mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 11:57:46 +00:00
4399 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Stephen Rothwell
|
86f59b26a1 | Merge branch 'mm-everything' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm | ||
Stephen Rothwell
|
17aa0382f1 | Merge branch 'mm-nonmm-stable' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm | ||
Ingo Molnar
|
e46ca77dd1 |
Merge branch into tip/master: 'sched/urgent'
# New commits in sched/urgent: 66951e4860d3 ("sched/fair: Fix update_cfs_group() vs DELAY_DEQUEUE") 6d71a9c61604 ("sched/fair: Fix EEVDF entity placement bug causing scheduling lag") Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
66951e4860 |
sched/fair: Fix update_cfs_group() vs DELAY_DEQUEUE
Normally dequeue_entities() will continue to dequeue an empty group entity; except DELAY_DEQUEUE changes things -- it retains empty entities such that they might continue to compete and burn off some lag. However, doing this results in update_cfs_group() re-computing the cgroup weight 'slice' for an empty group, which it (rightly) figures isn't much at all. This in turn means that the delayed entity is not competing at the expected weight. Worse, the very low weight causes its lag to be inflated, which combined with avg_vruntime() using scale_load_down(), leads to artifacts. As such, don't adjust the weight for empty group entities and let them compete at their original weight. Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250110115720.GA17405@noisy.programming.kicks-ass.net |
||
Andrew Morton
|
c4c00fc21f | foo | ||
Nicholas Piggin
|
a08311b423 |
lazy tlb: fix hotplug exit race with MMU_LAZY_TLB_SHOOTDOWN
CPU unplug first calls __cpu_disable(), and that's where powerpc calls cleanup_cpu_mmu_context(), which clears this CPU from mm_cpumask() of all mms in the system. However this CPU may still be using a lazy tlb mm, and its mm_cpumask bit will be cleared from it. The CPU does not switch away from the lazy tlb mm until arch_cpu_idle_dead() calls idle_task_exit(). If that user mm exits in this window, it will not be subject to the lazy tlb mm shootdown and may be freed while in use as a lazy mm by the CPU that is being unplugged. cleanup_cpu_mmu_context() could be moved later, but it looks better to move the lazy tlb mm switching earlier. The problem with doing the lazy mm switching in idle_task_exit() is explained in commit bf2c59fce4074 ("sched/core: Fix illegal RCU from offline CPUs"), which added a wart to switch away from the mm but leave it set in active_mm to be cleaned up later. So instead, switch away from the lazy tlb mm at sched_cpu_wait_empty(), which is the last hotplug state before teardown (CPUHP_AP_SCHED_WAIT_EMPTY). This CPU will never switch to a user thread from this point, so it has no chance to pick up a new lazy tlb mm. This removes the lazy tlb mm handling wart in CPU unplug. With this, idle_task_exit() is not needed anymore and can be cleaned up. This leaves the prototype alone, to be cleaned after this change. herton: took the suggestions from https://lore.kernel.org/all/87jzvyprsw.ffs@tglx/ and made adjustments on the initial patch proposed by Nicholas. Link: https://lkml.kernel.org/r/20230524060455.147699-1-npiggin@gmail.com Link: https://lore.kernel.org/all/20230525205253.E2FAEC433EF@smtp.kernel.org/ Link: https://lkml.kernel.org/r/20241104142318.3295663-1-herton@redhat.com Fixes: 2655421ae69f ("lazy tlb: shoot lazies, non-refcounting lazy tlb mm reference handling scheme") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Herton R. Krzesinski <herton@redhat.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Zijlstra
|
c9dbf9fd31 |
kasan: make kasan_record_aux_stack_noalloc() the default behaviour
kasan_record_aux_stack_noalloc() was introduced to record a stack trace without allocating memory in the process. It has been added to callers which were invoked while a raw_spinlock_t was held. More and more callers were identified and changed over time. Is it a good thing to have this while functions try their best to do a locklessly setup? The only downside of having kasan_record_aux_stack() not allocate any memory is that we end up without a stacktrace if stackdepot runs out of memory and at the same stacktrace was not recorded before To quote Marco Elver from https://lore.kernel.org/all/CANpmjNPmQYJ7pv1N3cuU8cP18u7PP_uoZD8YxwZd4jtbof9nVQ@mail.gmail.com/ | I'd be in favor, it simplifies things. And stack depot should be | able to replenish its pool sufficiently in the "non-aux" cases | i.e. regular allocations. Worst case we fail to record some | aux stacks, but I think that's only really bad if there's a bug | around one of these allocations. In general the probabilities | of this being a regression are extremely small [...] Make the kasan_record_aux_stack_noalloc() behaviour default as kasan_record_aux_stack(). [bigeasy@linutronix.de: dressed the diff as patch] Link: https://lkml.kernel.org/r/20241122155451.Mb2pmeyJ@linutronix.de Fixes: 7cb3007ce2da ("kasan: generic: introduce kasan_record_aux_stack_noalloc()") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reported-by: syzbot+39f85d612b7c20d8db48@syzkaller.appspotmail.com Closes: https://lore.kernel.org/all/67275485.050a0220.3c8d68.0a37.GAE@google.com Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Waiman Long <longman@redhat.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ben Segall <bsegall@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: <kasan-dev@googlegroups.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Neeraj Upadhyay <neeraj.upadhyay@kernel.org> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: syzkaller-bugs@googlegroups.com Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Oxana Kharitonova
|
23f3f7625c |
hung_task: add task->flags, blocked by coredump to log
Resending this patch as I haven't received feedback on my initial submission https://lore.kernel.org/all/20241204182953.10854-1-oxana@cloudflare.com/ For the processes which are terminated abnormally the kernel can provide a coredump if enabled. When the coredump is performed, the process and all its threads are put into the D state (TASK_UNINTERRUPTIBLE | TASK_FREEZABLE). On the other hand, we have kernel thread khungtaskd which monitors the processes in the D state. If the task stuck in the D state more than kernel.hung_task_timeout_secs, the hung_task alert appears in the kernel log. The higher memory usage of a process, the longer it takes to create coredump, the longer tasks are in the D state. We have hung_task alerts for the processes with memory usage above 10Gb. Although, our kernel.hung_task_timeout_secs is 10 sec when the default is 120 sec. Adding additional information to the log that the task is blocked by coredump will help with monitoring. Another approach might be to completely filter out alerts for such tasks, but in that case we would lose transparency about what is putting pressure on some system resources, e.g. we saw an increase in I/O when coredump occurs due its writing to disk. Additionally, it would be helpful to have task_struct->flags in the log from the function sched_show_task(). Currently it prints task_struct->thread_info->flags, this seems misleading as the line starts with "task:xxxx". [akpm@linux-foundation.org: fix printk control string] Link: https://lkml.kernel.org/r/20250110160328.64947-1-oxana@cloudflare.com Signed-off-by: Oxana Kharitonova <oxana@cloudflare.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ben Segall <bsegall@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wang Yaxin
|
f65c64f311 |
delayacct: add delay min to record delay peak
Delay accounting can now calculate the average delay of processes, detect the overall system load, and also record the 'delay max' to identify potential abnormal delays. However, 'delay min' can help us identify another useful delay peak. By comparing the difference between 'delay max' and 'delay min', we can understand the optimization space for latency, providing a reference for the optimization of latency performance. Use case ========= bash-4.4# ./getdelays -d -t 242 print delayacct stats ON TGID 242 CPU count real total virtual total delay total delay average delay max delay min 39 156000000 156576579 2111069 0.054ms 0.212296ms 0.031307ms IO count delay total delay average delay max delay min 0 0 0.000ms 0.000000ms 0.000000ms SWAP count delay total delay average delay max delay min 0 0 0.000ms 0.000000ms 0.000000ms RECLAIM count delay total delay average delay max delay min 0 0 0.000ms 0.000000ms 0.000000ms THRASHING count delay total delay average delay max delay min 0 0 0.000ms 0.000000ms 0.000000ms COMPACT count delay total delay average delay max delay min 0 0 0.000ms 0.000000ms 0.000000ms WPCOPY count delay total delay average delay max delay min 156 11215873 0.072ms 0.207403ms 0.033913ms IRQ count delay total delay average delay max delay min 0 0 0.000ms 0.000000ms 0.000000ms Link: https://lkml.kernel.org/r/20241220173105906EOdsPhzjMLYNJJBqgz1ga@zte.com.cn Co-developed-by: Wang Yong <wang.yong12@zte.com.cn> Signed-off-by: Wang Yong <wang.yong12@zte.com.cn> Co-developed-by: xu xin <xu.xin16@zte.com.cn> Signed-off-by: xu xin <xu.xin16@zte.com.cn> Signed-off-by: Wang Yaxin <wang.yaxin@zte.com.cn> Co-developed-by: Kun Jiang <jiang.kun2@zte.com.cn> Signed-off-by: Kun Jiang <jiang.kun2@zte.com.cn> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Fan Yu <fan.yu9@zte.com.cn> Cc: Peilin He <he.peilin@zte.com.cn> Cc: tuqiang <tu.qiang35@zte.com.cn> Cc: ye xingchen <ye.xingchen@zte.com.cn> Cc: Yunkai Zhang <zhang.yunkai@zte.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wang Yaxin
|
658eb5ab91 |
delayacct: add delay max to record delay peak
Introduce the use cases of delay max, which can help quickly detect potential abnormal delays in the system and record the types and specific details of delay spikes. Problem ======== Delay accounting can track the average delay of processes to show system workload. However, when a process experiences a significant delay, maybe a delay spike, which adversely affects performance, getdelays can only display the average system delay over a period of time. Yet, average delay is unhelpful for diagnosing delay peak. It is not even possible to determine which type of delay has spiked, as this information might be masked by the average delay. Solution ========= the 'delay max' can display delay peak since the system's startup, which can record potential abnormal delays over time, including the type of delay and the maximum delay. This is helpful for quickly identifying crash caused by delay. Use case ========= bash# ./getdelays -d -p 244 print delayacct stats ON PID 244 CPU count real total virtual total delay total delay average delay max 68 192000000 213676651 705643 0.010ms 0.306381ms IO count delay total delay average delay max 0 0 0.000ms 0.000000ms SWAP count delay total delay average delay max 0 0 0.000ms 0.000000ms RECLAIM count delay total delay average delay max 0 0 0.000ms 0.000000ms THRASHING count delay total delay average delay max 0 0 0.000ms 0.000000ms COMPACT count delay total delay average delay max 0 0 0.000ms 0.000000ms WPCOPY count delay total delay average delay max 235 15648284 0.067ms 0.263842ms IRQ count delay total delay average delay max 0 0 0.000ms 0.000000ms [wang.yaxin@zte.com.cn: update docs and fix some spelling errors] Link: https://lkml.kernel.org/r/20241213192700771XKZ8H30OtHSeziGqRVMs0@zte.com.cn Link: https://lkml.kernel.org/r/20241203164848805CS62CQPQWG9GLdQj2_BxS@zte.com.cn Co-developed-by: Wang Yong <wang.yong12@zte.com.cn> Signed-off-by: Wang Yong <wang.yong12@zte.com.cn> Co-developed-by: xu xin <xu.xin16@zte.com.cn> Signed-off-by: xu xin <xu.xin16@zte.com.cn> Co-developed-by: Wang Yaxin <wang.yaxin@zte.com.cn> Signed-off-by: Wang Yaxin <wang.yaxin@zte.com.cn> Signed-off-by: Kun Jiang <jiang.kun2@zte.com.cn> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Fan Yu <fan.yu9@zte.com.cn> Cc: Peilin He <he.peilin@zte.com.cn> Cc: tuqiang <tu.qiang35@zte.com.cn> Cc: Yang Yang <yang.yang29@zte.com.cn> Cc: ye xingchen <ye.xingchen@zte.com.cn> Cc: Yunkai Zhang <zhang.yunkai@zte.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
2e3f3090bd |
sched_ext: Fixes for v6.13-rc6
- Fix corner case bug where ops.dispatch() couldn't extend the execution of the current task if SCX_OPS_ENQ_LAST is set. - Fix ops.cpu_release() not being called when a SCX task is preempted by a higher priority sched class task. - Fix buitin idle mask being incorrectly left as busy after an idle CPU is picked and kicked. - scx_ops_bypass() was unnecessarily using rq_lock() which comes with rq pinning related sanity checks which could trigger spuriously. Switch to raw_spin_rq_lock(). -----BEGIN PGP SIGNATURE----- iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZ4Gmpw4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGVntAP0b4i4PEIkupj9+i8ZzlwqvYX3gFJ7E4v3wmjDp 1VYdrAD/ZetrhrM+9RyyKpMIDFnN+xE6YbslBSlAzGzgfdsbXA0= =zGXi -----END PGP SIGNATURE----- Merge tag 'sched_ext-for-6.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext fixes from Tejun Heo: - Fix corner case bug where ops.dispatch() couldn't extend the execution of the current task if SCX_OPS_ENQ_LAST is set. - Fix ops.cpu_release() not being called when a SCX task is preempted by a higher priority sched class task. - Fix buitin idle mask being incorrectly left as busy after an idle CPU is picked and kicked. - scx_ops_bypass() was unnecessarily using rq_lock() which comes with rq pinning related sanity checks which could trigger spuriously. Switch to raw_spin_rq_lock(). * tag 'sched_ext-for-6.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: idle: Refresh idle masks during idle-to-idle transitions sched_ext: switch class when preempted by higher priority scheduler sched_ext: Replace rq_lock() to raw_spin_rq_lock() in scx_ops_bypass() sched_ext: keep running prev when prev->scx.slice != 0 |
||
Andrea Righi
|
a2a3374c47 |
sched_ext: idle: Refresh idle masks during idle-to-idle transitions
With the consolidation of put_prev_task/set_next_task(), see commit 436f3eed5c69 ("sched: Combine the last put_prev_task() and the first set_next_task()"), we are now skipping the transition between these two functions when the previous and the next tasks are the same. As a result, the scx idle state of a CPU is updated only when transitioning to or from the idle thread. While this is generally correct, it can lead to uneven and inefficient core utilization in certain scenarios [1]. A typical scenario involves proactive wake-ups: scx_bpf_pick_idle_cpu() selects and marks an idle CPU as busy, followed by a wake-up via scx_bpf_kick_cpu(), without dispatching any tasks. In this case, the CPU continues running the idle thread, returns to idle, but remains marked as busy, preventing it from being selected again as an idle CPU (until a task eventually runs on it and releases the CPU). For example, running a workload that uses 20% of each CPU, combined with an scx scheduler using proactive wake-ups, results in the following core utilization: CPU 0: 25.7% CPU 1: 29.3% CPU 2: 26.5% CPU 3: 25.5% CPU 4: 0.0% CPU 5: 25.5% CPU 6: 0.0% CPU 7: 10.5% To address this, refresh the idle state also in pick_task_idle(), during idle-to-idle transitions, but only trigger ops.update_idle() on actual state changes to prevent unnecessary updates to the scx scheduler and maintain balanced state transitions. With this change in place, the core utilization in the previous example becomes the following: CPU 0: 18.8% CPU 1: 19.4% CPU 2: 18.0% CPU 3: 18.7% CPU 4: 19.3% CPU 5: 18.9% CPU 6: 18.7% CPU 7: 19.3% [1] https://github.com/sched-ext/scx/pull/1139 Fixes: 7c65ae81ea86 ("sched_ext: Don't call put_prev_task_scx() before picking the next task") Signed-off-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Peter Zijlstra
|
6d71a9c616 |
sched/fair: Fix EEVDF entity placement bug causing scheduling lag
I noticed this in my traces today: turbostat-1222 [006] d..2. 311.935649: reweight_entity: (ffff888108f13e00-ffff88885ef38440-6) { weight: 1048576 avg_vruntime: 3184159639071 vruntime: 3184159640194 (-1123) deadline: 3184162621107 } -> { weight: 2 avg_vruntime: 3184177463330 vruntime: 3184748414495 (-570951165) deadline: 4747605329439 } turbostat-1222 [006] d..2. 311.935651: reweight_entity: (ffff888108f13e00-ffff88885ef38440-6) { weight: 2 avg_vruntime: 3184177463330 vruntime: 3184748414495 (-570951165) deadline: 4747605329439 } -> { weight: 1048576 avg_vruntime: 3184176414812 vruntime: 3184177464419 (-1049607) deadline: 3184180445332 } Which is a weight transition: 1048576 -> 2 -> 1048576. One would expect the lag to shoot out *AND* come back, notably: -1123*1048576/2 = -588775424 -588775424*2/1048576 = -1123 Except the trace shows it is all off. Worse, subsequent cycles shoot it out further and further. This made me have a very hard look at reweight_entity(), and specifically the ->on_rq case, which is more prominent with DELAY_DEQUEUE. And indeed, it is all sorts of broken. While the computation of the new lag is correct, the computation for the new vruntime, using the new lag is broken for it does not consider the logic set out in place_entity(). With the below patch, I now see things like: migration/12-55 [012] d..3. 309.006650: reweight_entity: (ffff8881e0e6f600-ffff88885f235f40-12) { weight: 977582 avg_vruntime: 4860513347366 vruntime: 4860513347908 (-542) deadline: 4860516552475 } -> { weight: 2 avg_vruntime: 4860528915984 vruntime: 4860793840706 (-264924722) deadline: 6427157349203 } migration/14-62 [014] d..3. 309.006698: reweight_entity: (ffff8881e0e6cc00-ffff88885f3b5f40-15) { weight: 2 avg_vruntime: 4874472992283 vruntime: 4939833828823 (-65360836540) deadline: 6316614641111 } -> { weight: 967149 avg_vruntime: 4874217684324 vruntime: 4874217688559 (-4235) deadline: 4874220535650 } Which isn't perfect yet, but much closer. Reported-by: Doug Smythies <dsmythies@telus.net> Reported-by: Ingo Molnar <mingo@kernel.org> Tested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight") Link: https://lore.kernel.org/r/20250109105959.GA2981@noisy.programming.kicks-ass.net |
||
Honglei Wang
|
68e449d849 |
sched_ext: switch class when preempted by higher priority scheduler
ops.cpu_release() function, if defined, must be invoked when preempted by a higher priority scheduler class task. This scenario was skipped in commit f422316d7466 ("sched_ext: Remove switch_class_scx()"). Let's fix it. Fixes: f422316d7466 ("sched_ext: Remove switch_class_scx()") Signed-off-by: Honglei Wang <jameshongleiwang@126.com> Acked-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Changwoo Min
|
6268d5bc10 |
sched_ext: Replace rq_lock() to raw_spin_rq_lock() in scx_ops_bypass()
scx_ops_bypass() iterates all CPUs to re-enqueue all the scx tasks. For each CPU, it acquires a lock using rq_lock() regardless of whether a CPU is offline or the CPU is currently running a task in a higher scheduler class (e.g., deadline). The rq_lock() is supposed to be used for online CPUs, and the use of rq_lock() may trigger an unnecessary warning in rq_pin_lock(). Therefore, replace rq_lock() to raw_spin_rq_lock() in scx_ops_bypass(). Without this change, we observe the following warning: ===== START ===== [ 6.615205] rq->balance_callback && rq->balance_callback != &balance_push_callback [ 6.615208] WARNING: CPU: 2 PID: 0 at kernel/sched/sched.h:1730 __schedule+0x1130/0x1c90 ===== END ===== Fixes: 0e7ffff1b811 ("scx: Fix raciness in scx_ops_bypass()") Signed-off-by: Changwoo Min <changwoo@igalia.com> Acked-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Henry Huang
|
30dd3b13f9 |
sched_ext: keep running prev when prev->scx.slice != 0
When %SCX_OPS_ENQ_LAST is set and prev->scx.slice != 0, @prev will be dispacthed into the local DSQ in put_prev_task_scx(). However, pick_task_scx() is executed before put_prev_task_scx(), so it will not pick @prev. Set %SCX_RQ_BAL_KEEP in balance_one() to ensure that pick_task_scx() can pick @prev. Signed-off-by: Henry Huang <henry.hj@antgroup.com> Acked-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Linus Torvalds
|
63676eefb7 |
sched_ext: Fixes for v6.13-rc5
- Fix the bug where bpf_iter_scx_dsq_new() was not initializing the iterator's flags and could inadvertently enable e.g. reverse iteration. - Fix the bug where scx_ops_bypass() could call irq_restore twice. - Add Andrea and Changwoo as maintainers for better review coverage. - selftests and tools/sched_ext build and other fixes. -----BEGIN PGP SIGNATURE----- iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZ3hpXg4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGS/lAQDOZDfcJtO1VEsLoPY9NhFHPuBDTfoJyjSi/4mh GsjgDAD/Sx0rN6C9S/+ToUjmq3FA+ft0m2+97VqgLwkzwA9YxwI= =jaZ6 -----END PGP SIGNATURE----- Merge tag 'sched_ext-for-6.13-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext fixes from Tejun Heo: - Fix a bug where bpf_iter_scx_dsq_new() was not initializing the iterator's flags and could inadvertently enable e.g. reverse iteration - Fix a bug where scx_ops_bypass() could call irq_restore twice - Add Andrea and Changwoo as maintainers for better review coverage - selftests and tools/sched_ext build and other fixes * tag 'sched_ext-for-6.13-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: Fix dsq_local_on selftest sched_ext: initialize kit->cursor.flags sched_ext: Fix invalid irq restore in scx_ops_bypass() MAINTAINERS: add me as reviewer for sched_ext MAINTAINERS: add self as reviewer for sched_ext scx: Fix maximal BPF selftest prog sched_ext: fix application of sizeof to pointer selftests/sched_ext: fix build after renames in sched_ext API sched_ext: Add __weak to fix the build errors |
||
Henry Huang
|
35bf430e08 |
sched_ext: initialize kit->cursor.flags
struct bpf_iter_scx_dsq *it maybe not initialized. If we didn't call scx_bpf_dsq_move_set_vtime and scx_bpf_dsq_move_set_slice before scx_bpf_dsq_move, it would cause unexpected behaviors: 1. Assign a huge slice into p->scx.slice 2. Assign a invalid vtime into p->scx.dsq_vtime Signed-off-by: Henry Huang <henry.hj@antgroup.com> Fixes: 6462dd53a260 ("sched_ext: Compact struct bpf_iter_scx_dsq_kern") Cc: stable@vger.kernel.org # v6.12 Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Linus Torvalds
|
acd855a949 |
- Prevent incorrect dequeueing of the deadline dlserver helper task and fix
its time accounting - Properly track the CFS runqueue runnable stats - Check the total number of all queued tasks in a sched fair's runqueue hierarchy before deciding to stop the tick - Fix the scheduling of the task that got woken last (NEXT_BUDDY) by preventing those from being delayed -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmdexEsACgkQEsHwGGHe VUpFqA//SIIbNJEIQEwGkFrYpGwVpSISm94L4ENsrkWbJWQlALwQEBJF9Me/DOZH vHaX3o+cMxt26W7o0NKyPcvYtulnOr33HZA/uxK35MDaUinSA3Spt3jXHfR3n0mL ljNQQraWHGaJh7dzKMZoxP6DR78/Z0yotXjt33xeBFMSJuzGsklrbIiSJ6c4m/3u Y1lrQT8LncsxJMYIPAKtBAc9hvJfGFV6IOTaTfxP0oTuDo/2qTNVHm7to40wk3NW kb0lf2kjVtE6mwMfEm49rtjE3h0VnPJKGKoEkLi9IQoPbQq9Uf4i9VSmRe3zqPAz yBxV8BAu2koscMZzqw1CTnd9c/V+/A9qOOHfDo72I5MriJ1qVWCEsqB1y3u2yT6n XjwFDbPiVKI8H9YlsZpWERocCRypshevPNlYOF93PlK+YTXoMWaXMQhec5NDzLLw Se1K2sCi3U8BMdln0dH6nhk0unzNKQ8UKzrMFncSjnpWhpJ69uxyUZ/jL//6bvfi Z+7G4U54mUhGyOAaUSGH/20TnZRWJ7NJC542omFgg9v0VLxx+wnZyX4zJIV0jvRr 6voYmYDCO8zn/hO67VBJuei97ayIzxDNP1tVl15LzcvRcIGWNUPOwp5jijv8vDJG lJhQrMF6w4fgPItC20FvptlDvpP9cItSzyyOeg074HjDS53QN2Y= =jOb3 -----END PGP SIGNATURE----- Merge tag 'sched_urgent_for_v6.13_rc3-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Borislav Petkov: - Prevent incorrect dequeueing of the deadline dlserver helper task and fix its time accounting - Properly track the CFS runqueue runnable stats - Check the total number of all queued tasks in a sched fair's runqueue hierarchy before deciding to stop the tick - Fix the scheduling of the task that got woken last (NEXT_BUDDY) by preventing those from being delayed * tag 'sched_urgent_for_v6.13_rc3-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/dlserver: Fix dlserver time accounting sched/dlserver: Fix dlserver double enqueue sched/eevdf: More PELT vs DELAYED_DEQUEUE sched/fair: Fix sched_can_stop_tick() for fair tasks sched/fair: Fix NEXT_BUDDY |
||
Vineeth Pillai (Google)
|
c7f7e9c731 |
sched/dlserver: Fix dlserver time accounting
dlserver time is accounted when: - dlserver is active and the dlserver proxies the cfs task. - dlserver is active but deferred and cfs task runs after being picked through the normal fair class pick. dl_server_update is called in two places to make sure that both the above times are accounted for. But it doesn't check if dlserver is active or not. Now that we have this dl_server_active flag, we can consolidate dl_server_update into one place and all we need to check is whether dlserver is active or not. When dlserver is active there is only two possible conditions: - dlserver is deferred. - cfs task is running on behalf of dlserver. Fixes: a110a81c52a9 ("sched/deadline: Deferrable dl server") Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marcel Ziswiler <marcel.ziswiler@codethink.co.uk> # ROCK 5B Link: https://lore.kernel.org/r/20241213032244.877029-2-vineeth@bitbyteword.org |
||
Vineeth Pillai (Google)
|
b53127db1d |
sched/dlserver: Fix dlserver double enqueue
dlserver can get dequeued during a dlserver pick_task due to the delayed deueue feature and this can lead to issues with dlserver logic as it still thinks that dlserver is on the runqueue. The dlserver throttling and replenish logic gets confused and can lead to double enqueue of dlserver. Double enqueue of dlserver could happend due to couple of reasons: Case 1 ------ Delayed dequeue feature[1] can cause dlserver being stopped during a pick initiated by dlserver: __pick_next_task pick_task_dl -> server_pick_task pick_task_fair pick_next_entity (if (sched_delayed)) dequeue_entities dl_server_stop server_pick_task goes ahead with update_curr_dl_se without knowing that dlserver is dequeued and this confuses the logic and may lead to unintended enqueue while the server is stopped. Case 2 ------ A race condition between a task dequeue on one cpu and same task's enqueue on this cpu by a remote cpu while the lock is released causing dlserver double enqueue. One cpu would be in the schedule() and releasing RQ-lock: current->state = TASK_INTERRUPTIBLE(); schedule(); deactivate_task() dl_stop_server(); pick_next_task() pick_next_task_fair() sched_balance_newidle() rq_unlock(this_rq) at which point another CPU can take our RQ-lock and do: try_to_wake_up() ttwu_queue() rq_lock() ... activate_task() dl_server_start() --> first enqueue wakeup_preempt() := check_preempt_wakeup_fair() update_curr() update_curr_task() if (current->dl_server) dl_server_update() enqueue_dl_entity() --> second enqueue This bug was not apparent as the enqueue in dl_server_start doesn't usually happen because of the defer logic. But as a side effect of the first case(dequeue during dlserver pick), dl_throttled and dl_yield will be set and this causes the time accounting of dlserver to messup and then leading to a enqueue in dl_server_start. Have an explicit flag representing the status of dlserver to avoid the confusion. This is set in dl_server_start and reset in dlserver_stop. Fixes: 63ba8422f876 ("sched/deadline: Introduce deadline servers") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marcel Ziswiler <marcel.ziswiler@codethink.co.uk> # ROCK 5B Link: https://lkml.kernel.org/r/20241213032244.877029-1-vineeth@bitbyteword.org |
||
Tejun Heo
|
18b2093f45 |
sched_ext: Fix invalid irq restore in scx_ops_bypass()
While adding outer irqsave/restore locking, 0e7ffff1b811 ("scx: Fix raciness in scx_ops_bypass()") forgot to convert an inner rq_unlock_irqrestore() to rq_unlock() which could re-enable IRQ prematurely leading to the following warning: raw_local_irq_restore() called with IRQs enabled WARNING: CPU: 1 PID: 96 at kernel/locking/irqflag-debug.c:10 warn_bogus_irq_restore+0x30/0x40 ... Sched_ext: create_dsq (enabling) pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : warn_bogus_irq_restore+0x30/0x40 lr : warn_bogus_irq_restore+0x30/0x40 ... Call trace: warn_bogus_irq_restore+0x30/0x40 (P) warn_bogus_irq_restore+0x30/0x40 (L) scx_ops_bypass+0x224/0x3b8 scx_ops_enable.isra.0+0x2c8/0xaa8 bpf_scx_reg+0x18/0x30 ... irq event stamp: 33739 hardirqs last enabled at (33739): [<ffff8000800b699c>] scx_ops_bypass+0x174/0x3b8 hardirqs last disabled at (33738): [<ffff800080d48ad4>] _raw_spin_lock_irqsave+0xb4/0xd8 Drop the stray _irqrestore(). Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Ihor Solodrai <ihor.solodrai@pm.me> Link: http://lkml.kernel.org/r/qC39k3UsonrBYD_SmuxHnZIQLsuuccoCrkiqb_BT7DvH945A1_LZwE4g-5Pu9FcCtqZt4lY1HhIPi0homRuNWxkgo1rgP3bkxa0donw8kV4=@pm.me Fixes: 0e7ffff1b811 ("scx: Fix raciness in scx_ops_bypass()") Cc: stable@vger.kernel.org # v6.12 |
||
Linus Torvalds
|
df9e2102de |
- Remove wrong enqueueing of a task for a later wakeup when a task blocks on
a RT mutex - Do not setup a new deadline entity on a boosted task as that has happened already - Update preempt= kernel command line param - Prevent needless softirqd wakeups in the idle task's context - Detect the case where the idle load balancer CPU becomes busy and avoid unnecessary load balancing invocation - Remove an unnecessary load balancing need_resched() call in nohz_csd_func() - Allow for raising of SCHED_SOFTIRQ softirq type on RT but retain the warning to catch any other cases - Remove a wrong warning when a cpuset update makes the task affinity no longer a subset of the cpuset -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmdWvHYACgkQEsHwGGHe VUrJ6g//eEwmHpa9+at3UvXrVlcYQmZsQpgL2ksjVE0n4KXFeUavwCR4h6SJzvcD RDF9AyDuPAoCqy5DhL5wTXPG/4AnnISqAEkoP7h7YO76P7ks6+HD7t31pCF/uqCH yqS4vc1RJ6yW8otcCpR7rOPEQ49Klqc1KTFTNAFLc6MNEb/SVH5Ih+wFL5Mj/W3I UkBEtUy1oR2Q4QPhJ+0sr0LAI1AwjykdbkWzOhs6D1kPaRqdV4Atgc2fwioLIvhO s++lev9BmGx02dmrRWRmIBL9S9ycSLT1qx28sbzlS+PZMGYqOnImVOW5+EPr+ovK fILc0m8sLD6GyZHIPgeIT2+DqSvDTQOGQwXyUYmoarI+BWGGSz6iZGn4RrZHMRQo cpqYV9z7F2t3X1hPfhrH+40BXJeMMX+wd4ahXNA44QD6Bf7I+zPUfsrfnrR4BwV7 qpXhBzXOuZrgOKolIwJmHIxyLtd79idYccGvjIME5rwj8eBg0J7zmjzoVewqUXsb F9ualvq6twxUIdD4XiClpi+E16Z2Ot3PplNIohosVrUDRDUgvTBbTuDZnUuOkXbb wV26XKuYKQYfx5UfJBSYL3DCfCttkKCVrPX2oiqw6PKNXw9BM8BQIux+XQH2jvIg wOPqZWZf2VIoQJU2N+twc/BAIRAF7CNr/ioTJlXQ1hsOIlTp3kk= =XLf1 -----END PGP SIGNATURE----- Merge tag 'sched_urgent_for_v6.13_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Borislav Petkov: - Remove wrong enqueueing of a task for a later wakeup when a task blocks on a RT mutex - Do not setup a new deadline entity on a boosted task as that has happened already - Update preempt= kernel command line param - Prevent needless softirqd wakeups in the idle task's context - Detect the case where the idle load balancer CPU becomes busy and avoid unnecessary load balancing invocation - Remove an unnecessary load balancing need_resched() call in nohz_csd_func() - Allow for raising of SCHED_SOFTIRQ softirq type on RT but retain the warning to catch any other cases - Remove a wrong warning when a cpuset update makes the task affinity no longer a subset of the cpuset * tag 'sched_urgent_for_v6.13_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: locking: rtmutex: Fix wake_q logic in task_blocks_on_rt_mutex sched/deadline: Fix warning in migrate_enable for boosted tasks sched/core: Update kernel boot parameters for LAZY preempt. sched/core: Prevent wakeup of ksoftirqd during idle load balance sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy sched/core: Remove the unnecessary need_resched() check in nohz_csd_func() softirq: Allow raising SCHED_SOFTIRQ from SMP-call-function on RT kernel sched: fix warning in sched_setaffinity sched/deadline: Fix replenish_dl_new_period dl_server condition |
||
Peter Zijlstra
|
76f2f78329 |
sched/eevdf: More PELT vs DELAYED_DEQUEUE
Vincent and Dietmar noted that while commit fc1892becd56 ("sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE") fixes the entity runnable stats, it does not adjust the cfs_rq runnable stats, which are based off of h_nr_running. Track h_nr_delayed such that we can discount those and adjust the signal. Fixes: fc1892becd56 ("sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE") Closes: https://lore.kernel.org/lkml/a9a45193-d0c6-4ba2-a822-464ad30b550e@arm.com/ Closes: https://lore.kernel.org/lkml/CAKfTPtCNUvWE_GX5LyvTF-WdxUT=ZgvZZv-4t=eWntg5uOFqiQ@mail.gmail.com/ [ Fixes checkpatch warnings and rebased ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reported-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20241202174606.4074512-3-vincent.guittot@linaro.org |
||
Vincent Guittot
|
c1f43c342e |
sched/fair: Fix sched_can_stop_tick() for fair tasks
We can't stop the tick of a rq if there are at least 2 tasks enqueued in the whole hierarchy and not only at the root cfs rq. rq->cfs.nr_running tracks the number of sched_entity at one level whereas rq->cfs.h_nr_running tracks all queued tasks in the hierarchy. Fixes: 11cc374f4643b ("sched_ext: Simplify scx_can_stop_tick() invocation in sched_can_stop_tick()") Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-2-vincent.guittot@linaro.org |
||
K Prateek Nayak
|
493afbd187 |
sched/fair: Fix NEXT_BUDDY
Adam reports that enabling NEXT_BUDDY insta triggers a WARN in pick_next_entity(). Moving clear_buddies() up before the delayed dequeue bits ensures no ->next buddy becomes delayed. Further ensure no new ->next buddy ever starts as delayed. Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue") Reported-by: Adam Li <adamli@os.amperecomputing.com> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Adam Li <adamli@os.amperecomputing.com> Link: https://lkml.kernel.org/r/670a0d54-e398-4b1f-8a6e-90784e2fdf89@amd.com |
||
Adrian Huang
|
5f1b64e9a9 |
sched/numa: fix memory leak due to the overwritten vma->numab_state
[Problem Description] When running the hackbench program of LTP, the following memory leak is reported by kmemleak. # /opt/ltp/testcases/bin/hackbench 20 thread 1000 Running with 20*40 (== 800) tasks. # dmesg | grep kmemleak ... kmemleak: 480 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 665 new suspected memory leaks (see /sys/kernel/debug/kmemleak) # cat /sys/kernel/debug/kmemleak unreferenced object 0xffff888cd8ca2c40 (size 64): comm "hackbench", pid 17142, jiffies 4299780315 hex dump (first 32 bytes): ac 74 49 00 01 00 00 00 4c 84 49 00 01 00 00 00 .tI.....L.I..... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc bff18fd4): [<ffffffff81419a89>] __kmalloc_cache_noprof+0x2f9/0x3f0 [<ffffffff8113f715>] task_numa_work+0x725/0xa00 [<ffffffff8110f878>] task_work_run+0x58/0x90 [<ffffffff81ddd9f8>] syscall_exit_to_user_mode+0x1c8/0x1e0 [<ffffffff81dd78d5>] do_syscall_64+0x85/0x150 [<ffffffff81e0012b>] entry_SYSCALL_64_after_hwframe+0x76/0x7e ... This issue can be consistently reproduced on three different servers: * a 448-core server * a 256-core server * a 192-core server [Root Cause] Since multiple threads are created by the hackbench program (along with the command argument 'thread'), a shared vma might be accessed by two or more cores simultaneously. When two or more cores observe that vma->numab_state is NULL at the same time, vma->numab_state will be overwritten. Although current code ensures that only one thread scans the VMAs in a single 'numa_scan_period', there might be a chance for another thread to enter in the next 'numa_scan_period' while we have not gotten till numab_state allocation [1]. Note that the command `/opt/ltp/testcases/bin/hackbench 50 process 1000` cannot the reproduce the issue. It is verified with 200+ test runs. [Solution] Use the cmpxchg atomic operation to ensure that only one thread executes the vma->numab_state assignment. [1] https://lore.kernel.org/lkml/1794be3c-358c-4cdc-a43d-a1f841d91ef7@amd.com/ Link: https://lkml.kernel.org/r/20241113102146.2384-1-ahuang12@lenovo.com Fixes: ef6a22b70f6d ("sched/numa: apply the scan delay to every new vma") Signed-off-by: Adrian Huang <ahuang12@lenovo.com> Reported-by: Jiwei Sun <sunjw10@lenovo.com> Reviewed-by: Raghavendra K T <raghavendra.kt@amd.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wander Lairson Costa
|
0664e2c311 |
sched/deadline: Fix warning in migrate_enable for boosted tasks
When running the following command: while true; do stress-ng --cyclic 30 --timeout 30s --minimize --quiet done a warning is eventually triggered: WARNING: CPU: 43 PID: 2848 at kernel/sched/deadline.c:794 setup_new_dl_entity+0x13e/0x180 ... Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? enqueue_dl_entity+0x631/0x6e0 ? setup_new_dl_entity+0x13e/0x180 ? __warn+0x7e/0xd0 ? report_bug+0x11a/0x1a0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 enqueue_dl_entity+0x631/0x6e0 enqueue_task_dl+0x7d/0x120 __do_set_cpus_allowed+0xe3/0x280 __set_cpus_allowed_ptr_locked+0x140/0x1d0 __set_cpus_allowed_ptr+0x54/0xa0 migrate_enable+0x7e/0x150 rt_spin_unlock+0x1c/0x90 group_send_sig_info+0xf7/0x1a0 ? kill_pid_info+0x1f/0x1d0 kill_pid_info+0x78/0x1d0 kill_proc_info+0x5b/0x110 __x64_sys_kill+0x93/0xc0 do_syscall_64+0x5c/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7f0dab31f92b This warning occurs because set_cpus_allowed dequeues and enqueues tasks with the ENQUEUE_RESTORE flag set. If the task is boosted, the warning is triggered. A boosted task already had its parameters set by rt_mutex_setprio, and a new call to setup_new_dl_entity is unnecessary, hence the WARN_ON call. Check if we are requeueing a boosted task and avoid calling setup_new_dl_entity if that's the case. Fixes: 295d6d5e3736 ("sched/deadline: Fix switching to -deadline") Signed-off-by: Wander Lairson Costa <wander@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20240724142253.27145-2-wander@redhat.com |
||
K Prateek Nayak
|
e932c4ab38 |
sched/core: Prevent wakeup of ksoftirqd during idle load balance
Scheduler raises a SCHED_SOFTIRQ to trigger a load balancing event on from the IPI handler on the idle CPU. If the SMP function is invoked from an idle CPU via flush_smp_call_function_queue() then the HARD-IRQ flag is not set and raise_softirq_irqoff() needlessly wakes ksoftirqd because soft interrupts are handled before ksoftirqd get on the CPU. Adding a trace_printk() in nohz_csd_func() at the spot of raising SCHED_SOFTIRQ and enabling trace events for sched_switch, sched_wakeup, and softirq_entry (for SCHED_SOFTIRQ vector alone) helps observing the current behavior: <idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ from nohz_csd_func <idle>-0 [000] dN.4.: sched_wakeup: comm=ksoftirqd/0 pid=16 prio=120 target_cpu=000 <idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED] <idle>-0 [000] .Ns1.: softirq_exit: vec=7 [action=SCHED] <idle>-0 [000] d..2.: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=ksoftirqd/0 next_pid=16 next_prio=120 ksoftirqd/0-16 [000] d..2.: sched_switch: prev_comm=ksoftirqd/0 prev_pid=16 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120 ... Use __raise_softirq_irqoff() to raise the softirq. The SMP function call is always invoked on the requested CPU in an interrupt handler. It is guaranteed that soft interrupts are handled at the end. Following are the observations with the changes when enabling the same set of events: <idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ for nohz_idle_balance <idle>-0 [000] dN.1.: softirq_raise: vec=7 [action=SCHED] <idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED] No unnecessary ksoftirqd wakeups are seen from idle task's context to service the softirq. Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") Closes: https://lore.kernel.org/lkml/fcf823f-195e-6c9a-eac3-25f870cb35ac@inria.fr/ [1] Reported-by: Julia Lawall <julia.lawall@inria.fr> Suggested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: https://lore.kernel.org/r/20241119054432.6405-5-kprateek.nayak@amd.com |
||
K Prateek Nayak
|
ff47a0acfc |
sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy
Commit b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") optimizes IPIs to idle CPUs in TIF_POLLING_NRFLAG mode by setting the TIF_NEED_RESCHED flag in idle task's thread info and relying on flush_smp_call_function_queue() in idle exit path to run the call-function. A softirq raised by the call-function is handled shortly after in do_softirq_post_smp_call_flush() but the TIF_NEED_RESCHED flag remains set and is only cleared later when schedule_idle() calls __schedule(). need_resched() check in _nohz_idle_balance() exists to bail out of load balancing if another task has woken up on the CPU currently in-charge of idle load balancing which is being processed in SCHED_SOFTIRQ context. Since the optimization mentioned above overloads the interpretation of TIF_NEED_RESCHED, check for idle_cpu() before going with the existing need_resched() check which can catch a genuine task wakeup on an idle CPU processing SCHED_SOFTIRQ from do_softirq_post_smp_call_flush(), as well as the case where ksoftirqd needs to be preempted as a result of new task wakeup or slice expiry. In case of PREEMPT_RT or threadirqs, although the idle load balancing may be inhibited in some cases on the ilb CPU, the fact that ksoftirqd is the only fair task going back to sleep will trigger a newidle balance on the CPU which will alleviate some imbalance if it exists if idle balance fails to do so. Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241119054432.6405-4-kprateek.nayak@amd.com |
||
K Prateek Nayak
|
ea9cffc0a1 |
sched/core: Remove the unnecessary need_resched() check in nohz_csd_func()
The need_resched() check currently in nohz_csd_func() can be tracked to have been added in scheduler_ipi() back in 2011 via commit ca38062e57e9 ("sched: Use resched IPI to kick off the nohz idle balance") Since then, it has travelled quite a bit but it seems like an idle_cpu() check currently is sufficient to detect the need to bail out from an idle load balancing. To justify this removal, consider all the following case where an idle load balancing could race with a task wakeup: o Since commit f3dd3f674555b ("sched: Remove the limitation of WF_ON_CPU on wakelist if wakee cpu is idle") a target perceived to be idle (target_rq->nr_running == 0) will return true for ttwu_queue_cond(target) which will offload the task wakeup to the idle target via an IPI. In all such cases target_rq->ttwu_pending will be set to 1 before queuing the wake function. If an idle load balance races here, following scenarios are possible: - The CPU is not in TIF_POLLING_NRFLAG mode in which case an actual IPI is sent to the CPU to wake it out of idle. If the nohz_csd_func() queues before sched_ttwu_pending(), the idle load balance will bail out since idle_cpu(target) returns 0 since target_rq->ttwu_pending is 1. If the nohz_csd_func() is queued after sched_ttwu_pending() it should see rq->nr_running to be non-zero and bail out of idle load balancing. - The CPU is in TIF_POLLING_NRFLAG mode and instead of an actual IPI, the sender will simply set TIF_NEED_RESCHED for the target to put it out of idle and flush_smp_call_function_queue() in do_idle() will execute the call function. Depending on the ordering of the queuing of nohz_csd_func() and sched_ttwu_pending(), the idle_cpu() check in nohz_csd_func() should either see target_rq->ttwu_pending = 1 or target_rq->nr_running to be non-zero if there is a genuine task wakeup racing with the idle load balance kick. o The waker CPU perceives the target CPU to be busy (targer_rq->nr_running != 0) but the CPU is in fact going idle and due to a series of unfortunate events, the system reaches a case where the waker CPU decides to perform the wakeup by itself in ttwu_queue() on the target CPU but target is concurrently selected for idle load balance (XXX: Can this happen? I'm not sure, but we'll consider the mother of all coincidences to estimate the worst case scenario). ttwu_do_activate() calls enqueue_task() which would increment "rq->nr_running" post which it calls wakeup_preempt() which is responsible for setting TIF_NEED_RESCHED (via a resched IPI or by setting TIF_NEED_RESCHED on a TIF_POLLING_NRFLAG idle CPU) The key thing to note in this case is that rq->nr_running is already non-zero in case of a wakeup before TIF_NEED_RESCHED is set which would lead to idle_cpu() check returning false. In all cases, it seems that need_resched() check is unnecessary when checking for idle_cpu() first since an impending wakeup racing with idle load balancer will either set the "rq->ttwu_pending" or indicate a newly woken task via "rq->nr_running". Chasing the reason why this check might have existed in the first place, I came across Peter's suggestion on the fist iteration of Suresh's patch from 2011 [1] where the condition to raise the SCHED_SOFTIRQ was: sched_ttwu_do_pending(list); if (unlikely((rq->idle == current) && rq->nohz_balance_kick && !need_resched())) raise_softirq_irqoff(SCHED_SOFTIRQ); Since the condition to raise the SCHED_SOFIRQ was preceded by sched_ttwu_do_pending() (which is equivalent of sched_ttwu_pending()) in the current upstream kernel, the need_resched() check was necessary to catch a newly queued task. Peter suggested modifying it to: if (idle_cpu() && rq->nohz_balance_kick && !need_resched()) raise_softirq_irqoff(SCHED_SOFTIRQ); where idle_cpu() seems to have replaced "rq->idle == current" check. Even back then, the idle_cpu() check would have been sufficient to catch a new task being enqueued. Since commit b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") overloads the interpretation of TIF_NEED_RESCHED for TIF_POLLING_NRFLAG idling, remove the need_resched() check in nohz_csd_func() to raise SCHED_SOFTIRQ based on Peter's suggestion. Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241119054432.6405-3-kprateek.nayak@amd.com |
||
Josh Don
|
70ee7947a2 |
sched: fix warning in sched_setaffinity
Commit 8f9ea86fdf99b added some logic to sched_setaffinity that included a WARN when a per-task affinity assignment races with a cpuset update. Specifically, we can have a race where a cpuset update results in the task affinity no longer being a subset of the cpuset. That's fine; we have a fallback to instead use the cpuset mask. However, we have a WARN set up that will trigger if the cpuset mask has no overlap at all with the requested task affinity. This shouldn't be a warning condition; its trivial to create this condition. Reproduced the warning by the following setup: - $PID inside a cpuset cgroup - another thread repeatedly switching the cpuset cpus from 1-2 to just 1 - another thread repeatedly setting the $PID affinity (via taskset) to 2 Fixes: 8f9ea86fdf99b ("sched: Always preserve the user requested cpumask") Signed-off-by: Josh Don <joshdon@google.com> Acked-and-tested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Tested-by: Madadi Vineeth Reddy <vineethr@linux.ibm.com> Link: https://lkml.kernel.org/r/20241111182738.1832953-1-joshdon@google.com |
||
Juri Lelli
|
22368fe1f9 |
sched/deadline: Fix replenish_dl_new_period dl_server condition
The condition in replenish_dl_new_period() that checks if a reservation (dl_server) is deferred and is not handling a starvation case is obviously wrong. Fix it. Fixes: a110a81c52a9 ("sched/deadline: Deferrable dl server") Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20241127063740.8278-1-juri.lelli@redhat.com |
||
Linus Torvalds
|
8f7c8b88bd |
sched_ext: Change for v6.13
- Improve the default select_cpu() implementation making it topology aware and handle WAKE_SYNC better. - set_arg_maybe_null() was used to inform the verifier which ops args could be NULL in a rather hackish way. Use the new __nullable CFI stub tags instead. - On Sapphire Rapids multi-socket systems, a BPF scheduler, by hammering on the same queue across sockets, could live-lock the system to the point where the system couldn't make reasonable forward progress. This could lead to soft-lockup triggered resets or stalling out bypass mode switch and thus BPF scheduler ejection for tens of minutes if not hours. After trying a number of mitigations, the following set worked reliably: - Injecting artificial cpu_relax() loops in two places while sched_ext is trying to turn on the bypass mode. - Triggering scheduler ejection when soft-lockup detection is imminent (a quarter of threshold left). While not the prettiest, the impact both in terms of code complexity and overhead is minimal. - A common complaint on the API is the overuse of the word "dispatch" and the confusion around "consume". This is due to how the dispatch queues became more generic over time. Rename the affected kfuncs for clarity. Thanks to BPF's compatibility features, this change can be made in a way that's both forward and backward compatible. The compatibility code will be dropped in a few releases. - Pull sched_ext/for-6.12-fixes to receive a prerequisite change. Other misc changes. -----BEGIN PGP SIGNATURE----- iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZztuXA4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGePUAP4nFTDaUDngVlxGv5hpYz8/Gcv1bPsWEydRRmH/ 3F+pNgEAmGIGAEwFYfc9Zn8Kbjf0eJAduf2RhGRatQO6F/+GSwo= =AcyC -----END PGP SIGNATURE----- Merge tag 'sched_ext-for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext updates from Tejun Heo: - Improve the default select_cpu() implementation making it topology aware and handle WAKE_SYNC better. - set_arg_maybe_null() was used to inform the verifier which ops args could be NULL in a rather hackish way. Use the new __nullable CFI stub tags instead. - On Sapphire Rapids multi-socket systems, a BPF scheduler, by hammering on the same queue across sockets, could live-lock the system to the point where the system couldn't make reasonable forward progress. This could lead to soft-lockup triggered resets or stalling out bypass mode switch and thus BPF scheduler ejection for tens of minutes if not hours. After trying a number of mitigations, the following set worked reliably: - Injecting artificial cpu_relax() loops in two places while sched_ext is trying to turn on the bypass mode. - Triggering scheduler ejection when soft-lockup detection is imminent (a quarter of threshold left). While not the prettiest, the impact both in terms of code complexity and overhead is minimal. - A common complaint on the API is the overuse of the word "dispatch" and the confusion around "consume". This is due to how the dispatch queues became more generic over time. Rename the affected kfuncs for clarity. Thanks to BPF's compatibility features, this change can be made in a way that's both forward and backward compatible. The compatibility code will be dropped in a few releases. - Other misc changes * tag 'sched_ext-for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: (21 commits) sched_ext: Replace scx_next_task_picked() with switch_class() in comment sched_ext: Rename scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() sched_ext: Rename scx_bpf_consume() to scx_bpf_dsq_move_to_local() sched_ext: Rename scx_bpf_dispatch[_vtime]() to scx_bpf_dsq_insert[_vtime]() sched_ext: scx_bpf_dispatch_from_dsq_set_*() are allowed from unlocked context sched_ext: add a missing rcu_read_lock/unlock pair at scx_select_cpu_dfl() sched_ext: Clarify sched_ext_ops table for userland scheduler sched_ext: Enable the ops breather and eject BPF scheduler on softlockup sched_ext: Avoid live-locking bypass mode switching sched_ext: Fix incorrect use of bitwise AND sched_ext: Do not enable LLC/NUMA optimizations when domains overlap sched_ext: Introduce NUMA awareness to the default idle selection policy sched_ext: Replace set_arg_maybe_null() with __nullable CFI stub tags sched_ext: Rename CFI stubs to names that are recognized by BPF sched_ext: Introduce LLC awareness to the default idle selection policy sched_ext: Clarify ops.select_cpu() for single-CPU tasks sched_ext: improve WAKE_SYNC behavior for default idle CPU selection sched_ext: Use btf_ids to resolve task_struct sched/ext: Use tg_cgroup() to elieminate duplicate code sched/ext: Fix unmatch trailing comment of CONFIG_EXT_GROUP_SCHED ... |
||
Linus Torvalds
|
bf9aa14fc5 |
A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers posix-timers are currently auto-rearmed by the kernel when the signal of the timer is ignored so that the timer signal can be delivered once the corresponding signal is unignored. This requires to throttle the timer to prevent a DoS by small intervals and keeps the system pointlessly out of low power states for no value. This is a long standing non-trivial problem due to the lock order of posix-timer lock and the sighand lock along with life time issues as the timer and the sigqueue have different life time rules. Cure this by: * Embedding the sigqueue into the timer struct to have the same life time rules. Aside of that this also avoids the lookup of the timer in the signal delivery and rearm path as it's just a always valid container_of() now. * Queuing ignored timer signals onto a seperate ignored list. * Moving queued timer signals onto the ignored list when the signal is switched to SIG_IGN before it could be delivered. * Walking the ignored list when SIG_IGN is lifted and requeue the signals to the actual signal lists. This allows the signal delivery code to rearm the timer. This also required to consolidate the signal delivery rules so they are consistent across all situations. With that all self test scenarios finally succeed. - Core infrastructure for VFS multigrain timestamping This is required to allow the kernel to use coarse grained time stamps by default and switch to fine grained time stamps when inode attributes are actively observed via getattr(). These changes have been provided to the VFS tree as well, so that the VFS specific infrastructure could be built on top. - Cleanup and consolidation of the sleep() infrastructure * Move all sleep and timeout functions into one file * Rework udelay() and ndelay() into proper documented inline functions and replace the hardcoded magic numbers by proper defines. * Rework the fsleep() implementation to take the reality of the timer wheel granularity on different HZ values into account. Right now the boundaries are hard coded time ranges which fail to provide the requested accuracy on different HZ settings. * Update documentation for all sleep/timeout related functions and fix up stale documentation links all over the place * Fixup a few usage sites - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks A system can have multiple PTP clocks which are participating in seperate and independent PTP clock domains. So far the kernel only considers the PTP clock which is based on CLOCK TAI relevant as that's the clock which drives the timekeeping adjustments via the various user space daemons through adjtimex(2). The non TAI based clock domains are accessible via the file descriptor based posix clocks, but their usability is very limited. They can't be accessed fast as they always go all the way out to the hardware and they cannot be utilized in the kernel itself. As Time Sensitive Networking (TSN) gains traction it is required to provide fast user and kernel space access to these clocks. The approach taken is to utilize the timekeeping and adjtimex(2) infrastructure to provide this access in a similar way how the kernel provides access to clock MONOTONIC, REALTIME etc. Instead of creating a duplicated infrastructure this rework converts timekeeping and adjtimex(2) into generic functionality which operates on pointers to data structures instead of using static variables. This allows to provide time accessors and adjtimex(2) functionality for the independent PTP clocks in a subsequent step. - Consolidate hrtimer initialization hrtimers are set up by initializing the data structure and then seperately setting the callback function for historical reasons. That's an extra unnecessary step and makes Rust support less straight forward than it should be. Provide a new set of hrtimer_setup*() functions and convert the core code and a few usage sites of the less frequently used interfaces over. The bulk of the htimer_init() to hrtimer_setup() conversion is already prepared and scheduled for the next merge window. - Drivers: * Ensure that the global timekeeping clocksource is utilizing the cluster 0 timer on MIPS multi-cluster systems. Otherwise CPUs on different clusters use their cluster specific clocksource which is not guaranteed to be synchronized with other clusters. * Mostly boring cleanups, fixes, improvements and code movement -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9 6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9 8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3 UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5 JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw hZZ4hdM9+3T7cg== =2VC6 -----END PGP SIGNATURE----- Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "A rather large update for timekeeping and timers: - The final step to get rid of auto-rearming posix-timers posix-timers are currently auto-rearmed by the kernel when the signal of the timer is ignored so that the timer signal can be delivered once the corresponding signal is unignored. This requires to throttle the timer to prevent a DoS by small intervals and keeps the system pointlessly out of low power states for no value. This is a long standing non-trivial problem due to the lock order of posix-timer lock and the sighand lock along with life time issues as the timer and the sigqueue have different life time rules. Cure this by: - Embedding the sigqueue into the timer struct to have the same life time rules. Aside of that this also avoids the lookup of the timer in the signal delivery and rearm path as it's just a always valid container_of() now. - Queuing ignored timer signals onto a seperate ignored list. - Moving queued timer signals onto the ignored list when the signal is switched to SIG_IGN before it could be delivered. - Walking the ignored list when SIG_IGN is lifted and requeue the signals to the actual signal lists. This allows the signal delivery code to rearm the timer. This also required to consolidate the signal delivery rules so they are consistent across all situations. With that all self test scenarios finally succeed. - Core infrastructure for VFS multigrain timestamping This is required to allow the kernel to use coarse grained time stamps by default and switch to fine grained time stamps when inode attributes are actively observed via getattr(). These changes have been provided to the VFS tree as well, so that the VFS specific infrastructure could be built on top. - Cleanup and consolidation of the sleep() infrastructure - Move all sleep and timeout functions into one file - Rework udelay() and ndelay() into proper documented inline functions and replace the hardcoded magic numbers by proper defines. - Rework the fsleep() implementation to take the reality of the timer wheel granularity on different HZ values into account. Right now the boundaries are hard coded time ranges which fail to provide the requested accuracy on different HZ settings. - Update documentation for all sleep/timeout related functions and fix up stale documentation links all over the place - Fixup a few usage sites - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks A system can have multiple PTP clocks which are participating in seperate and independent PTP clock domains. So far the kernel only considers the PTP clock which is based on CLOCK TAI relevant as that's the clock which drives the timekeeping adjustments via the various user space daemons through adjtimex(2). The non TAI based clock domains are accessible via the file descriptor based posix clocks, but their usability is very limited. They can't be accessed fast as they always go all the way out to the hardware and they cannot be utilized in the kernel itself. As Time Sensitive Networking (TSN) gains traction it is required to provide fast user and kernel space access to these clocks. The approach taken is to utilize the timekeeping and adjtimex(2) infrastructure to provide this access in a similar way how the kernel provides access to clock MONOTONIC, REALTIME etc. Instead of creating a duplicated infrastructure this rework converts timekeeping and adjtimex(2) into generic functionality which operates on pointers to data structures instead of using static variables. This allows to provide time accessors and adjtimex(2) functionality for the independent PTP clocks in a subsequent step. - Consolidate hrtimer initialization hrtimers are set up by initializing the data structure and then seperately setting the callback function for historical reasons. That's an extra unnecessary step and makes Rust support less straight forward than it should be. Provide a new set of hrtimer_setup*() functions and convert the core code and a few usage sites of the less frequently used interfaces over. The bulk of the htimer_init() to hrtimer_setup() conversion is already prepared and scheduled for the next merge window. - Drivers: - Ensure that the global timekeeping clocksource is utilizing the cluster 0 timer on MIPS multi-cluster systems. Otherwise CPUs on different clusters use their cluster specific clocksource which is not guaranteed to be synchronized with other clusters. - Mostly boring cleanups, fixes, improvements and code movement" * tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits) posix-timers: Fix spurious warning on double enqueue versus do_exit() clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties clocksource/drivers/gpx: Remove redundant casts clocksource/drivers/timer-ti-dm: Fix child node refcount handling dt-bindings: timer: actions,owl-timer: convert to YAML clocksource/drivers/ralink: Add Ralink System Tick Counter driver clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource clocksource/drivers/timer-ti-dm: Don't fail probe if int not found clocksource/drivers:sp804: Make user selectable clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions hrtimers: Delete hrtimer_init_on_stack() alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack() io_uring: Switch to use hrtimer_setup_on_stack() sched/idle: Switch to use hrtimer_setup_on_stack() hrtimers: Delete hrtimer_init_sleeper_on_stack() wait: Switch to use hrtimer_setup_sleeper_on_stack() timers: Switch to use hrtimer_setup_sleeper_on_stack() net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack() futex: Switch to use hrtimer_setup_sleeper_on_stack() fs/aio: Switch to use hrtimer_setup_sleeper_on_stack() ... |
||
Linus Torvalds
|
3f020399e4 |
Scheduler changes for v6.13:
- Core facilities: - Add the "Lazy preemption" model (CONFIG_PREEMPT_LAZY=y), which optimizes fair-class preemption by delaying preemption requests to the tick boundary, while working as full preemption for RR/FIFO/DEADLINE classes. (Peter Zijlstra) - x86: Enable Lazy preemption (Peter Zijlstra) - riscv: Enable Lazy preemption (Jisheng Zhang) - Initialize idle tasks only once (Thomas Gleixner) - sched/ext: Remove sched_fork() hack (Thomas Gleixner) - Fair scheduler: - Optimize the PLACE_LAG when se->vlag is zero (Huang Shijie) - Idle loop: Optimize the generic idle loop by removing unnecessary memory barrier (Zhongqiu Han) - RSEQ: - Improve cache locality of RSEQ concurrency IDs for intermittent workloads (Mathieu Desnoyers) - Waitqueues: - Make wake_up_{bit,var} less fragile (Neil Brown) - PSI: - Pass enqueue/dequeue flags to psi callbacks directly (Johannes Weiner) - Preparatory patches for proxy execution: - core: Add move_queued_task_locked helper (Connor O'Brien) - core: Consolidate pick_*_task to task_is_pushable helper (Connor O'Brien) - core: Split out __schedule() deactivate task logic into a helper (John Stultz) - core: Split scheduler and execution contexts (Peter Zijlstra) - locking/mutex: Make mutex::wait_lock irq safe (Juri Lelli) - locking/mutex: Expose __mutex_owner() (Juri Lelli) - locking/mutex: Remove wakeups from under mutex::wait_lock (Peter Zijlstra) - Misc fixes and cleanups: - core: Remove unused __HAVE_THREAD_FUNCTIONS hook support (David Disseldorp) - core: Update the comment for TIF_NEED_RESCHED_LAZY (Sebastian Andrzej Siewior) - wait: Remove unused bit_wait_io_timeout (Dr. David Alan Gilbert) - fair: remove the DOUBLE_TICK feature (Huang Shijie) - fair: fix the comment for PREEMPT_SHORT (Huang Shijie) - uclamp: Fix unnused variable warning (Christian Loehle) - rt: No PREEMPT_RT=y for all{yes,mod}config Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmc7fnQRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1hZTBAAozVdWA2m51aNa67HvAZta/olmrIagVbW inwbTgqa8b+UfeWEuKOfrZr5khjEh6pLgR3dBTib1uH6xxYj/Okds+qbPWSBPVLh yzavlm/zJZM1U1XtxE3eyVfqWik4GrY7DoIMDQQr+YH7rNXonJeJkll38OI2E5MC q3Q01qyMo8RJJX8qkf3f8ObOoP/51NsVniTw0Zb2fzEhXz8FjezLlxk6cMfgSkJG lg9gfIwUZ7Xg5neRo4kJcc3Ht31KYOhWSiupBJzRD1hss/N/AybvMcTX/Cm8d07w HIAdDDAn84o46miFo/a0V/hsJZ72idWbqxVJUCtaezrpOUiFkG+uInRvG/ynr0lF 5dEI9f+6PUw8Nc7L72IyHkobjPqS2IefSaxYYCBKmxMX2qrenfTor/pKiWzzhBIl rX3MZSuUJ8NjV4rNGD/qXRM1IsMJrsDwxDyv+sRec3XdH33x286ds6aAUEPDQ6N7 96VS0sOKcNUJN8776ErNjlIxRl8HTlpkaO3nZlQIfXgTlXUpRvOuKbEWqP+606lo oANgJTKgUhgJPWZnvmdRxDjSiOp93QcImjus9i1tN81FGiEDleONsJUxu2Di1E5+ s1nCiytjq+cdvzCqFyiOZUh+g6kSZ4yXxNgLg2UvbXzX1zOeUQT3WtyKUhMPXhU8 esh1TgbUbpE= =Zcqj -----END PGP SIGNATURE----- Merge tag 'sched-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Core facilities: - Add the "Lazy preemption" model (CONFIG_PREEMPT_LAZY=y), which optimizes fair-class preemption by delaying preemption requests to the tick boundary, while working as full preemption for RR/FIFO/DEADLINE classes. (Peter Zijlstra) - x86: Enable Lazy preemption (Peter Zijlstra) - riscv: Enable Lazy preemption (Jisheng Zhang) - Initialize idle tasks only once (Thomas Gleixner) - sched/ext: Remove sched_fork() hack (Thomas Gleixner) Fair scheduler: - Optimize the PLACE_LAG when se->vlag is zero (Huang Shijie) Idle loop: - Optimize the generic idle loop by removing unnecessary memory barrier (Zhongqiu Han) RSEQ: - Improve cache locality of RSEQ concurrency IDs for intermittent workloads (Mathieu Desnoyers) Waitqueues: - Make wake_up_{bit,var} less fragile (Neil Brown) PSI: - Pass enqueue/dequeue flags to psi callbacks directly (Johannes Weiner) Preparatory patches for proxy execution: - Add move_queued_task_locked helper (Connor O'Brien) - Consolidate pick_*_task to task_is_pushable helper (Connor O'Brien) - Split out __schedule() deactivate task logic into a helper (John Stultz) - Split scheduler and execution contexts (Peter Zijlstra) - Make mutex::wait_lock irq safe (Juri Lelli) - Expose __mutex_owner() (Juri Lelli) - Remove wakeups from under mutex::wait_lock (Peter Zijlstra) Misc fixes and cleanups: - Remove unused __HAVE_THREAD_FUNCTIONS hook support (David Disseldorp) - Update the comment for TIF_NEED_RESCHED_LAZY (Sebastian Andrzej Siewior) - Remove unused bit_wait_io_timeout (Dr. David Alan Gilbert) - remove the DOUBLE_TICK feature (Huang Shijie) - fix the comment for PREEMPT_SHORT (Huang Shijie) - Fix unnused variable warning (Christian Loehle) - No PREEMPT_RT=y for all{yes,mod}config" * tag 'sched-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched, x86: Update the comment for TIF_NEED_RESCHED_LAZY. sched: No PREEMPT_RT=y for all{yes,mod}config riscv: add PREEMPT_LAZY support sched, x86: Enable Lazy preemption sched: Enable PREEMPT_DYNAMIC for PREEMPT_RT sched: Add Lazy preemption model sched: Add TIF_NEED_RESCHED_LAZY infrastructure sched/ext: Remove sched_fork() hack sched: Initialize idle tasks only once sched: psi: pass enqueue/dequeue flags to psi callbacks directly sched/uclamp: Fix unnused variable warning sched: Split scheduler and execution contexts sched: Split out __schedule() deactivate task logic into a helper sched: Consolidate pick_*_task to task_is_pushable helper sched: Add move_queued_task_locked helper locking/mutex: Expose __mutex_owner() locking/mutex: Make mutex::wait_lock irq safe locking/mutex: Remove wakeups from under mutex::wait_lock sched: Improve cache locality of RSEQ concurrency IDs for intermittent workloads sched: idle: Optimize the generic idle loop by removing needless memory barrier ... |
||
Linus Torvalds
|
ad52c55e1d |
Power management updates for 6.13-rc1
- Update the amd-pstate driver to set the initial scaling frequency policy lower bound to be the lowest non-linear frequency (Dhananjay Ugwekar). - Enable amd-pstate by default on servers starting with newer AMD Epyc processors (Swapnil Sapkal). - Align more codepaths between shared memory and MSR designs in amd-pstate (Dhananjay Ugwekar). - Clean up amd-pstate code to rename functions and remove redundant calls (Dhananjay Ugwekar, Mario Limonciello). - Do other assorted fixes and cleanups in amd-pstate (Dhananjay Ugwekar and Mario Limonciello). - Change the Balance-performance EPP value for Granite Rapids in the intel_pstate driver to a more performance-biased one (Srinivas Pandruvada). - Simplify MSR read on the boot CPU in the ACPI cpufreq driver (Chang S. Bae). - Ensure sugov_eas_rebuild_sd() is always called when sugov_init() succeeds to always enforce sched domains rebuild in case EAS needs to be enabled (Christian Loehle). - Switch cpufreq back to platform_driver::remove() (Uwe Kleine-König). - Use proper frequency unit names in cpufreq (Marcin Juszkiewicz). - Add a built-in idle states table for Granite Rapids Xeon D to the intel_idle driver (Artem Bityutskiy). - Fix some typos in comments in the cpuidle core and drivers (Shen Lichuan). - Remove iowait influence from the menu cpuidle governor (Christian Loehle). - Add min/max available performance state limits to the Energy Model management code (Lukasz Luba). - Update pm-graph to v5.13 (Todd Brandt). - Add documentation for some recently introduced cpupower utility options (Tor Vic). - Make cpupower inform users where cpufreq-bench.conf should be located when opening it fails (Peng Fan). - Allow overriding cross-compiling env params in cpupower (Peng Fan). - Add compile_commands.json to .gitignore in cpupower (John B. Wyatt IV). - Improve disable c_state block in cpupower bindings and add a test to confirm that CPU state is disabled to it (John B. Wyatt IV). - Add Chinese Simplified translation to cpupower (Kieran Moy). - Add checks for xgettext and msgfmt to cpupower (Siddharth Menon). -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmc3r6sSHHJqd0Byand5 c29ja2kubmV0AAoJEILEb/54YlRxQMUQALNEbh/Ko1d+avq0sfvyPw18BZjEiQw7 M+L0GydLW6tXLYOrD+ZTASksdDhHbK0iuFr1Gca2cZi0Dl+1XF9sy70ITTqzCDIA 8qj1JrPmRYI0KXCfiSSke0W9fU18IdxVX3I7XezVqBl0ICzsroN5wliCkmEnVOU9 LQkw0fyYr7gev4GFEGSJ7WzfPxci0d6J9pYnafFlDEE28WpKz/cyOzYuSghX5lmG ISHIVNIM6lqNgXyQirConvhrlg60XAyw5k5jqAYZbe78T+dqhH7lr9sDi7c4XxkG syeiOOyjpiBMZv1rSjIUapi8AfJHyqH7B6KyTgiulIy31x8Dji62925B63CSahkM AminAq0lYkqbhIcqEr4sW0JQ/oW3iX4cZ3TJXTUL+vFByR0ZF81tgQcXufhrcvBs ViNugcX0q1vDX3lZsm9L6UHXN2yhUb36sgreUvbGfwnE79tuR/eUnAukTWBfXau/ TWnyDiQn1CjZcfHB+YAPYZNyUHHqjoIJwzfJLwnsaHgFA80YcSwfSC9kcogCawK1 NCyfs29lAccWsrOul5iARJu8pLw1X//UfDEmVNrBD+1hveKYMrjjiQXnPoVVnNhc J5T2q5S1QeO05+wf8WaZ7MbRNzHLj0A3gYHSVPWNclxFwsQjqCHHZS2qz8MTX+f6 W6/eZuvmMbG7 =w8QT -----END PGP SIGNATURE----- Merge tag 'pm-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "The amd-pstate cpufreq driver gets the majority of changes this time. They are mostly fixes and cleanups, but one of them causes it to become the default cpufreq driver on some AMD server platforms. Apart from that, the menu cpuidle governor is modified to not use iowait any more, the intel_idle gets a custom C-states table for Granite Rapids Xeon D, and the intel_pstate driver will use a more aggressive Balance- performance default EPP value on Granite Rapids now. There are also some fixes, cleanups and tooling updates. Specifics: - Update the amd-pstate driver to set the initial scaling frequency policy lower bound to be the lowest non-linear frequency (Dhananjay Ugwekar) - Enable amd-pstate by default on servers starting with newer AMD Epyc processors (Swapnil Sapkal) - Align more codepaths between shared memory and MSR designs in amd-pstate (Dhananjay Ugwekar) - Clean up amd-pstate code to rename functions and remove redundant calls (Dhananjay Ugwekar, Mario Limonciello) - Do other assorted fixes and cleanups in amd-pstate (Dhananjay Ugwekar and Mario Limonciello) - Change the Balance-performance EPP value for Granite Rapids in the intel_pstate driver to a more performance-biased one (Srinivas Pandruvada) - Simplify MSR read on the boot CPU in the ACPI cpufreq driver (Chang S. Bae) - Ensure sugov_eas_rebuild_sd() is always called when sugov_init() succeeds to always enforce sched domains rebuild in case EAS needs to be enabled (Christian Loehle) - Switch cpufreq back to platform_driver::remove() (Uwe Kleine-König) - Use proper frequency unit names in cpufreq (Marcin Juszkiewicz) - Add a built-in idle states table for Granite Rapids Xeon D to the intel_idle driver (Artem Bityutskiy) - Fix some typos in comments in the cpuidle core and drivers (Shen Lichuan) - Remove iowait influence from the menu cpuidle governor (Christian Loehle) - Add min/max available performance state limits to the Energy Model management code (Lukasz Luba) - Update pm-graph to v5.13 (Todd Brandt) - Add documentation for some recently introduced cpupower utility options (Tor Vic) - Make cpupower inform users where cpufreq-bench.conf should be located when opening it fails (Peng Fan) - Allow overriding cross-compiling env params in cpupower (Peng Fan) - Add compile_commands.json to .gitignore in cpupower (John B. Wyatt IV) - Improve disable c_state block in cpupower bindings and add a test to confirm that CPU state is disabled to it (John B. Wyatt IV) - Add Chinese Simplified translation to cpupower (Kieran Moy) - Add checks for xgettext and msgfmt to cpupower (Siddharth Menon)" * tag 'pm-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (38 commits) cpufreq: intel_pstate: Update Balance-performance EPP for Granite Rapids cpufreq: ACPI: Simplify MSR read on the boot CPU sched/cpufreq: Ensure sd is rebuilt for EAS check intel_idle: add Granite Rapids Xeon D support PM: EM: Add min/max available performance state limits cpufreq/amd-pstate: Move registration after static function call update cpufreq/amd-pstate: Push adjust_perf vfunc init into cpu_init cpufreq/amd-pstate: Align offline flow of shared memory and MSR based systems cpufreq/amd-pstate: Call cppc_set_epp_perf in the reenable function cpufreq/amd-pstate: Do not attempt to clear MSR_AMD_CPPC_ENABLE cpufreq/amd-pstate: Rename functions that enable CPPC cpufreq/amd-pstate-ut: Add fix for min freq unit test amd-pstate: Switch to amd-pstate by default on some Server platforms amd-pstate: Set min_perf to nominal_perf for active mode performance gov cpufreq/amd-pstate: Remove the redundant amd_pstate_set_driver() call cpufreq/amd-pstate: Remove the switch case in amd_pstate_init() cpufreq/amd-pstate: Call amd_pstate_set_driver() in amd_pstate_register_driver() cpufreq/amd-pstate: Call amd_pstate_register() in amd_pstate_init() cpufreq/amd-pstate: Set the initial min_freq to lowest_nonlinear_freq cpufreq/amd-pstate: Remove the redundant verify() function ... |
||
Linus Torvalds
|
a5ca574796 |
vfs-6.13.usercopy
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzchMwAKCRCRxhvAZXjc okICAP4h6tDl7dgTv8GkL0tgaHi/36m+ilctXbEtIe9fbkc/fQD8D5t6jYaz47gu zVY7qOrtQOQ/diNavzxyky99Uh3dKgo= =lwkw -----END PGP SIGNATURE----- Merge tag 'vfs-6.13.usercopy' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull copy_struct_to_user helper from Christian Brauner: "This adds a copy_struct_to_user() helper which is a companion helper to the already widely used copy_struct_from_user(). It copies a struct from kernel space to userspace, in a way that guarantees backwards-compatibility for struct syscall arguments as long as future struct extensions are made such that all new fields are appended to the old struct, and zeroed-out new fields have the same meaning as the old struct. The first user is sched_getattr() system call but the new extensible pidfs ioctl will be ported to it as well" * tag 'vfs-6.13.usercopy' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: sched_getattr: port to copy_struct_to_user uaccess: add copy_struct_to_user helper |
||
Linus Torvalds
|
d79944b094 |
sched_ext: One more fix for v6.12-rc7
ops.cpu_acquire() was being invoked with the wrong kfunc mask allowing the operation to call kfuncs which shouldn't be allowed. Fix it by using SCX_KF_REST instead, which is trivial and low risk. -----BEGIN PGP SIGNATURE----- iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZzamXw4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGRReAP4/JQ1mKkJv+9nTZkW9OcFFHGVVhrprOUEEFk5j pmHwPAD8DTBMMS/BCQOoXDdiB9uU7ut6M8VdsIj1jmJkMja+eQI= =942J -----END PGP SIGNATURE----- Merge tag 'sched_ext-for-6.12-rc7-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext fix from Tejun Heo: "One more fix for v6.12-rc7 ops.cpu_acquire() was being invoked with the wrong kfunc mask allowing the operation to call kfuncs which shouldn't be allowed. Fix it by using SCX_KF_REST instead, which is trivial and low risk" * tag 'sched_ext-for-6.12-rc7-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: ops.cpu_acquire() should be called with SCX_KF_REST |
||
Zhao Mengmeng
|
6b8950ef99 |
sched_ext: Replace scx_next_task_picked() with switch_class() in comment
scx_next_task_picked() has been replaced with siwtch_class(), but comment is still referencing old one, so replace it. Signed-off-by: Zhao Mengmeng <zhaomengmeng@kylinos.cn> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Tejun Heo
|
a4af89cc50 |
sched_ext: ops.cpu_acquire() should be called with SCX_KF_REST
ops.cpu_acquire() is currently called with 0 kf_maks which is interpreted as SCX_KF_UNLOCKED which allows all unlocked kfuncs, but ops.cpu_acquire() is called from balance_one() under the rq lock and should only be allowed call kfuncs that are safe under the rq lock. Update it to use SCX_KF_REST. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Vernet <void@manifault.com> Cc: Zhao Mengmeng <zhaomzhao@126.com> Link: http://lkml.kernel.org/r/ZzYvf2L3rlmjuKzh@slm.duckdns.org Fixes: 245254f7081d ("sched_ext: Implement sched_ext_ops.cpu_acquire/release()") |
||
Christian Loehle
|
70d8b6485b |
sched/cpufreq: Ensure sd is rebuilt for EAS check
Ensure sugov_eas_rebuild_sd() is always called when sugov_init() succeeds. The out goto initialized sugov without forcing the rebuild. Previously the missing call to sugov_eas_rebuild_sd() could lead to EAS not being enabled on boot when it should have been, because it requires all policies to be controlled by schedutil while they might not have been initialized yet. Fixes: e7a1b32e43b1 ("cpufreq: Rebuild sched-domains when removing cpufreq driver") Signed-off-by: Christian Loehle <christian.loehle@arm.com> Link: https://patch.msgid.link/35e572d9-1152-406a-9e34-2525f7548af9@arm.com Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
||
Linus Torvalds
|
3022e9d00e |
sched_ext: Fixes for v6.12-rc7
- The fair sched class currently has a bug where its balance() returns true telling the sched core that it has tasks to run but then NULL from pick_task(). This makes sched core call sched_ext's pick_task() without preceding balance() which can lead to stalls in partial mode. For now, work around by detecting the condition and forcing the CPU to go through another scheduling cycle. - Add a missing newline to an error message and fix drgn introspection tool which went out of sync. -----BEGIN PGP SIGNATURE----- iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZzI8sw4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGb5KAP40b/o6TyAFDG+Hn6GxyxQT7rcAUMXsdB2bcEpg /IjmzQEAwbHU5KP5vQXV6XHv+2V7Rs7u6ZqFtDnL88N0A9hf3wk= =7hL8 -----END PGP SIGNATURE----- Merge tag 'sched_ext-for-6.12-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext fixes from Tejun Heo: - The fair sched class currently has a bug where its balance() returns true telling the sched core that it has tasks to run but then NULL from pick_task(). This makes sched core call sched_ext's pick_task() without preceding balance() which can lead to stalls in partial mode. For now, work around by detecting the condition and forcing the CPU to go through another scheduling cycle. - Add a missing newline to an error message and fix drgn introspection tool which went out of sync. * tag 'sched_ext-for-6.12-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: Handle cases where pick_task_scx() is called without preceding balance_scx() sched_ext: Update scx_show_state.py to match scx_ops_bypass_depth's new type sched_ext: Add a missing newline at the end of an error message |
||
Tejun Heo
|
5cbb302880 |
sched_ext: Rename scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
In sched_ext API, a repeatedly reported pain point is the overuse of the verb "dispatch" and confusion around "consume": - ops.dispatch() - scx_bpf_dispatch[_vtime]() - scx_bpf_consume() - scx_bpf_dispatch[_vtime]_from_dsq*() This overloading of the term is historical. Originally, there were only built-in DSQs and moving a task into a DSQ always dispatched it for execution. Using the verb "dispatch" for the kfuncs to move tasks into these DSQs made sense. Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was from a non-local DSQ to a local DSQ and this operation was named "consume". This was already confusing as a task could be dispatched to a user DSQ from ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch(). Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse as "dispatch" in this context meant moving a task to an arbitrary DSQ from a user DSQ. Clean up the API with the following renames: 1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]() 2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local() 3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() This patch performs the third set of renames. Compatibility is maintained by: - The previous kfunc names are still provided by the kernel so that old binaries can run. Kernel generates a warning when the old names are used. - compat.bpf.h provides wrappers for the new names which automatically fall back to the old names when running on older kernels. They also trigger build error if old names are used for new builds. - scx_bpf_dispatch[_vtime]_from_dsq*() were already wrapped in __COMPAT macros as they were introduced during v6.12 cycle. Wrap new API in __COMPAT macros too and trigger build errors on both __COMPAT prefixed and naked usages of the old names. The compat features will be dropped after v6.15. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Acked-by: Johannes Bechberger <me@mostlynerdless.de> Acked-by: Giovanni Gherdovich <ggherdovich@suse.com> Cc: Dan Schatzberg <dschatzberg@meta.com> Cc: Ming Yang <yougmark94@gmail.com> |
||
Tejun Heo
|
5209c03c8e |
sched_ext: Rename scx_bpf_consume() to scx_bpf_dsq_move_to_local()
In sched_ext API, a repeatedly reported pain point is the overuse of the verb "dispatch" and confusion around "consume": - ops.dispatch() - scx_bpf_dispatch[_vtime]() - scx_bpf_consume() - scx_bpf_dispatch[_vtime]_from_dsq*() This overloading of the term is historical. Originally, there were only built-in DSQs and moving a task into a DSQ always dispatched it for execution. Using the verb "dispatch" for the kfuncs to move tasks into these DSQs made sense. Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was from a non-local DSQ to a local DSQ and this operation was named "consume". This was already confusing as a task could be dispatched to a user DSQ from ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch(). Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse as "dispatch" in this context meant moving a task to an arbitrary DSQ from a user DSQ. Clean up the API with the following renames: 1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]() 2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local() 3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() This patch performs the second rename. Compatibility is maintained by: - The previous kfunc names are still provided by the kernel so that old binaries can run. Kernel generates a warning when the old names are used. - compat.bpf.h provides wrappers for the new names which automatically fall back to the old names when running on older kernels. They also trigger build error if old names are used for new builds. The compat features will be dropped after v6.15. v2: Comment and documentation updates. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Acked-by: Johannes Bechberger <me@mostlynerdless.de> Acked-by: Giovanni Gherdovich <ggherdovich@suse.com> Cc: Dan Schatzberg <dschatzberg@meta.com> Cc: Ming Yang <yougmark94@gmail.com> |
||
Tejun Heo
|
cc26abb1a1 |
sched_ext: Rename scx_bpf_dispatch[_vtime]() to scx_bpf_dsq_insert[_vtime]()
In sched_ext API, a repeatedly reported pain point is the overuse of the verb "dispatch" and confusion around "consume": - ops.dispatch() - scx_bpf_dispatch[_vtime]() - scx_bpf_consume() - scx_bpf_dispatch[_vtime]_from_dsq*() This overloading of the term is historical. Originally, there were only built-in DSQs and moving a task into a DSQ always dispatched it for execution. Using the verb "dispatch" for the kfuncs to move tasks into these DSQs made sense. Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was from a non-local DSQ to a local DSQ and this operation was named "consume". This was already confusing as a task could be dispatched to a user DSQ from ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch(). Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse as "dispatch" in this context meant moving a task to an arbitrary DSQ from a user DSQ. Clean up the API with the following renames: 1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]() 2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local() 3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() This patch performs the first set of renames. Compatibility is maintained by: - The previous kfunc names are still provided by the kernel so that old binaries can run. Kernel generates a warning when the old names are used. - compat.bpf.h provides wrappers for the new names which automatically fall back to the old names when running on older kernels. They also trigger build error if old names are used for new builds. The compat features will be dropped after v6.15. v2: Documentation updates. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Acked-by: Johannes Bechberger <me@mostlynerdless.de> Acked-by: Giovanni Gherdovich <ggherdovich@suse.com> Cc: Dan Schatzberg <dschatzberg@meta.com> Cc: Ming Yang <yougmark94@gmail.com> |
||
Tejun Heo
|
a6250aa251 |
sched_ext: Handle cases where pick_task_scx() is called without preceding balance_scx()
sched_ext dispatches tasks from the BPF scheduler from balance_scx() and thus every pick_task_scx() call must be preceded by balance_scx(). While this usually holds, due to a bug, there are cases where the fair class's balance() returns true indicating that it has tasks to run on the CPU and thus terminating balance() calls but fails to actually find the next task to run when pick_task() is called. In such cases, pick_task_scx() can be called without preceding balance_scx(). Detect this condition using SCX_RQ_BAL_PENDING flags. If detected, keep running the previous task if possible and avoid stalling from entering idle without balancing. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/Ztj_h5c2LYsdXYbA@slm.duckdns.org |
||
Tejun Heo
|
72b85bf6a7 |
sched_ext: scx_bpf_dispatch_from_dsq_set_*() are allowed from unlocked context
4c30f5ce4f7a ("sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()") added four kfuncs for dispatching while iterating. They are allowed from the dispatch and unlocked contexts but two of the kfuncs were only added in the dispatch section. Add missing declarations in the unlocked section. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: 4c30f5ce4f7a ("sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()") |
||
Changwoo Min
|
f39489fea6 |
sched_ext: add a missing rcu_read_lock/unlock pair at scx_select_cpu_dfl()
When getting an LLC CPU mask in the default CPU selection policy, scx_select_cpu_dfl(), a pointer to the sched_domain is dereferenced using rcu_read_lock() without holding rcu_read_lock(). Such an unprotected dereference often causes the following warning and can cause an invalid memory access in the worst case. Therefore, protect dereference of a sched_domain pointer using a pair of rcu_read_lock() and unlock(). [ 20.996135] ============================= [ 20.996345] WARNING: suspicious RCU usage [ 20.996563] 6.11.0-virtme #17 Tainted: G W [ 20.996576] ----------------------------- [ 20.996576] kernel/sched/ext.c:3323 suspicious rcu_dereference_check() usage! [ 20.996576] [ 20.996576] other info that might help us debug this: [ 20.996576] [ 20.996576] [ 20.996576] rcu_scheduler_active = 2, debug_locks = 1 [ 20.996576] 4 locks held by kworker/8:1/140: [ 20.996576] #0: ffff8b18c00dd348 ((wq_completion)pm){+.+.}-{0:0}, at: process_one_work+0x4a0/0x590 [ 20.996576] #1: ffffb3da01f67e58 ((work_completion)(&dev->power.work)){+.+.}-{0:0}, at: process_one_work+0x1ba/0x590 [ 20.996576] #2: ffffffffa316f9f0 (&rcu_state.gp_wq){..-.}-{2:2}, at: swake_up_one+0x15/0x60 [ 20.996576] #3: ffff8b1880398a60 (&p->pi_lock){-.-.}-{2:2}, at: try_to_wake_up+0x59/0x7d0 [ 20.996576] [ 20.996576] stack backtrace: [ 20.996576] CPU: 8 UID: 0 PID: 140 Comm: kworker/8:1 Tainted: G W 6.11.0-virtme #17 [ 20.996576] Tainted: [W]=WARN [ 20.996576] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 [ 20.996576] Workqueue: pm pm_runtime_work [ 20.996576] Sched_ext: simple (disabling+all), task: runnable_at=-6ms [ 20.996576] Call Trace: [ 20.996576] <IRQ> [ 20.996576] dump_stack_lvl+0x6f/0xb0 [ 20.996576] lockdep_rcu_suspicious.cold+0x4e/0x96 [ 20.996576] scx_select_cpu_dfl+0x234/0x260 [ 20.996576] select_task_rq_scx+0xfb/0x190 [ 20.996576] select_task_rq+0x47/0x110 [ 20.996576] try_to_wake_up+0x110/0x7d0 [ 20.996576] swake_up_one+0x39/0x60 [ 20.996576] rcu_core+0xb08/0xe50 [ 20.996576] ? srso_alias_return_thunk+0x5/0xfbef5 [ 20.996576] ? mark_held_locks+0x40/0x70 [ 20.996576] handle_softirqs+0xd3/0x410 [ 20.996576] irq_exit_rcu+0x78/0xa0 [ 20.996576] sysvec_apic_timer_interrupt+0x73/0x80 [ 20.996576] </IRQ> [ 20.996576] <TASK> [ 20.996576] asm_sysvec_apic_timer_interrupt+0x1a/0x20 [ 20.996576] RIP: 0010:_raw_spin_unlock_irqrestore+0x36/0x70 [ 20.996576] Code: f5 53 48 8b 74 24 10 48 89 fb 48 83 c7 18 e8 11 b4 36 ff 48 89 df e8 99 0d 37 ff f7 c5 00 02 00 00 75 17 9c 58 f6 c4 02 75 2b <65> ff 0d 5b 55 3c 5e 74 16 5b 5d e9 95 8e 28 00 e8 a5 ee 44 ff 9c [ 20.996576] RSP: 0018:ffffb3da01f67d20 EFLAGS: 00000246 [ 20.996576] RAX: 0000000000000002 RBX: ffffffffa4640220 RCX: 0000000000000040 [ 20.996576] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffa1c7b27b [ 20.996576] RBP: 0000000000000246 R08: 0000000000000001 R09: 0000000000000000 [ 20.996576] R10: 0000000000000001 R11: 000000000000021c R12: 0000000000000246 [ 20.996576] R13: ffff8b1881363958 R14: 0000000000000000 R15: ffff8b1881363800 [ 20.996576] ? _raw_spin_unlock_irqrestore+0x4b/0x70 [ 20.996576] serial_port_runtime_resume+0xd4/0x1a0 [ 20.996576] ? __pfx_serial_port_runtime_resume+0x10/0x10 [ 20.996576] __rpm_callback+0x44/0x170 [ 20.996576] ? __pfx_serial_port_runtime_resume+0x10/0x10 [ 20.996576] rpm_callback+0x55/0x60 [ 20.996576] ? __pfx_serial_port_runtime_resume+0x10/0x10 [ 20.996576] rpm_resume+0x582/0x7b0 [ 20.996576] pm_runtime_work+0x7c/0xb0 [ 20.996576] process_one_work+0x1fb/0x590 [ 20.996576] worker_thread+0x18e/0x350 [ 20.996576] ? __pfx_worker_thread+0x10/0x10 [ 20.996576] kthread+0xe2/0x110 [ 20.996576] ? __pfx_kthread+0x10/0x10 [ 20.996576] ret_from_fork+0x34/0x50 [ 20.996576] ? __pfx_kthread+0x10/0x10 [ 20.996576] ret_from_fork_asm+0x1a/0x30 [ 20.996576] </TASK> [ 21.056592] sched_ext: BPF scheduler "simple" disabled (unregistered from user space) Signed-off-by: Changwoo Min <changwoo@igalia.com> Acked-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Changwoo Min
|
153591f703 |
sched_ext: Clarify sched_ext_ops table for userland scheduler
Update the comments in sched_ext_ops to clarify this table is for a BPF scheduler and a userland scheduler should also rely on the sched_ext_ops table through the BPF scheduler. Signed-off-by: Changwoo Min <changwoo@igalia.com> Signed-off-by: Tejun Heo <tj@kernel.org> |