mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-04 12:12:05 +00:00
d10d7039ab
6 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
gushengxian
|
98534fce52 |
bridge: cfm: remove redundant return
Return statements are not needed in Void function. Signed-off-by: gushengxian <gushengxian@yulong.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Henrik Bjoernlund
|
b6d0425b81 |
bridge: cfm: Netlink Notifications.
This is the implementation of Netlink notifications out of CFM. Notifications are initiated whenever a state change happens in CFM. IFLA_BRIDGE_CFM: Points to the CFM information. IFLA_BRIDGE_CFM_MEP_STATUS_INFO: This indicate that the MEP instance status are following. IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO: This indicate that the peer MEP status are following. CFM nested attribute has the following attributes in next level. IFLA_BRIDGE_CFM_MEP_STATUS_INSTANCE: The MEP instance number of the delivered status. The type is NLA_U32. IFLA_BRIDGE_CFM_MEP_STATUS_OPCODE_UNEXP_SEEN: The MEP instance received CFM PDU with unexpected Opcode. The type is NLA_U32 (bool). IFLA_BRIDGE_CFM_MEP_STATUS_VERSION_UNEXP_SEEN: The MEP instance received CFM PDU with unexpected version. The type is NLA_U32 (bool). IFLA_BRIDGE_CFM_MEP_STATUS_RX_LEVEL_LOW_SEEN: The MEP instance received CCM PDU with MD level lower than configured level. This frame is discarded. The type is NLA_U32 (bool). IFLA_BRIDGE_CFM_CC_PEER_STATUS_INSTANCE: The MEP instance number of the delivered status. The type is NLA_U32. IFLA_BRIDGE_CFM_CC_PEER_STATUS_PEER_MEPID: The added Peer MEP ID of the delivered status. The type is NLA_U32. IFLA_BRIDGE_CFM_CC_PEER_STATUS_CCM_DEFECT: The CCM defect status. The type is NLA_U32 (bool). True means no CCM frame is received for 3.25 intervals. IFLA_BRIDGE_CFM_CC_CONFIG_EXP_INTERVAL. IFLA_BRIDGE_CFM_CC_PEER_STATUS_RDI: The last received CCM PDU RDI. The type is NLA_U32 (bool). IFLA_BRIDGE_CFM_CC_PEER_STATUS_PORT_TLV_VALUE: The last received CCM PDU Port Status TLV value field. The type is NLA_U8. IFLA_BRIDGE_CFM_CC_PEER_STATUS_IF_TLV_VALUE: The last received CCM PDU Interface Status TLV value field. The type is NLA_U8. IFLA_BRIDGE_CFM_CC_PEER_STATUS_SEEN: A CCM frame has been received from Peer MEP. The type is NLA_U32 (bool). This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO. IFLA_BRIDGE_CFM_CC_PEER_STATUS_TLV_SEEN: A CCM frame with TLV has been received from Peer MEP. The type is NLA_U32 (bool). This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO. IFLA_BRIDGE_CFM_CC_PEER_STATUS_SEQ_UNEXP_SEEN: A CCM frame with unexpected sequence number has been received from Peer MEP. The type is NLA_U32 (bool). When a sequence number is not one higher than previously received then it is unexpected. This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO. Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com> Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Henrik Bjoernlund
|
2be665c394 |
bridge: cfm: Netlink SET configuration Interface.
This is the implementation of CFM netlink configuration set information interface. Add new nested netlink attributes. These attributes are used by the user space to create/delete/configure CFM instances. SETLINK: IFLA_BRIDGE_CFM: Indicate that the following attributes are CFM. IFLA_BRIDGE_CFM_MEP_CREATE: This indicate that a MEP instance must be created. IFLA_BRIDGE_CFM_MEP_DELETE: This indicate that a MEP instance must be deleted. IFLA_BRIDGE_CFM_MEP_CONFIG: This indicate that a MEP instance must be configured. IFLA_BRIDGE_CFM_CC_CONFIG: This indicate that a MEP instance Continuity Check (CC) functionality must be configured. IFLA_BRIDGE_CFM_CC_PEER_MEP_ADD: This indicate that a CC Peer MEP must be added. IFLA_BRIDGE_CFM_CC_PEER_MEP_REMOVE: This indicate that a CC Peer MEP must be removed. IFLA_BRIDGE_CFM_CC_CCM_TX: This indicate that the CC transmitted CCM PDU must be configured. IFLA_BRIDGE_CFM_CC_RDI: This indicate that the CC transmitted CCM PDU RDI must be configured. CFM nested attribute has the following attributes in next level. SETLINK RTEXT_FILTER_CFM_CONFIG: IFLA_BRIDGE_CFM_MEP_CREATE_INSTANCE: The created MEP instance number. The type is u32. IFLA_BRIDGE_CFM_MEP_CREATE_DOMAIN: The created MEP domain. The type is u32 (br_cfm_domain). It must be BR_CFM_PORT. This means that CFM frames are transmitted and received directly on the port - untagged. Not in a VLAN. IFLA_BRIDGE_CFM_MEP_CREATE_DIRECTION: The created MEP direction. The type is u32 (br_cfm_mep_direction). It must be BR_CFM_MEP_DIRECTION_DOWN. This means that CFM frames are transmitted and received on the port. Not in the bridge. IFLA_BRIDGE_CFM_MEP_CREATE_IFINDEX: The created MEP residence port ifindex. The type is u32 (ifindex). IFLA_BRIDGE_CFM_MEP_DELETE_INSTANCE: The deleted MEP instance number. The type is u32. IFLA_BRIDGE_CFM_MEP_CONFIG_INSTANCE: The configured MEP instance number. The type is u32. IFLA_BRIDGE_CFM_MEP_CONFIG_UNICAST_MAC: The configured MEP unicast MAC address. The type is 6*u8 (array). This is used as SMAC in all transmitted CFM frames. IFLA_BRIDGE_CFM_MEP_CONFIG_MDLEVEL: The configured MEP unicast MD level. The type is u32. It must be in the range 1-7. No CFM frames are passing through this MEP on lower levels. IFLA_BRIDGE_CFM_MEP_CONFIG_MEPID: The configured MEP ID. The type is u32. It must be in the range 0-0x1FFF. This MEP ID is inserted in any transmitted CCM frame. IFLA_BRIDGE_CFM_CC_CONFIG_INSTANCE: The configured MEP instance number. The type is u32. IFLA_BRIDGE_CFM_CC_CONFIG_ENABLE: The Continuity Check (CC) functionality is enabled or disabled. The type is u32 (bool). IFLA_BRIDGE_CFM_CC_CONFIG_EXP_INTERVAL: The CC expected receive interval of CCM frames. The type is u32 (br_cfm_ccm_interval). This is also the transmission interval of CCM frames when enabled. IFLA_BRIDGE_CFM_CC_CONFIG_EXP_MAID: The CC expected receive MAID in CCM frames. The type is CFM_MAID_LENGTH*u8. This is MAID is also inserted in transmitted CCM frames. IFLA_BRIDGE_CFM_CC_PEER_MEP_INSTANCE: The configured MEP instance number. The type is u32. IFLA_BRIDGE_CFM_CC_PEER_MEPID: The CC Peer MEP ID added. The type is u32. When a Peer MEP ID is added and CC is enabled it is expected to receive CCM frames from that Peer MEP. IFLA_BRIDGE_CFM_CC_RDI_INSTANCE: The configured MEP instance number. The type is u32. IFLA_BRIDGE_CFM_CC_RDI_RDI: The RDI that is inserted in transmitted CCM PDU. The type is u32 (bool). IFLA_BRIDGE_CFM_CC_CCM_TX_INSTANCE: The configured MEP instance number. The type is u32. IFLA_BRIDGE_CFM_CC_CCM_TX_DMAC: The transmitted CCM frame destination MAC address. The type is 6*u8 (array). This is used as DMAC in all transmitted CFM frames. IFLA_BRIDGE_CFM_CC_CCM_TX_SEQ_NO_UPDATE: The transmitted CCM frame update (increment) of sequence number is enabled or disabled. The type is u32 (bool). IFLA_BRIDGE_CFM_CC_CCM_TX_PERIOD: The period of time where CCM frame are transmitted. The type is u32. The time is given in seconds. SETLINK IFLA_BRIDGE_CFM_CC_CCM_TX must be done before timeout to keep transmission alive. When period is zero any ongoing CCM frame transmission will be stopped. IFLA_BRIDGE_CFM_CC_CCM_TX_IF_TLV: The transmitted CCM frame update with Interface Status TLV is enabled or disabled. The type is u32 (bool). IFLA_BRIDGE_CFM_CC_CCM_TX_IF_TLV_VALUE: The transmitted Interface Status TLV value field. The type is u8. IFLA_BRIDGE_CFM_CC_CCM_TX_PORT_TLV: The transmitted CCM frame update with Port Status TLV is enabled or disabled. The type is u32 (bool). IFLA_BRIDGE_CFM_CC_CCM_TX_PORT_TLV_VALUE: The transmitted Port Status TLV value field. The type is u8. Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com> Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Henrik Bjoernlund
|
dc32cbb3db |
bridge: cfm: Kernel space implementation of CFM. CCM frame RX added.
This is the third commit of the implementation of the CFM protocol according to 802.1Q section 12.14. Functionality is extended with CCM frame reception. The MEP instance now contains CCM based status information. Most important is the CCM defect status indicating if correct CCM frames are received with the expected interval. Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com> Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Henrik Bjoernlund
|
a806ad8ee2 |
bridge: cfm: Kernel space implementation of CFM. CCM frame TX added.
This is the second commit of the implementation of the CFM protocol according to 802.1Q section 12.14. Functionality is extended with CCM frame transmission. Interface is extended with these functions: br_cfm_cc_rdi_set() br_cfm_cc_ccm_tx() br_cfm_cc_config_set() A MEP Continuity Check feature can be configured by br_cfm_cc_config_set() The Continuity Check parameters can be configured to be used when transmitting CCM. A MEP can be configured to start or stop transmission of CCM frames by br_cfm_cc_ccm_tx() The CCM will be transmitted for a selected period in seconds. Must call this function before timeout to keep transmission alive. A MEP transmitting CCM can be configured with inserted RDI in PDU by br_cfm_cc_rdi_set() Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com> Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Henrik Bjoernlund
|
86a14b79e1 |
bridge: cfm: Kernel space implementation of CFM. MEP create/delete.
This is the first commit of the implementation of the CFM protocol according to 802.1Q section 12.14. It contains MEP instance create, delete and configuration. Connectivity Fault Management (CFM) comprises capabilities for detecting, verifying, and isolating connectivity failures in Virtual Bridged Networks. These capabilities can be used in networks operated by multiple independent organizations, each with restricted management access to each others equipment. CFM functions are partitioned as follows: - Path discovery - Fault detection - Fault verification and isolation - Fault notification - Fault recovery Interface consists of these functions: br_cfm_mep_create() br_cfm_mep_delete() br_cfm_mep_config_set() br_cfm_cc_config_set() br_cfm_cc_peer_mep_add() br_cfm_cc_peer_mep_remove() A MEP instance is created by br_cfm_mep_create() -It is the Maintenance association End Point described in 802.1Q section 19.2. -It is created on a specific level (1-7) and is assuring that no CFM frames are passing through this MEP on lower levels. -It initiates and validates CFM frames on its level. -It can only exist on a port that is related to a bridge. -Attributes given cannot be changed until the instance is deleted. A MEP instance can be deleted by br_cfm_mep_delete(). A created MEP instance has attributes that can be configured by br_cfm_mep_config_set(). A MEP Continuity Check feature can be configured by br_cfm_cc_config_set() The Continuity Check Receiver state machine can be enabled and disabled. According to 802.1Q section 19.2.8 A MEP can have Peer MEPs added and removed by br_cfm_cc_peer_mep_add() and br_cfm_cc_peer_mep_remove() The Continuity Check feature can maintain connectivity status on each added Peer MEP. Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com> Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |