Now the low-level driver actually gets informed that it is getting suspended and resumed.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Just scratching an itch here, but it makes more sense to use the
static keyword if you think about how the compiler treats inline
functions.
Reviewed-by: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Reviewed-by: Alwin Beukers <alwin@broadcom.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Franky Lin <frankyl@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The BCMA header only had definitions for 32-bit register access. Used
those as a template for the 16-bit flavour. Also changed them to inline
functions to be on the safe side. As offset parameter is used twice there
would be a problem when used like this: bcma_set32(core, offset++, val);
Reviewed-by: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Reviewed-by: Alwin Beukers <alwin@broadcom.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Franky Lin <frankyl@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The original implementations reference THIS_MODULE in an inline.
We could include <linux/export.h>, but it is better to avoid chaining.
Fortunately someone else already thought of this, and made a similar
inline into a #define in <linux/device.h> for device_schedule_callback(),
[see commit 523ded71de0] so follow that precedent here.
Also bubble up any __must_check that were used on the prev. wrapper inline
functions up one to the real __register functions, to preserve any prev.
sanity checks that were used in those instances.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
We need to disable ext. PA lines for reading SPROM. It's disabled by
default, but this patch allows using bcma after loading wl, which leaves
workaround enabled.
Cc: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Add method to return the clock of the CPU. This is needed by the arch
code to calculate the mips_hpt_frequency.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This adds support for serial console to bcma, when operating on an SoC.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This adds a mips driver to bcma. This is only found on embedded
devices. For now the driver just initializes the irqs used on this
system.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This patch adds support for using bcma on a Broadcom SoC as the system
bus. An SoC like the bcm4716 could register this bus and use it to
searches for the bcma cores and register the devices on this bus.
BCMA_HOSTTYPE_NONE was intended for SoCs at first but BCMA_HOSTTYPE_SOC
is a better name.
Acked-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The chip common and mips core have to be setup early in the boot
process to get the cpu clock.
bcma_bus_early_register() gets pointers to some space to store the core
data and searches for the chip common and mips core and initializes
chip common. After that was done and the kernel is out of early boot we
just have to run bcma_bus_register() and it will search for the other
cores, initialize and register them.
The cores are getting the same numbers as before.
Acked-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
When using DMA, drivers need to pass special translation info to the
hardware.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Recent experiments have shown many cores share 0x1E0 register used for
clock management.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Some cards do not use additional 0x30 offset for SPROM location. We do
not know the real condition for it yet, make it BCM4331 specific for
now.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Function managing IRQs is needed for external drivers like b43.
On the other side we do not expect writing any hosts drivers outside of
bcma, so this is safe to do not export functions related to this.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
In the brcm80211 driver we disable the 80211 core when the driver is
'down'. The bcma_core_disable() function exactly does the same as
our implementation so exporting this function makes sense.
Cc: linux-wireless@vger.kernel.org
Cc: Rafal Milecki <zajec5@gmail.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
In case of BCMA cards SPROM is located in the ChipCommon core, it is
not mapped as separated host window. So far we have met only SPROMs rev
8.
SPROM layout seems to be the same as for SSB buses, so we decided to
share SPROM struct and some defines.
For now we extract MAC address only, this can be improved of course.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Broadcom has released cards based on a new AMBA-based bus type. From a
programming point of view, this new bus type differs from AMBA and does
not use AMBA common registers. It also differs enough from SSB. We
decided that a new bus driver is needed to keep the code clean.
In its current form, the driver detects devices present on the bus and
registers them in the system. It allows registering BCMA drivers for
specified bus devices and provides them basic operations. The bus driver
itself includes two important bus managing drivers: ChipCommon core
driver and PCI(c) core driver. They are early used to allow correct
initialization.
Currently code is limited to supporting buses on PCI(e) devices, however
the driver is designed to be used also on other hosts. The host
abstraction layer is implemented and already used for PCI(e).
Support for PCI(e) hosts is working and seems to be stable (access to
80211 core was tested successfully on a few devices). We can still
optimize it by using some fixed windows, but this can be done later
without affecting any external code. Windows are just ranges in MMIO
used for accessing cores on the bus.
Cc: Greg KH <greg@kroah.com>
Cc: Michael Büsch <mb@bu3sch.de>
Cc: Larry Finger <Larry.Finger@lwfinger.net>
Cc: George Kashperko <george@znau.edu.ua>
Cc: Arend van Spriel <arend@broadcom.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Botting <andy@andybotting.com>
Cc: linuxdriverproject <devel@linuxdriverproject.org>
Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org>
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>