain all types of names
Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
b749ecfaf6 |
mm: memcg/slab: fix panic in __free_slab() caused by premature memcg pointer release
Karsten reported the following panic in __free_slab() happening on a s390x machine: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 0000000000000000 TEID: 0000000000000483 Fault in home space mode while using kernel ASCE. AS:00000000017d4007 R3:000000007fbd0007 S:000000007fbff000 P:000000000000003d Oops: 0004 ilc:3 Ý#1¨ PREEMPT SMP Modules linked in: tcp_diag inet_diag xt_tcpudp ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ip6table_nat ip6table_mangle ip6table_raw ip6table_security iptable_at nf_nat CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.3.0-05872-g6133e3e4bada-dirty #14 Hardware name: IBM 2964 NC9 702 (z/VM 6.4.0) Krnl PSW : 0704d00180000000 00000000003cadb6 (__free_slab+0x686/0x6b0) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3 Krnl GPRS: 00000000f3a32928 0000000000000000 000000007fbf5d00 000000000117c4b8 0000000000000000 000000009e3291c1 0000000000000000 0000000000000000 0000000000000003 0000000000000008 000000002b478b00 000003d080a97600 0000000000000003 0000000000000008 000000002b478b00 000003d080a97600 000000000117ba00 000003e000057db0 00000000003cabcc 000003e000057c78 Krnl Code: 00000000003cada6: e310a1400004 lg %r1,320(%r10) 00000000003cadac: c0e50046c286 brasl %r14,ca32b8 #00000000003cadb2: a7f4fe36 brc 15,3caa1e >00000000003cadb6: e32060800024 stg %r2,128(%r6) 00000000003cadbc: a7f4fd9e brc 15,3ca8f8 00000000003cadc0: c0e50046790c brasl %r14,c99fd8 00000000003cadc6: a7f4fe2c brc 15,3caa 00000000003cadc6: a7f4fe2c brc 15,3caa1e 00000000003cadca: ecb1ffff00d9 aghik %r11,%r1,-1 Call Trace: (<00000000003cabcc> __free_slab+0x49c/0x6b0) <00000000001f5886> rcu_core+0x5a6/0x7e0 <0000000000ca2dea> __do_softirq+0xf2/0x5c0 <0000000000152644> irq_exit+0x104/0x130 <000000000010d222> do_IRQ+0x9a/0xf0 <0000000000ca2344> ext_int_handler+0x130/0x134 <0000000000103648> enabled_wait+0x58/0x128 (<0000000000103634> enabled_wait+0x44/0x128) <0000000000103b00> arch_cpu_idle+0x40/0x58 <0000000000ca0544> default_idle_call+0x3c/0x68 <000000000018eaa4> do_idle+0xec/0x1c0 <000000000018ee0e> cpu_startup_entry+0x36/0x40 <000000000122df34> arch_call_rest_init+0x5c/0x88 <0000000000000000> 0x0 INFO: lockdep is turned off. Last Breaking-Event-Address: <00000000003ca8f4> __free_slab+0x1c4/0x6b0 Kernel panic - not syncing: Fatal exception in interrupt The kernel panics on an attempt to dereference the NULL memcg pointer. When shutdown_cache() is called from the kmem_cache_destroy() context, a memcg kmem_cache might have empty slab pages in a partial list, which are still charged to the memory cgroup. These pages are released by free_partial() at the beginning of shutdown_cache(): either directly or by scheduling a RCU-delayed work (if the kmem_cache has the SLAB_TYPESAFE_BY_RCU flag). The latter case is when the reported panic can happen: memcg_unlink_cache() is called immediately after shrinking partial lists, without waiting for scheduled RCU works. It sets the kmem_cache->memcg_params.memcg pointer to NULL, and the following attempt to dereference it by __free_slab() from the RCU work context causes the panic. To fix the issue, let's postpone the release of the memcg pointer to destroy_memcg_params(). It's called from a separate work context by slab_caches_to_rcu_destroy_workfn(), which contains a full RCU barrier. This guarantees that all scheduled page release RCU works will complete before the memcg pointer will be zeroed. Big thanks for Karsten for the perfect report containing all necessary information, his help with the analysis of the problem and testing of the fix. Link: http://lkml.kernel.org/r/20191010160549.1584316-1-guro@fb.com Fixes: fb2f2b0adb98 ("mm: memcg/slab: reparent memcg kmem_caches on cgroup removal") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Karsten Graul <kgraul@linux.ibm.com> Tested-by: Karsten Graul <kgraul@linux.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Karsten Graul <kgraul@linux.ibm.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
59bb47985c |
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned (i.e. aligned to the block size itself) blocks for power of two sizes. That means some kmalloc() users might unknowingly rely on that alignment, until stuff breaks when the kernel is built with e.g. CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then developers have to devise workaround such as own kmem caches with specified alignment [1], which is not always practical, as recently evidenced in [2]. The topic has been discussed at LSF/MM 2019 [3]. Adding a 'kmalloc_aligned()' variant would not help with code unknowingly relying on the implicit alignment. For slab implementations it would either require creating more kmalloc caches, or allocate a larger size and only give back part of it. That would be wasteful, especially with a generic alignment parameter (in contrast with a fixed alignment to size). Ideally we should provide to mm users what they need without difficult workarounds or own reimplementations, so let's make the kmalloc() alignment to size explicitly guaranteed for power-of-two sizes under all configurations. What this means for the three available allocators? * SLAB object layout happens to be mostly unchanged by the patch. The implicitly provided alignment could be compromised with CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for caches with alignment larger than unsigned long long. Practically on at least x86 this includes kmalloc caches as they use cache line alignment, which is larger than that. Still, this patch ensures alignment on all arches and cache sizes. * SLUB layout is also unchanged unless redzoning is enabled through CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache. With this patch, explicit alignment is guaranteed with redzoning as well. This will result in more memory being wasted, but that should be acceptable in a debugging scenario. * SLOB has no implicit alignment so this patch adds it explicitly for kmalloc(). The potential downside is increased fragmentation. While pathological allocation scenarios are certainly possible, in my testing, after booting a x86_64 kernel+userspace with virtme, around 16MB memory was consumed by slab pages both before and after the patch, with difference in the noise. [1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/ [2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/ [3] https://lwn.net/Articles/787740/ [akpm@linux-foundation.org: documentation fixlet, per Matthew] Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Cc: David Sterba <dsterba@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
6a486c0ad4 |
mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2. This patch (of 2): SLOB currently doesn't account its pages at all, so in /proc/meminfo the Slab field shows zero. Modifying a counter on page allocation and freeing should be acceptable even for the small system scenarios SLOB is intended for. Since reclaimable caches are not separated in SLOB, account everything as unreclaimable. SLUB currently doesn't account kmalloc() and kmalloc_node() allocations larger than order-1 page, that are passed directly to the page allocator. As they also don't appear in /proc/slabinfo, it might look like a memory leak. For consistency, account them as well. (SLAB doesn't actually use page allocator directly, so no change there). Ideally SLOB and SLUB would be handled in separate patches, but due to the shared kmalloc_order() function and different kfree() implementations, it's easier to patch both at once to prevent inconsistencies. Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
04f768a39d |
mm, slab: extend slab/shrink to shrink all memcg caches
Currently, a value of '1" is written to /sys/kernel/slab/<slab>/shrink file to shrink the slab by flushing out all the per-cpu slabs and free slabs in partial lists. This can be useful to squeeze out a bit more memory under extreme condition as well as making the active object counts in /proc/slabinfo more accurate. This usually applies only to the root caches, as the SLUB_MEMCG_SYSFS_ON option is usually not enabled and "slub_memcg_sysfs=1" not set. Even if memcg sysfs is turned on, it is too cumbersome and impractical to manage all those per-memcg sysfs files in a real production system. So there is no practical way to shrink memcg caches. Fix this by enabling a proper write to the shrink sysfs file of the root cache to scan all the available memcg caches and shrink them as well. For a non-root memcg cache (when SLUB_MEMCG_SYSFS_ON or slub_memcg_sysfs is on), only that cache will be shrunk when written. On a 2-socket 64-core 256-thread arm64 system with 64k page after a parallel kernel build, the the amount of memory occupied by slabs before shrinking slabs were: # grep task_struct /proc/slabinfo task_struct 53137 53192 4288 61 4 : tunables 0 0 0 : slabdata 872 872 0 # grep "^S[lRU]" /proc/meminfo Slab: 3936832 kB SReclaimable: 399104 kB SUnreclaim: 3537728 kB After shrinking slabs (by echoing "1" to all shrink files): # grep "^S[lRU]" /proc/meminfo Slab: 1356288 kB SReclaimable: 263296 kB SUnreclaim: 1092992 kB # grep task_struct /proc/slabinfo task_struct 2764 6832 4288 61 4 : tunables 0 0 0 : slabdata 112 112 0 Link: http://lkml.kernel.org/r/20190723151445.7385-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Arnd Bergmann
|
a07057dce2 |
mm/slab_common.c: work around clang bug #42570
Clang gets rather confused about two variables in the same special section when one of them is not initialized, leading to an assembler warning later: /tmp/slab_common-18f869.s: Assembler messages: /tmp/slab_common-18f869.s:7526: Warning: ignoring changed section attributes for .data..ro_after_init Adding an initialization to kmalloc_caches is rather silly here but does avoid the issue. Link: https://bugs.llvm.org/show_bug.cgi?id=42570 Link: http://lkml.kernel.org/r/20190712090455.266021-1-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
fcf8a1e483 |
mm, memcg: add a memcg_slabinfo debugfs file
There are concerns about memory leaks from extensive use of memory cgroups as each memory cgroup creates its own set of kmem caches. There is a possiblity that the memcg kmem caches may remain even after the memory cgroups have been offlined. Therefore, it will be useful to show the status of each of memcg kmem caches. This patch introduces a new <debugfs>/memcg_slabinfo file which is somewhat similar to /proc/slabinfo in format, but lists only information about kmem caches that have child memcg kmem caches. Information available in /proc/slabinfo are not repeated in memcg_slabinfo. A portion of a sample output of the file was: # <name> <css_id[:dead]> <active_objs> <num_objs> <active_slabs> <num_slabs> rpc_inode_cache root 13 51 1 1 rpc_inode_cache 48 0 0 0 0 fat_inode_cache root 1 45 1 1 fat_inode_cache 41 2 45 1 1 xfs_inode root 770 816 24 24 xfs_inode 92 22 34 1 1 xfs_inode 88:dead 1 34 1 1 xfs_inode 89:dead 23 34 1 1 xfs_inode 85 4 34 1 1 xfs_inode 84 9 34 1 1 The css id of the memcg is also listed. If a memcg is not online, the tag ":dead" will be attached as shown above. [longman@redhat.com: memcg: add ":deact" tag for reparented kmem caches in memcg_slabinfo] Link: http://lkml.kernel.org/r/20190621173005.31514-1-longman@redhat.com [longman@redhat.com: set the flag in the common code as suggested by Roman] Link: http://lkml.kernel.org/r/20190627184324.5875-1-longman@redhat.com Link: http://lkml.kernel.org/r/20190619171621.26209-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Suggested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
fb2f2b0adb |
mm: memcg/slab: reparent memcg kmem_caches on cgroup removal
Let's reparent non-root kmem_caches on memcg offlining. This allows us to release the memory cgroup without waiting for the last outstanding kernel object (e.g. dentry used by another application). Since the parent cgroup is already charged, everything we need to do is to splice the list of kmem_caches to the parent's kmem_caches list, swap the memcg pointer, drop the css refcounter for each kmem_cache and adjust the parent's css refcounter. Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer anymore. It's safe to read it under rcu_read_lock(), cgroup_mutex held, or any other way that protects the memory cgroup from being released. We can race with the slab allocation and deallocation paths. It's not a big problem: parent's charge and slab global stats are always correct, and we don't care anymore about the child usage and global stats. The child cgroup is already offline, so we don't use or show it anywhere. Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't used anywhere except count_shadow_nodes(). But even there it won't break anything: after reparenting "nodes" will be 0 on child level (because we're already reparenting shrinker lists), and on parent level page stats always were 0, and this patch won't change anything. [guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup] Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |