In order to testing filtering and histograms via the trace event
benchmark, record the delta time of the last event as a numeric value
(currently, it just saves it within the string) so that filters and
histograms can use it.
Link: https://lkml.kernel.org/r/20220906225529.213677569@goodmis.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
As said in commit f2c2cbcc35d4 ("powerpc: Use pr_warn instead of
pr_warning"), removing pr_warning so all logging messages use a
consistent <prefix>_warn style. Let's do it.
Link: http://lkml.kernel.org/r/20191018031850.48498-26-wangkefeng.wang@huawei.com
To: linux-kernel@vger.kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Commit e31d28b6ab8f ("trace: Eliminate cond_resched_rcu_qs() in favor
of cond_resched()") substituted cond_resched() for the earlier call
to cond_resched_rcu_qs(). However, the new-age cond_resched() does
not do anything to help RCU-tasks grace periods because (1) RCU-tasks
is only enabled when CONFIG_PREEMPT=y and (2) cond_resched() is a
complete no-op when preemption is enabled. This situation results
in hangs when running the trace benchmarks.
A number of potential fixes were discussed on LKML
(https://lkml.kernel.org/r/20180224151240.0d63a059@vmware.local.home),
including making cond_resched() not be a no-op; making cond_resched()
not be a no-op, but only when running tracing benchmarks; reverting
the aforementioned commit (which works because cond_resched_rcu_qs()
does provide an RCU-tasks quiescent state; and adding a call to the
scheduler/RCU rcu_note_voluntary_context_switch() function. All were
deemed unsatisfactory, either due to added cond_resched() overhead or
due to magic functions inviting cargo culting.
This commit renames cond_resched_rcu_qs() to cond_resched_tasks_rcu_qs(),
which provides a clear hint as to what this function is doing and
why and where it should be used, and then replaces the call to
cond_resched() with cond_resched_tasks_rcu_qs() in the trace benchmark's
benchmark_event_kthread() function.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Nicholas Piggin <npiggin@gmail.com>
Now that cond_resched() also provides RCU quiescent states when
needed, it can be used in place of cond_resched_rcu_qs(). This
commit therefore makes this change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The trace_event benchmark thread runs in kernel space in an infinite loop
while also calling cond_resched() in case anything else wants to schedule
in. Unfortunately, on a PREEMPT kernel, that makes it a nop, in which case,
this will never voluntarily schedule. That will cause synchronize_rcu_tasks()
to forever block on this thread, while it is running.
This is exactly what cond_resched_rcu_qs() is for. Use that instead.
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In case of error, the function kthread_run() returns ERR_PTR() and never
returns NULL. The NULL test in the return value check should be replaced
with IS_ERR().
Link: http://lkml.kernel.org/r/20170112135502.28556-1-weiyj.lk@gmail.com
Cc: stable@vger.kernel.org
Fixes: 81dc9f0e ("tracing: Add tracepoint benchmark tracepoint")
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The trace event start up selftests fails when the trace benchmark is
enabled, because it is disabled during boot. It really only needs to be
disabled before scheduling is set up, as it creates a thread.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Trace events are enabled very early on boot up via the boot command line
parameter. The benchmark tool creates a new thread to perform the trace
event benchmarking. But at start up, it is called before scheduling is set
up and because it creates a new thread before the init thread is created,
this crashes the kernel.
Have the benchmark fail to register when started via the kernel command
line.
Also, since the registering of a tracepoint now can handle failure cases,
return -ENOMEM instead of warning if the thread cannot be created.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Some tracepoints have a registration function that gets enabled when the
tracepoint is enabled. There may be cases that the registraction function
must fail (for example, can't allocate enough memory). In this case, the
tracepoint should also fail to register, otherwise the user would not know
why the tracepoint is not working.
Cc: David Howells <dhowells@redhat.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There's no need to record the time tracepoints take when tracing is off.
This is because:
1) We cannot see these records since ring_buffer record is off at that
moment.
2) If tracing is off and benchmark tracepoint is enabled, the time
tracepoint takes is fewer than the same situation when tracing is on,
since the tracepoints need to be wrote into ring_buffer, it would
take more time. If turn on tracing at this moment, the average and
standard deviation cannot exactly present the time that tracepoints
take to write data into ring_buffer.
Link: http://lkml.kernel.org/r/1445947933-27955-1-git-send-email-zhang.chunyan@linaro.org
Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When calculating the average and standard deviation, it is required that
the count be less than UINT_MAX, otherwise the do_div() will get
undefined results. After 2^32 counts of data, the average and standard
deviation should pretty much be set anyway.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
I've been told that do_div() expects an unsigned 64 bit number, and
is undefined if a signed is used. This gave a warning on the MIPS
build. I'm not sure if a signed 64 bit dividend is really an issue
or not, but the calculation this is used for is standard deviation,
and that isn't going to be negative. We can just convert it to
unsigned and be safe.
Reported-by: David Daney <ddaney.cavm@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Somehow this unused variable warning sneaked past my warnings check
(probably due to it depending on a new config).
kernel/trace/trace_benchmark.c: In function 'trace_do_benchmark':
kernel/trace/trace_benchmark.c:38:6: warning: unused variable 'seedsq' [-Wunused-variable]
u64 seedsq;
^
Link: http://lkml.kernel.org/r/20140604160921.4f4e69c4@canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In order to help benchmark the time tracepoints take, a new config
option is added called CONFIG_TRACEPOINT_BENCHMARK. When this option
is set a tracepoint is created called "benchmark:benchmark_event".
When the tracepoint is enabled, it kicks off a kernel thread that
goes into an infinite loop (calling cond_sched() to let other tasks
run), and calls the tracepoint. Each iteration will record the time
it took to write to the tracepoint and the next iteration that
data will be passed to the tracepoint itself. That is, the tracepoint
will report the time it took to do the previous tracepoint.
The string written to the tracepoint is a static string of 128 bytes
to keep the time the same. The initial string is simply a write of
"START". The second string records the cold cache time of the first
write which is not added to the rest of the calculations.
As it is a tight loop, it benchmarks as hot cache. That's fine because
we care most about hot paths that are probably in cache already.
An example of the output:
START
first=3672 [COLD CACHED]
last=632 first=3672 max=632 min=632 avg=316 std=446 std^2=199712
last=278 first=3672 max=632 min=278 avg=303 std=316 std^2=100337
last=277 first=3672 max=632 min=277 avg=296 std=258 std^2=67064
last=273 first=3672 max=632 min=273 avg=292 std=224 std^2=50411
last=273 first=3672 max=632 min=273 avg=288 std=200 std^2=40389
last=281 first=3672 max=632 min=273 avg=287 std=183 std^2=33666
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>