4 Commits

Author SHA1 Message Date
Douglas Anderson
28168eca32 watchdog/hardlockup: move SMP barriers from common code to buddy code
It's been suggested that since the SMP barriers are only potentially
useful for the buddy hardlockup detector, not the perf hardlockup
detector, that the barriers belong in the buddy code.  Let's move them and
add clearer comments about why they're needed.

Link: https://lkml.kernel.org/r/20230526184139.9.I5ab0a0eeb0bd52fb23f901d298c72fa5c396e22b@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:25:28 -07:00
Douglas Anderson
813efda239 watchdog/buddy: don't copy the cpumask in watchdog_next_cpu()
There's no reason to make a copy of the "watchdog_cpus" locally in
watchdog_next_cpu().  Making a copy wouldn't make things any more race
free and we're just reading the value so there's no need for a copy.

Link: https://lkml.kernel.org/r/20230526184139.7.If466f9a2b50884cbf6a1d8ad05525a2c17069407@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:25:28 -07:00
Douglas Anderson
d3b62ace0f watchdog/buddy: cleanup how watchdog_buddy_check_hardlockup() is called
In the patch ("watchdog/hardlockup: detect hard lockups using secondary
(buddy) CPUs"), we added a call from the common watchdog.c file into the
buddy.  That call could be done more cleanly.  Specifically:

1. If we move the call into watchdog_hardlockup_kick() then it keeps
   watchdog_timer_fn() simpler.
2. We don't need to pass an "unsigned long" to the buddy for the timer
   count. In the patch ("watchdog/hardlockup: add a "cpu" param to
   watchdog_hardlockup_check()") the count was changed to "atomic_t"
   which is backed by an int, so we should match types.

Link: https://lkml.kernel.org/r/20230526184139.6.I006c7d958a1ea5c4e1e4dc44a25596d9bb5fd3ba@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:25:27 -07:00
Douglas Anderson
1f423c905a watchdog/hardlockup: detect hard lockups using secondary (buddy) CPUs
Implement a hardlockup detector that doesn't doesn't need any extra
arch-specific support code to detect lockups.  Instead of using something
arch-specific we will use the buddy system, where each CPU watches out for
another one.  Specifically, each CPU will use its softlockup hrtimer to
check that the next CPU is processing hrtimer interrupts by verifying that
a counter is increasing.

NOTE: unlike the other hard lockup detectors, the buddy one can't easily
show what's happening on the CPU that locked up just by doing a simple
backtrace.  It relies on some other mechanism in the system to get
information about the locked up CPUs.  This could be support for NMI
backtraces like [1], it could be a mechanism for printing the PC of locked
CPUs at panic time like [2] / [3], or it could be something else.  Even
though that means we still rely on arch-specific code, this arch-specific
code seems to often be implemented even on architectures that don't have a
hardlockup detector.

This style of hardlockup detector originated in some downstream Android
trees and has been rebased on / carried in ChromeOS trees for quite a long
time for use on arm and arm64 boards.  Historically on these boards we've
leveraged mechanism [2] / [3] to get information about hung CPUs, but we
could move to [1].

Although the original motivation for the buddy system was for use on
systems without an arch-specific hardlockup detector, it can still be
useful to use even on systems that _do_ have an arch-specific hardlockup
detector.  On x86, for instance, there is a 24-part patch series [4] in
progress switching the arch-specific hard lockup detector from a scarce
perf counter to a less-scarce hardware resource.  Potentially the buddy
system could be a simpler alternative to free up the perf counter but
still get hard lockup detection.

Overall, pros (+) and cons (-) of the buddy system compared to an
arch-specific hardlockup detector (which might be implemented using
perf):
+ The buddy system is usable on systems that don't have an
  arch-specific hardlockup detector, like arm32 and arm64 (though it's
  being worked on for arm64 [5]).
+ The buddy system may free up scarce hardware resources.
+ If a CPU totally goes out to lunch (can't process NMIs) the buddy
  system could still detect the problem (though it would be unlikely
  to be able to get a stack trace).
+ The buddy system uses the same timer function to pet the hardlockup
  detector on the running CPU as it uses to detect hardlockups on
  other CPUs. Compared to other hardlockup detectors, this means it
  generates fewer interrupts and thus is likely better able to let
  CPUs stay idle longer.
- If all CPUs are hard locked up at the same time the buddy system
  can't detect it.
- If we don't have SMP we can't use the buddy system.
- The buddy system needs an arch-specific mechanism (possibly NMI
  backtrace) to get info about the locked up CPU.

[1] https://lore.kernel.org/r/20230419225604.21204-1-dianders@chromium.org
[2] https://issuetracker.google.com/172213129
[3] https://docs.kernel.org/trace/coresight/coresight-cpu-debug.html
[4] https://lore.kernel.org/lkml/20230301234753.28582-1-ricardo.neri-calderon@linux.intel.com/
[5] https://lore.kernel.org/linux-arm-kernel/20220903093415.15850-1-lecopzer.chen@mediatek.com/

Link: https://lkml.kernel.org/r/20230519101840.v5.14.I6bf789d21d0c3d75d382e7e51a804a7a51315f2c@changeid
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Tzung-Bi Shih <tzungbi@chromium.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ian Rogers <irogers@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 17:44:21 -07:00