mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 22:05:08 +00:00
72 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Miaohe Lin
|
833dfc0090 |
mm: compaction: mark kcompactd_run() and kcompactd_stop() __meminit
Add __meminit to kcompactd_run() and kcompactd_stop() to ensure they're default to __init when memory hotplug is not enabled. Link: https://lkml.kernel.org/r/20230610034615.997813-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
3cf0493752 |
mm: compaction: have compaction_suitable() return bool
Since it only returns COMPACT_CONTINUE or COMPACT_SKIPPED now, a bool return value simplifies the callsites. Link: https://lkml.kernel.org/r/20230602151204.GD161817@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
e8606320e9 |
mm: compaction: refactor __compaction_suitable()
__compaction_suitable() is supposed to check for available migration targets. However, it also checks whether the operation was requested via /proc/sys/vm/compact_memory, and whether the original allocation request can already succeed. These don't apply to all callsites. Move the checks out to the callers, so that later patches can deal with them one by one. No functional change intended. [hannes@cmpxchg.org: fix comment, per Vlastimil] Link: https://lkml.kernel.org/r/20230602144942.GC161817@cmpxchg.org Link: https://lkml.kernel.org/r/20230519123959.77335-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
ecd8b2928f |
mm: compaction: remove compaction result helpers
Patch series "mm: compaction: cleanups & simplifications". These compaction cleanups are split out from the huge page allocator series[1], as requested by reviewer feedback. [1] https://lore.kernel.org/linux-mm/20230418191313.268131-1-hannes@cmpxchg.org/ This patch (of 5): The compaction result helpers encode quirks that are specific to the allocator's retry logic. E.g. COMPACT_SUCCESS and COMPACT_COMPLETE actually represent failures that should be retried upon, and so on. I frequently found myself pulling up the helper implementation in order to understand and work on the retry logic. They're not quite clean abstractions; rather they split the retry logic into two locations. Remove the helpers and inline the checks. Then comment on the result interpretations directly where the decision making happens. Link: https://lkml.kernel.org/r/20230519123959.77335-1-hannes@cmpxchg.org Link: https://lkml.kernel.org/r/20230519123959.77335-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Minghao Chi
|
48fe8ab8d5 |
mm: compaction: move compaction sysctl to its own file
This moves all compaction sysctls to its own file. Move sysctl to where the functionality truly belongs to improve readability, reduce merge conflicts, and facilitate maintenance. I use x86_defconfig and linux-next-20230327 branch $ make defconfig;make all -jn CONFIG_COMPACTION=y add/remove: 1/0 grow/shrink: 1/1 up/down: 350/-256 (94) Function old new delta vm_compaction - 320 +320 kcompactd_init 180 210 +30 vm_table 2112 1856 -256 Total: Before=21119987, After=21120081, chg +0.00% Despite the addition of 94 bytes the patch still seems a worthwile cleanup. Link: https://lore.kernel.org/lkml/067f7347-ba10-5405-920c-0f5f985c84f4@suse.cz/ Signed-off-by: Minghao Chi <chi.minghao@zte.com.cn> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Miaohe Lin
|
024c61eaff |
mm: compaction: remove unneeded return value of kcompactd_run
Patch series "A few cleanup and fixup patches for compaction". This series contains a few patches to clean up some obsolete comment, remove unneeded return value and so on. Also we fix the possible NULL pointer dereference. More details can be found in the respective changelogs. This patch (of 12): The return value of kcompactd_run() is unused now. Clean it up. Link: https://lkml.kernel.org/r/20220418141253.24298-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20220418141253.24298-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc; Mel Gorman <mgorman@techsingularity.net> Cc: David Hildenbrand <david@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pintu Kumar <pintu@codeaurora.org> Cc: Charan Teja Kalla <charante@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Charan Teja Reddy
|
65d759c8f9 |
mm: compaction: support triggering of proactive compaction by user
The proactive compaction[1] gets triggered for every 500msec and run compaction on the node for COMPACTION_HPAGE_ORDER (usually order-9) pages based on the value set to sysctl.compaction_proactiveness. Triggering the compaction for every 500msec in search of COMPACTION_HPAGE_ORDER pages is not needed for all applications, especially on the embedded system usecases which may have few MB's of RAM. Enabling the proactive compaction in its state will endup in running almost always on such systems. Other side, proactive compaction can still be very much useful for getting a set of higher order pages in some controllable manner(controlled by using the sysctl.compaction_proactiveness). So, on systems where enabling the proactive compaction always may proove not required, can trigger the same from user space on write to its sysctl interface. As an example, say app launcher decide to launch the memory heavy application which can be launched fast if it gets more higher order pages thus launcher can prepare the system in advance by triggering the proactive compaction from userspace. This triggering of proactive compaction is done on a write to sysctl.compaction_proactiveness by user. [1]https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id=facdaa917c4d5a376d09d25865f5a863f906234a [akpm@linux-foundation.org: tweak vm.rst, per Mike] Link: https://lkml.kernel.org/r/1627653207-12317-1-git-send-email-charante@codeaurora.org Signed-off-by: Charan Teja Reddy <charante@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Rafael Aquini <aquini@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Nitin Gupta <nigupta@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zhen Lei
|
06c8839815 |
mm: fix spelling mistakes in header files
Fix some spelling mistakes in comments: successfull ==> successful potentialy ==> potentially alloced ==> allocated indicies ==> indices wont ==> won't resposible ==> responsible dirtyness ==> dirtiness droppped ==> dropped alread ==> already occured ==> occurred interupts ==> interrupts extention ==> extension slighly ==> slightly Dont't ==> Don't Link: https://lkml.kernel.org/r/20210531034849.9549-2-thunder.leizhen@huawei.com Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pintu Kumar
|
ef49843841 |
mm/compaction: remove unused variable sysctl_compact_memory
The sysctl_compact_memory is mostly unused in mm/compaction.c It just acts as a place holder for sysctl to store .data. But the .data itself is not needed here. So we can get ride of this variable completely and make .data as NULL. This will also eliminate the extern declaration from header file. No functionality is broken or changed this way. Link: https://lkml.kernel.org/r/1614852224-14671-1-git-send-email-pintu@codeaurora.org Signed-off-by: Pintu Kumar <pintu@codeaurora.org> Signed-off-by: Pintu Agarwal <pintu.ping@gmail.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hui Su
|
2271b016bf |
mm/compaction: make defer_compaction and compaction_deferred static
defer_compaction() and compaction_deferred() and compaction_restarting() in mm/compaction.c won't be used in other files, so make them static, and remove the declaration in the header file. Take the chance to fix a typo. Link: https://lkml.kernel.org/r/20201123170801.GA9625@rlk Signed-off-by: Hui Su <sh_def@163.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Nitin Gupta <nigupta@nvidia.com> Cc: Baoquan He <bhe@redhat.com> Cc: Mateusz Nosek <mateusznosek0@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mateusz Nosek
|
74c9da4e1d |
include/linux/compaction.h: clean code by removing unused enum value
The enum value 'COMPACT_INACTIVE' is never used so can be removed. Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Link: https://lkml.kernel.org/r/20200917110750.12015-1-mateusznosek0@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nitin Gupta
|
d34c0a7599 |
mm: use unsigned types for fragmentation score
Proactive compaction uses per-node/zone "fragmentation score" which is always in range [0, 100], so use unsigned type of these scores as well as for related constants. Signed-off-by: Nitin Gupta <nigupta@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200618010319.13159-1-nigupta@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nitin Gupta
|
facdaa917c |
mm: proactive compaction
For some applications, we need to allocate almost all memory as hugepages. However, on a running system, higher-order allocations can fail if the memory is fragmented. Linux kernel currently does on-demand compaction as we request more hugepages, but this style of compaction incurs very high latency. Experiments with one-time full memory compaction (followed by hugepage allocations) show that kernel is able to restore a highly fragmented memory state to a fairly compacted memory state within <1 sec for a 32G system. Such data suggests that a more proactive compaction can help us allocate a large fraction of memory as hugepages keeping allocation latencies low. For a more proactive compaction, the approach taken here is to define a new sysctl called 'vm.compaction_proactiveness' which dictates bounds for external fragmentation which kcompactd tries to maintain. The tunable takes a value in range [0, 100], with a default of 20. Note that a previous version of this patch [1] was found to introduce too many tunables (per-order extfrag{low, high}), but this one reduces them to just one sysctl. Also, the new tunable is an opaque value instead of asking for specific bounds of "external fragmentation", which would have been difficult to estimate. The internal interpretation of this opaque value allows for future fine-tuning. Currently, we use a simple translation from this tunable to [low, high] "fragmentation score" thresholds (low=100-proactiveness, high=low+10%). The score for a node is defined as weighted mean of per-zone external fragmentation. A zone's present_pages determines its weight. To periodically check per-node score, we reuse per-node kcompactd threads, which are woken up every 500 milliseconds to check the same. If a node's score exceeds its high threshold (as derived from user-provided proactiveness value), proactive compaction is started until its score reaches its low threshold value. By default, proactiveness is set to 20, which implies threshold values of low=80 and high=90. This patch is largely based on ideas from Michal Hocko [2]. See also the LWN article [3]. Performance data ================ System: x64_64, 1T RAM, 80 CPU threads. Kernel: 5.6.0-rc3 + this patch echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag Before starting the driver, the system was fragmented from a userspace program that allocates all memory and then for each 2M aligned section, frees 3/4 of base pages using munmap. The workload is mainly anonymous userspace pages, which are easy to move around. I intentionally avoided unmovable pages in this test to see how much latency we incur when hugepage allocations hit direct compaction. 1. Kernel hugepage allocation latencies With the system in such a fragmented state, a kernel driver then allocates as many hugepages as possible and measures allocation latency: (all latency values are in microseconds) - With vanilla 5.6.0-rc3 percentile latency –––––––––– ––––––– 5 7894 10 9496 25 12561 30 15295 40 18244 50 21229 60 27556 75 30147 80 31047 90 32859 95 33799 Total 2M hugepages allocated = 383859 (749G worth of hugepages out of 762G total free => 98% of free memory could be allocated as hugepages) - With 5.6.0-rc3 + this patch, with proactiveness=20 sysctl -w vm.compaction_proactiveness=20 percentile latency –––––––––– ––––––– 5 2 10 2 25 3 30 3 40 3 50 4 60 4 75 4 80 4 90 5 95 429 Total 2M hugepages allocated = 384105 (750G worth of hugepages out of 762G total free => 98% of free memory could be allocated as hugepages) 2. JAVA heap allocation In this test, we first fragment memory using the same method as for (1). Then, we start a Java process with a heap size set to 700G and request the heap to be allocated with THP hugepages. We also set THP to madvise to allow hugepage backing of this heap. /usr/bin/time java -Xms700G -Xmx700G -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch The above command allocates 700G of Java heap using hugepages. - With vanilla 5.6.0-rc3 17.39user 1666.48system 27:37.89elapsed - With 5.6.0-rc3 + this patch, with proactiveness=20 8.35user 194.58system 3:19.62elapsed Elapsed time remains around 3:15, as proactiveness is further increased. Note that proactive compaction happens throughout the runtime of these workloads. The situation of one-time compaction, sufficient to supply hugepages for following allocation stream, can probably happen for more extreme proactiveness values, like 80 or 90. In the above Java workload, proactiveness is set to 20. The test starts with a node's score of 80 or higher, depending on the delay between the fragmentation step and starting the benchmark, which gives more-or-less time for the initial round of compaction. As t he benchmark consumes hugepages, node's score quickly rises above the high threshold (90) and proactive compaction starts again, which brings down the score to the low threshold level (80). Repeat. bpftrace also confirms proactive compaction running 20+ times during the runtime of this Java benchmark. kcompactd threads consume 100% of one of the CPUs while it tries to bring a node's score within thresholds. Backoff behavior ================ Above workloads produce a memory state which is easy to compact. However, if memory is filled with unmovable pages, proactive compaction should essentially back off. To test this aspect: - Created a kernel driver that allocates almost all memory as hugepages followed by freeing first 3/4 of each hugepage. - Set proactiveness=40 - Note that proactive_compact_node() is deferred maximum number of times with HPAGE_FRAG_CHECK_INTERVAL_MSEC of wait between each check (=> ~30 seconds between retries). [1] https://patchwork.kernel.org/patch/11098289/ [2] https://lore.kernel.org/linux-mm/20161230131412.GI13301@dhcp22.suse.cz/ [3] https://lwn.net/Articles/817905/ Signed-off-by: Nitin Gupta <nigupta@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Oleksandr Natalenko <oleksandr@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Reviewed-by: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Nitin Gupta <ngupta@nitingupta.dev> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Link: http://lkml.kernel.org/r/20200616204527.19185-1-nigupta@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
ee01c4d72a |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: "More mm/ work, plenty more to come Subsystems affected by this patch series: slub, memcg, gup, kasan, pagealloc, hugetlb, vmscan, tools, mempolicy, memblock, hugetlbfs, thp, mmap, kconfig" * akpm: (131 commits) arm64: mm: use ARCH_HAS_DEBUG_WX instead of arch defined x86: mm: use ARCH_HAS_DEBUG_WX instead of arch defined riscv: support DEBUG_WX mm: add DEBUG_WX support drivers/base/memory.c: cache memory blocks in xarray to accelerate lookup mm/thp: rename pmd_mknotpresent() as pmd_mkinvalid() powerpc/mm: drop platform defined pmd_mknotpresent() mm: thp: don't need to drain lru cache when splitting and mlocking THP hugetlbfs: get unmapped area below TASK_UNMAPPED_BASE for hugetlbfs sparc32: register memory occupied by kernel as memblock.memory include/linux/memblock.h: fix minor typo and unclear comment mm, mempolicy: fix up gup usage in lookup_node tools/vm/page_owner_sort.c: filter out unneeded line mm: swap: memcg: fix memcg stats for huge pages mm: swap: fix vmstats for huge pages mm: vmscan: limit the range of LRU type balancing mm: vmscan: reclaim writepage is IO cost mm: vmscan: determine anon/file pressure balance at the reclaim root mm: balance LRU lists based on relative thrashing mm: only count actual rotations as LRU reclaim cost ... |
||
Joonsoo Kim
|
97a225e69a |
mm/page_alloc: integrate classzone_idx and high_zoneidx
classzone_idx is just different name for high_zoneidx now. So, integrate them and add some comment to struct alloc_context in order to reduce future confusion about the meaning of this variable. The accessor, ac_classzone_idx() is also removed since it isn't needed after integration. In addition to integration, this patch also renames high_zoneidx to highest_zoneidx since it represents more precise meaning. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ye Xiaolong <xiaolong.ye@intel.com> Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
32927393dc |
sysctl: pass kernel pointers to ->proc_handler
Instead of having all the sysctl handlers deal with user pointers, which is rather hairy in terms of the BPF interaction, copy the input to and from userspace in common code. This also means that the strings are always NUL-terminated by the common code, making the API a little bit safer. As most handler just pass through the data to one of the common handlers a lot of the changes are mechnical. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Vlastimil Babka
|
4943308556 |
mm, compaction: raise compaction priority after it withdrawns
Mike Kravetz reports that "hugetlb allocations could stall for minutes or hours when should_compact_retry() would return true more often then it should. Specifically, this was in the case where compact_result was COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being made." The problem is that the compaction_withdrawn() test in should_compact_retry() includes compaction outcomes that are only possible on low compaction priority, and results in a retry without increasing the priority. This may result in furter reclaim, and more incomplete compaction attempts. With this patch, compaction priority is raised when possible, or should_compact_retry() returns false. The COMPACT_SKIPPED result doesn't really fit together with the other outcomes in compaction_withdrawn(), as that's a result caused by insufficient order-0 pages, not due to low compaction priority. With this patch, it is moved to a new compaction_needs_reclaim() function, and for that outcome we keep the current logic of retrying if it looks like reclaim will be able to help. Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com Reported-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yu Zhao
|
ace451eb5e |
include/linux/compaction.h: fix potential build error
Declaration of struct node is required regardless. On UMA systems, including compaction.h without preceding node.h shouldn't cause a build error. Link: http://lkml.kernel.org/r/20190208080437.253322-1-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5e1f0f098b |
mm, compaction: capture a page under direct compaction
Compaction is inherently race-prone as a suitable page freed during compaction can be allocated by any parallel task. This patch uses a capture_control structure to isolate a page immediately when it is freed by a direct compactor in the slow path of the page allocator. The intent is to avoid redundant scanning. 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%) Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%) Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%) Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%) Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%) Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%* Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%) Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%) Latency is only moderately affected but the devil is in the details. A closer examination indicates that base page fault latency is reduced but latency of huge pages is increased as it takes creater care to succeed. Part of the "problem" is that allocation success rates are close to 100% even when under pressure and compaction gets harder 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%) Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%) Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%) Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%) Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%) Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%) Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%) Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%) And scan rates are reduced as expected by 6% for the migration scanner and 29% for the free scanner indicating that there is less redundant work. Compaction migrate scanned 20815362 19573286 Compaction free scanned 16352612 11510663 [mgorman@techsingularity.net: remove redundant check] Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
6b7e5cad65 |
mm: remove sysctl_extfrag_handler()
sysctl_extfrag_handler() neglects to propagate the return value from proc_dointvec_minmax() to its caller. It's a wrapper that doesn't need to exist, so just use proc_dointvec_minmax() directly. Link: http://lkml.kernel.org/r/20190104032557.3056-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Reported-by: Aditya Pakki <pakki001@umn.edu> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Vlastimil Babka
|
c2033b00db |
mm, compaction: restrict full priority to non-costly orders
The new ultimate compaction priority disables some heuristics, which may result in excessive cost. This is fine for non-costly orders where we want to try hard before resulting for OOM, but might be disruptive for costly orders which do not trigger OOM and should generally have some fallback. Thus, we disable the full priority for costly orders. Suggested-by: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20160906135258.18335-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
9861a62c33 |
mm, compaction: create compact_gap wrapper
Compaction uses a watermark gap of (2UL << order) pages at various places and it's not immediately obvious why. Abstract it through a compact_gap() wrapper to create a single place with a thorough explanation. [vbabka@suse.cz: clarify the comment of compact_gap()] Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
a8e025e55b |
mm, compaction: add the ultimate direct compaction priority
During reclaim/compaction loop, it's desirable to get a final answer from unsuccessful compaction so we can either fail the allocation or invoke the OOM killer. However, heuristics such as deferred compaction or pageblock skip bits can cause compaction to skip parts or whole zones and lead to premature OOM's, failures or excessive reclaim/compaction retries. To remedy this, we introduce a new direct compaction priority called COMPACT_PRIO_SYNC_FULL, which instructs direct compaction to: - ignore deferred compaction status for a zone - ignore pageblock skip hints - ignore cached scanner positions and scan the whole zone The new priority should get eventually picked up by should_compact_retry() and this should improve success rates for costly allocations using __GFP_REPEAT, such as hugetlbfs allocations, and reduce some corner-case OOM's for non-costly allocations. Link: http://lkml.kernel.org/r/20160810091226.6709-6-vbabka@suse.cz [vbabka@suse.cz: use the MIN_COMPACT_PRIORITY alias] Link: http://lkml.kernel.org/r/d443b884-87e7-1c93-8684-3a3a35759fb1@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
cf378319d3 |
mm, compaction: rename COMPACT_PARTIAL to COMPACT_SUCCESS
COMPACT_PARTIAL has historically meant that compaction returned after doing some work without fully compacting a zone. It however didn't distinguish if compaction terminated because it succeeded in creating the requested high-order page. This has changed recently and now we only return COMPACT_PARTIAL when compaction thinks it succeeded, or the high-order watermark check in compaction_suitable() passes and no compaction needs to be done. So at this point we can make the return value clearer by renaming it to COMPACT_SUCCESS. The next patch will remove some redundant tests for success where compaction just returned COMPACT_SUCCESS. Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
791cae9620 |
mm, compaction: cleanup unused functions
Since kswapd compaction moved to kcompactd, compact_pgdat() is not called anymore, so we remove it. The only caller of __compact_pgdat() is compact_node(), so we merge them and remove code that was only reachable from kswapd. Link: http://lkml.kernel.org/r/20160810091226.6709-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
c3486f5376 |
mm, compaction: simplify contended compaction handling
Async compaction detects contention either due to failing trylock on zone->lock or lru_lock, or by need_resched(). Since 1f9efdef4f3f ("mm, compaction: khugepaged should not give up due to need_resched()") the code got quite complicated to distinguish these two up to the __alloc_pages_slowpath() level, so different decisions could be taken for khugepaged allocations. After the recent changes, khugepaged allocations don't check for contended compaction anymore, so we again don't need to distinguish lock and sched contention, and simplify the current convoluted code a lot. However, I believe it's also possible to simplify even more and completely remove the check for contended compaction after the initial async compaction for costly orders, which was originally aimed at THP page fault allocations. There are several reasons why this can be done now: - with the new defaults, THP page faults no longer do reclaim/compaction at all, unless the system admin has overridden the default, or application has indicated via madvise that it can benefit from THP's. In both cases, it means that the potential extra latency is expected and worth the benefits. - even if reclaim/compaction proceeds after this patch where it previously wouldn't, the second compaction attempt is still async and will detect the contention and back off, if the contention persists - there are still heuristics like deferred compaction and pageblock skip bits in place that prevent excessive THP page fault latencies Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
a5508cd83f |
mm, compaction: introduce direct compaction priority
In the context of direct compaction, for some types of allocations we would like the compaction to either succeed or definitely fail while trying as hard as possible. Current async/sync_light migration mode is insufficient, as there are heuristics such as caching scanner positions, marking pageblocks as unsuitable or deferring compaction for a zone. At least the final compaction attempt should be able to override these heuristics. To communicate how hard compaction should try, we replace migration mode with a new enum compact_priority and change the relevant function signatures. In compact_zone_order() where struct compact_control is constructed, the priority is mapped to suitable control flags. This patch itself has no functional change, as the current priority levels are mapped back to the same migration modes as before. Expanding them will be done next. Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is removed, as the only caller exists under CONFIG_COMPACTION. Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
dd4123f324 |
mm: fix build warnings in <linux/compaction.h>
Randy reported below build error. > In file included from ../include/linux/balloon_compaction.h:48:0, > from ../mm/balloon_compaction.c:11: > ../include/linux/compaction.h:237:51: warning: 'struct node' declared inside parameter list [enabled by default] > static inline int compaction_register_node(struct node *node) > ../include/linux/compaction.h:237:51: warning: its scope is only this definition or declaration, which is probably not what you want [enabled by default] > ../include/linux/compaction.h:242:54: warning: 'struct node' declared inside parameter list [enabled by default] > static inline void compaction_unregister_node(struct node *node) > It was caused by non-lru page migration which needs compaction.h but compaction.h doesn't include any header to be standalone. I think proper header for non-lru page migration is migrate.h rather than compaction.h because migrate.h has already headers needed to work non-lru page migration indirectly like isolate_mode_t, migrate_mode MIGRATEPAGE_SUCCESS. [akpm@linux-foundation.org: revert mm-balloon-use-general-non-lru-movable-page-feature-fix.patch temp fix] Link: http://lkml.kernel.org/r/20160610003304.GE29779@bbox Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Randy Dunlap <rdunlap@infradead.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Gioh Kim <gi-oh.kim@profitbricks.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
86a294a81f |
mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders
"mm: consider compaction feedback also for costly allocation" has removed the upper bound for the reclaim/compaction retries based on the number of reclaimed pages for costly orders. While this is desirable the patch did miss a mis interaction between reclaim, compaction and the retry logic. The direct reclaim tries to get zones over min watermark while compaction backs off and returns COMPACT_SKIPPED when all zones are below low watermark + 1<<order gap. If we are getting really close to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a high order request (e.g. hugetlb order-9) while the reclaim is not able to release enough pages to get us over low watermark. The reclaim is still able to make some progress (usually trashing over few remaining pages) so we are not able to break out from the loop. I have seen this happening with the same test described in "mm: consider compaction feedback also for costly allocation" on a swapless system. The original problem got resolved by "vmscan: consider classzone_idx in compaction_ready" but it shows how things might go wrong when we approach the oom event horizont. The reason why compaction requires being over low rather than min watermark is not clear to me. This check was there essentially since 56de7263fcf3 ("mm: compaction: direct compact when a high-order allocation fails"). It is clearly an implementation detail though and we shouldn't pull it into the generic retry logic while we should be able to cope with such eventuality. The only place in should_compact_retry where we retry without any upper bound is for compaction_withdrawn() case. Introduce compaction_zonelist_suitable function which checks the given zonelist and returns true only if there is at least one zone which would would unblock __compaction_suitable if more memory got reclaimed. In this implementation it checks __compaction_suitable with NR_FREE_PAGES plus part of the reclaimable memory as the target for the watermark check. The reclaimable memory is reduced linearly by the allocation order. The idea is that we do not want to reclaim all the remaining memory for a single allocation request just unblock __compaction_suitable which doesn't guarantee we will make a further progress. The new helper is then used if compaction_withdrawn() feedback was provided so we do not retry if there is no outlook for a further progress. !costly requests shouldn't be affected much - e.g. order-2 pages would require to have at least 64kB on the reclaimable LRUs while order-9 would need at least 32M which should be enough to not lock up. [vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable] [akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
cab1802b5f |
mm, compaction: abstract compaction feedback to helpers
Compaction can provide a wild variation of feedback to the caller. Many of them are implementation specific and the caller of the compaction (especially the page allocator) shouldn't be bound to specifics of the current implementation. This patch abstracts the feedback into three basic types: - compaction_made_progress - compaction was active and made some progress. - compaction_failed - compaction failed and further attempts to invoke it would most probably fail and therefore it is not worth retrying - compaction_withdrawn - compaction wasn't invoked for an implementation specific reasons. In the current implementation it means that the compaction was deferred, contended or the page scanners met too early without any progress. Retrying is still worthwhile. [vbabka@suse.cz: do not change thp back off behavior] [akpm@linux-foundation.org: fix typo in comment, per Hillf] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
4f9a358c36 |
mm, compaction: update compaction_result ordering
compaction_result will be used as the primary feedback channel for compaction users. At the same time try_to_compact_pages (and potentially others) assume a certain ordering where a more specific feedback takes precendence. This gets a bit awkward when we have conflicting feedback from different zones. E.g one returing COMPACT_COMPLETE meaning the full zone has been scanned without any outcome while other returns with COMPACT_PARTIAL aka made some progress. The caller should get COMPACT_PARTIAL because that means that the compaction still can make some progress. The same applies for COMPACT_PARTIAL vs COMPACT_PARTIAL_SKIPPED. Reorder PARTIAL to be the largest one so the larger the value is the more progress we have done. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
c8f7de0bfa |
mm, compaction: distinguish between full and partial COMPACT_COMPLETE
COMPACT_COMPLETE now means that compaction and free scanner met. This is not very useful information if somebody just wants to use this feedback and make any decisions based on that. The current caller might be a poor guy who just happened to scan tiny portion of the zone and that could be the reason no suitable pages were compacted. Make sure we distinguish the full and partial zone walks. Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success and be optimistic in retrying. The existing users of COMPACT_COMPLETE are conservatively changed to use COMPACT_PARTIAL_SKIPPED as well but some of them should be probably reconsidered and only defer the compaction only for COMPACT_COMPLETE with the new semantic. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
1d4746d395 |
mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPED
try_to_compact_pages() can currently return COMPACT_SKIPPED even when the compaction is defered for some zone just because zone DMA is skipped in 99% of cases due to watermark checks. This makes COMPACT_DEFERRED basically unusable for the page allocator as a feedback mechanism. Make sure we distinguish those two states properly and switch their ordering in the enum. This would mean that the COMPACT_SKIPPED will be returned only when all eligible zones are skipped. As a result COMPACT_DEFERRED handling for THP in __alloc_pages_slowpath will be more precise and we would bail out rather than reclaim. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
ea7ab982b6 |
mm, compaction: change COMPACT_ constants into enum
Compaction code is doing weird dances between COMPACT_FOO -> int -> unsigned long But there doesn't seem to be any reason for that. All functions which return/use one of those constants are not expecting any other value so it really makes sense to define an enum for them and make it clear that no other values are expected. This is a pure cleanup and shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c603844bdc |
mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not necessarily generate the best code depending on the compiler. Even without an impact, it makes more sense that this be unsigned. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
698b1b3064 |
mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
2d1e10412c |
mm, compaction: distinguish contended status in tracepoints
Compaction returns prematurely with COMPACT_PARTIAL when contended or has fatal signal pending. This is ok for the callers, but might be misleading in the traces, as the usual reason to return COMPACT_PARTIAL is that we think the allocation should succeed. After this patch we distinguish the premature ending condition in the mm_compaction_finished and mm_compaction_end tracepoints. The contended status covers the following reasons: - lock contention or need_resched() detected in async compaction - fatal signal pending - too many pages isolated in the zone (only for async compaction) Further distinguishing the exact reason seems unnecessary for now. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
fa6c7b46aa |
mm, compaction: export tracepoints status strings to userspace
Some compaction tracepoints convert the integer return values to strings using the compaction_status_string array. This works for in-kernel printing, but not userspace trace printing of raw captured trace such as via trace-cmd report. This patch converts the private array to appropriate tracepoint macros that result in proper userspace support. trace-cmd output before: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret= after: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret=partial Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Eric B Munson
|
5bbe3547aa |
mm: allow compaction of unevictable pages
Currently, pages which are marked as unevictable are protected from compaction, but not from other types of migration. The POSIX real time extension explicitly states that mlock() will prevent a major page fault, but the spirit of this is that mlock() should give a process the ability to control sources of latency, including minor page faults. However, the mlock manpage only explicitly says that a locked page will not be written to swap and this can cause some confusion. The compaction code today does not give a developer who wants to avoid swap but wants to have large contiguous areas available any method to achieve this state. This patch introduces a sysctl for controlling compaction behavior with respect to the unevictable lru. Users who demand no page faults after a page is present can set compact_unevictable_allowed to 0 and users who need the large contiguous areas can enable compaction on locked memory by leaving the default value of 1. To illustrate this problem I wrote a quick test program that mmaps a large number of 1MB files filled with random data. These maps are created locked and read only. Then every other mmap is unmapped and I attempt to allocate huge pages to the static huge page pool. When the compact_unevictable_allowed sysctl is 0, I cannot allocate hugepages after fragmenting memory. When the value is set to 1, allocations succeed. Signed-off-by: Eric B Munson <emunson@akamai.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Christoph Lameter <cl@linux.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
24e2716f63 |
mm/compaction: add tracepoint to observe behaviour of compaction defer
Compaction deferring logic is heavy hammer that block the way to the compaction. It doesn't consider overall system state, so it could prevent user from doing compaction falsely. In other words, even if system has enough range of memory to compact, compaction would be skipped due to compaction deferring logic. This patch add new tracepoint to understand work of deferring logic. This will also help to check compaction success and fail. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
837d026d56 |
mm/compaction: more trace to understand when/why compaction start/finish
It is not well analyzed that when/why compaction start/finish or not. With these new tracepoints, we can know much more about start/finish reason of compaction. I can find following bug with these tracepoint. http://www.spinics.net/lists/linux-mm/msg81582.html Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
16c4a097a0 |
mm/compaction: enhance tracepoint output for compaction begin/end
We now have tracepoint for begin event of compaction and it prints start position of both scanners, but, tracepoint for end event of compaction doesn't print finish position of both scanners. It'd be also useful to know finish position of both scanners so this patch add it. It will help to find odd behavior or problem on compaction internal logic. And mode is added to both begin/end tracepoint output, since according to mode, compaction behavior is quite different. And lastly, status format is changed to string rather than status number for readability. [akpm@linux-foundation.org: fix sparse warning] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
1a6d53a105 |
mm: reduce try_to_compact_pages parameters
Expand the usage of the struct alloc_context introduced in the previous patch also for calling try_to_compact_pages(), to reduce the number of its parameters. Since the function is in different compilation unit, we need to move alloc_context definition in the shared mm/internal.h header. With this change we get simpler code and small savings of code size and stack usage: add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27) function old new delta __alloc_pages_direct_compact 283 256 -27 add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13) function old new delta try_to_compact_pages 582 569 -13 Stack usage of __alloc_pages_direct_compact goes from 24 to none (per scripts/checkstack.pl). Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Minchan Kim <minchan@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
97d47a65be |
mm, compaction: simplify deferred compaction
Since commit 53853e2d2bfb ("mm, compaction: defer each zone individually instead of preferred zone"), compaction is deferred for each zone where sync direct compaction fails, and reset where it succeeds. However, it was observed that for DMA zone compaction often appeared to succeed while subsequent allocation attempt would not, due to different outcome of watermark check. In order to properly defer compaction in this zone, the candidate zone has to be passed back to __alloc_pages_direct_compact() and compaction deferred in the zone after the allocation attempt fails. The large source of mismatch between watermark check in compaction and allocation was the lack of alloc_flags and classzone_idx values in compaction, which has been fixed in the previous patch. So with this problem fixed, we can simplify the code by removing the candidate_zone parameter and deferring in __alloc_pages_direct_compact(). After this patch, the compaction activity during stress-highalloc benchmark is still somewhat increased, but it's negligible compared to the increase that occurred without the better watermark checking. This suggests that it is still possible to apparently succeed in compaction but fail to allocate, possibly due to parallel allocation activity. [akpm@linux-foundation.org: fix build] Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
ebff398017 |
mm, compaction: pass classzone_idx and alloc_flags to watermark checking
Compaction relies on zone watermark checks for decisions such as if it's worth to start compacting in compaction_suitable() or whether compaction should stop in compact_finished(). The watermark checks take classzone_idx and alloc_flags parameters, which are related to the memory allocation request. But from the context of compaction they are currently passed as 0, including the direct compaction which is invoked to satisfy the allocation request, and could therefore know the proper values. The lack of proper values can lead to mismatch between decisions taken during compaction and decisions related to the allocation request. Lack of proper classzone_idx value means that lowmem_reserve is not taken into account. This has manifested (during recent changes to deferred compaction) when DMA zone was used as fallback for preferred Normal zone. compaction_suitable() without proper classzone_idx would think that the watermarks are already satisfied, but watermark check in get_page_from_freelist() would fail. Because of this problem, deferring compaction has extra complexity that can be removed in the following patch. The issue (not confirmed in practice) with missing alloc_flags is opposite in nature. For allocations that include ALLOC_HIGH, ALLOC_HIGHER or ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on CMA-enabled systems) the watermark checking in compaction with 0 passed will be stricter than in get_page_from_freelist(). In these cases compaction might be running for a longer time than is really needed. Another issue compaction_suitable() is that the check for "does the zone need compaction at all?" comes only after the check "does the zone have enough free free pages to succeed compaction". The latter considers extra pages for migration and can therefore in some situations fail and return COMPACT_SKIPPED, although the high-order allocation would succeed and we should return COMPACT_PARTIAL. This patch fixes these problems by adding alloc_flags and classzone_idx to struct compact_control and related functions involved in direct compaction and watermark checking. Where possible, all other callers of compaction_suitable() pass proper values where those are known. This is currently limited to classzone_idx, which is sometimes known in kswapd context. However, the direct reclaim callers should_continue_reclaim() and compaction_ready() do not currently know the proper values, so the coordination between reclaim and compaction may still not be as accurate as it could. This can be fixed later, if it's shown to be an issue. Additionaly the checks in compact_suitable() are reordered to address the second issue described above. The effect of this patch should be slightly better high-order allocation success rates and/or less compaction overhead, depending on the type of allocations and presence of CMA. It allows simplifying deferred compaction code in a followup patch. When testing with stress-highalloc, there was some slight improvement (which might be just due to variance) in success rates of non-THP-like allocations. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
1f9efdef4f |
mm, compaction: khugepaged should not give up due to need_resched()
Async compaction aborts when it detects zone lock contention or need_resched() is true. David Rientjes has reported that in practice, most direct async compactions for THP allocation abort due to need_resched(). This means that a second direct compaction is never attempted, which might be OK for a page fault, but khugepaged is intended to attempt a sync compaction in such case and in these cases it won't. This patch replaces "bool contended" in compact_control with an int that distinguishes between aborting due to need_resched() and aborting due to lock contention. This allows propagating the abort through all compaction functions as before, but passing the abort reason up to __alloc_pages_slowpath() which decides when to continue with direct reclaim and another compaction attempt. Another problem is that try_to_compact_pages() did not act upon the reported contention (both need_resched() or lock contention) immediately and would proceed with another zone from the zonelist. When need_resched() is true, that means initializing another zone compaction, only to check again need_resched() in isolate_migratepages() and aborting. For zone lock contention, the unintended consequence is that the lock contended status reported back to the allocator is detrmined from the last zone where compaction was attempted, which is rather arbitrary. This patch fixes the problem in the following way: - async compaction of a zone aborting due to need_resched() or fatal signal pending means that further zones should not be tried. We report COMPACT_CONTENDED_SCHED to the allocator. - aborting zone compaction due to lock contention means we can still try another zone, since it has different set of locks. We report back COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted, it was aborted due to lock contention. As a result of these fixes, khugepaged will proceed with second sync compaction as intended, when the preceding async compaction aborted due to need_resched(). Page fault compactions aborting due to need_resched() will spare some cycles previously wasted by initializing another zone compaction only to abort again. Lock contention will be reported only when compaction in all zones aborted due to lock contention, and therefore it's not a good idea to try again after reclaim. In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this has improved number of THP collapse allocations by 10%, which shows positive effect on khugepaged. The benchmark's success rates are unchanged as it is not recognized as khugepaged. Numbers of compact_stall and compact_fail events have however decreased by 20%, with compact_success still a bit improved, which is good. With benchmark configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP collapse allocations, and only slight improvement in stalls and failures. [akpm@linux-foundation.org: fix warnings] Reported-by: David Rientjes <rientjes@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
53853e2d2b |
mm, compaction: defer each zone individually instead of preferred zone
When direct sync compaction is often unsuccessful, it may become deferred for some time to avoid further useless attempts, both sync and async. Successful high-order allocations un-defer compaction, while further unsuccessful compaction attempts prolong the compaction deferred period. Currently the checking and setting deferred status is performed only on the preferred zone of the allocation that invoked direct compaction. But compaction itself is attempted on all eligible zones in the zonelist, so the behavior is suboptimal and may lead both to scenarios where 1) compaction is attempted uselessly, or 2) where it's not attempted despite good chances of succeeding, as shown on the examples below: 1) A direct compaction with Normal preferred zone failed and set deferred compaction for the Normal zone. Another unrelated direct compaction with DMA32 as preferred zone will attempt to compact DMA32 zone even though the first compaction attempt also included DMA32 zone. In another scenario, compaction with Normal preferred zone failed to compact Normal zone, but succeeded in the DMA32 zone, so it will not defer compaction. In the next attempt, it will try Normal zone which will fail again, instead of skipping Normal zone and trying DMA32 directly. 2) Kswapd will balance DMA32 zone and reset defer status based on watermarks looking good. A direct compaction with preferred Normal zone will skip compaction of all zones including DMA32 because Normal was still deferred. The allocation might have succeeded in DMA32, but won't. This patch makes compaction deferring work on individual zone basis instead of preferred zone. For each zone, it checks compaction_deferred() to decide if the zone should be skipped. If watermarks fail after compacting the zone, defer_compaction() is called. The zone where watermarks passed can still be deferred when the allocation attempt is unsuccessful. When allocation is successful, compaction_defer_reset() is called for the zone containing the allocated page. This approach should approximate calling defer_compaction() only on zones where compaction was attempted and did not yield allocated page. There might be corner cases but that is inevitable as long as the decision to stop compacting dues not guarantee that a page will be allocated. Due to a new COMPACT_DEFERRED return value, some functions relying implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made more accurate. The did_some_progress output parameter of __alloc_pages_direct_compact() is removed completely, as the caller actually does not use it after compaction sets it - it is only considered when direct reclaim sets it. During testing on a two-node machine with a single very small Normal zone on node 1, this patch has improved success rates in stress-highalloc mmtests benchmark. The success here were previously made worse by commit 3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking kswapd") as kswapd was no longer resetting often enough the deferred compaction for the Normal zone, and DMA32 zones on both nodes were thus not considered for compaction. On different machine, success rates were improved with __GFP_NO_KSWAPD allocations. [akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
e0b9daeb45 |
mm, compaction: embed migration mode in compact_control
We're going to want to manipulate the migration mode for compaction in the page allocator, and currently compact_control's sync field is only a bool. Currently, we only do MIGRATE_ASYNC or MIGRATE_SYNC_LIGHT compaction depending on the value of this bool. Convert the bool to enum migrate_mode and pass the migration mode in directly. Later, we'll want to avoid MIGRATE_SYNC_LIGHT for thp allocations in the pagefault patch to avoid unnecessary latency. This also alters compaction triggered from sysfs, either for the entire system or for a node, to force MIGRATE_SYNC. [akpm@linux-foundation.org: fix build] [iamjoonsoo.kim@lge.com: use MIGRATE_SYNC in alloc_contig_range()] Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |