/* * Generic process-grouping system. * * Based originally on the cpuset system, extracted by Paul Menage * Copyright (C) 2006 Google, Inc * * Notifications support * Copyright (C) 2009 Nokia Corporation * Author: Kirill A. Shutemov * * Copyright notices from the original cpuset code: * -------------------------------------------------- * Copyright (C) 2003 BULL SA. * Copyright (C) 2004-2006 Silicon Graphics, Inc. * * Portions derived from Patrick Mochel's sysfs code. * sysfs is Copyright (c) 2001-3 Patrick Mochel * * 2003-10-10 Written by Simon Derr. * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * --------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "cgroup-internal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ MAX_CFTYPE_NAME + 2) /* let's not notify more than 100 times per second */ #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) /* * To avoid confusing the compiler (and generating warnings) with code * that attempts to access what would be a 0-element array (i.e. sized * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this * constant expression can be added. */ #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) /* * cgroup_mutex is the master lock. Any modification to cgroup or its * hierarchy must be performed while holding it. * * css_set_lock protects task->cgroups pointer, the list of css_set * objects, and the chain of tasks off each css_set. * * These locks are exported if CONFIG_PROVE_RCU so that accessors in * cgroup.h can use them for lockdep annotations. */ DEFINE_MUTEX(cgroup_mutex); DEFINE_SPINLOCK(css_set_lock); #ifdef CONFIG_PROVE_RCU EXPORT_SYMBOL_GPL(cgroup_mutex); EXPORT_SYMBOL_GPL(css_set_lock); #endif DEFINE_SPINLOCK(trace_cgroup_path_lock); char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; static bool cgroup_debug __read_mostly; /* * Protects cgroup_idr and css_idr so that IDs can be released without * grabbing cgroup_mutex. */ static DEFINE_SPINLOCK(cgroup_idr_lock); /* * Protects cgroup_file->kn for !self csses. It synchronizes notifications * against file removal/re-creation across css hiding. */ static DEFINE_SPINLOCK(cgroup_file_kn_lock); DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); #define cgroup_assert_mutex_or_rcu_locked() \ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ !lockdep_is_held(&cgroup_mutex), \ "cgroup_mutex or RCU read lock required"); /* * cgroup destruction makes heavy use of work items and there can be a lot * of concurrent destructions. Use a separate workqueue so that cgroup * destruction work items don't end up filling up max_active of system_wq * which may lead to deadlock. */ static struct workqueue_struct *cgroup_destroy_wq; /* generate an array of cgroup subsystem pointers */ #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, struct cgroup_subsys *cgroup_subsys[] = { #include }; #undef SUBSYS /* array of cgroup subsystem names */ #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, static const char *cgroup_subsys_name[] = { #include }; #undef SUBSYS /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ #define SUBSYS(_x) \ DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); #include #undef SUBSYS #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, static struct static_key_true *cgroup_subsys_enabled_key[] = { #include }; #undef SUBSYS #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, static struct static_key_true *cgroup_subsys_on_dfl_key[] = { #include }; #undef SUBSYS static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); /* the default hierarchy */ struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; EXPORT_SYMBOL_GPL(cgrp_dfl_root); /* * The default hierarchy always exists but is hidden until mounted for the * first time. This is for backward compatibility. */ static bool cgrp_dfl_visible; /* some controllers are not supported in the default hierarchy */ static u16 cgrp_dfl_inhibit_ss_mask; /* some controllers are implicitly enabled on the default hierarchy */ static u16 cgrp_dfl_implicit_ss_mask; /* some controllers can be threaded on the default hierarchy */ static u16 cgrp_dfl_threaded_ss_mask; /* The list of hierarchy roots */ LIST_HEAD(cgroup_roots); static int cgroup_root_count; /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ static DEFINE_IDR(cgroup_hierarchy_idr); /* * Assign a monotonically increasing serial number to csses. It guarantees * cgroups with bigger numbers are newer than those with smaller numbers. * Also, as csses are always appended to the parent's ->children list, it * guarantees that sibling csses are always sorted in the ascending serial * number order on the list. Protected by cgroup_mutex. */ static u64 css_serial_nr_next = 1; /* * These bitmasks identify subsystems with specific features to avoid * having to do iterative checks repeatedly. */ static u16 have_fork_callback __read_mostly; static u16 have_exit_callback __read_mostly; static u16 have_release_callback __read_mostly; static u16 have_canfork_callback __read_mostly; static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); /* cgroup namespace for init task */ struct cgroup_namespace init_cgroup_ns = { .ns.count = REFCOUNT_INIT(2), .user_ns = &init_user_ns, .ns.ops = &cgroupns_operations, .ns.inum = PROC_CGROUP_INIT_INO, .root_cset = &init_css_set, }; static struct file_system_type cgroup2_fs_type; static struct cftype cgroup_base_files[]; static struct cftype cgroup_psi_files[]; /* cgroup optional features */ enum cgroup_opt_features { #ifdef CONFIG_PSI OPT_FEATURE_PRESSURE, #endif OPT_FEATURE_COUNT }; static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { #ifdef CONFIG_PSI "pressure", #endif }; static u16 cgroup_feature_disable_mask __read_mostly; static int cgroup_apply_control(struct cgroup *cgrp); static void cgroup_finalize_control(struct cgroup *cgrp, int ret); static void css_task_iter_skip(struct css_task_iter *it, struct task_struct *task); static int cgroup_destroy_locked(struct cgroup *cgrp); static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, struct cgroup_subsys *ss); static void css_release(struct percpu_ref *ref); static void kill_css(struct cgroup_subsys_state *css); static int cgroup_addrm_files(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype cfts[], bool is_add); #ifdef CONFIG_DEBUG_CGROUP_REF #define CGROUP_REF_FN_ATTRS noinline #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); #include #endif /** * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID * @ssid: subsys ID of interest * * cgroup_subsys_enabled() can only be used with literal subsys names which * is fine for individual subsystems but unsuitable for cgroup core. This * is slower static_key_enabled() based test indexed by @ssid. */ bool cgroup_ssid_enabled(int ssid) { if (!CGROUP_HAS_SUBSYS_CONFIG) return false; return static_key_enabled(cgroup_subsys_enabled_key[ssid]); } /** * cgroup_on_dfl - test whether a cgroup is on the default hierarchy * @cgrp: the cgroup of interest * * The default hierarchy is the v2 interface of cgroup and this function * can be used to test whether a cgroup is on the default hierarchy for * cases where a subsystem should behave differently depending on the * interface version. * * List of changed behaviors: * * - Mount options "noprefix", "xattr", "clone_children", "release_agent" * and "name" are disallowed. * * - When mounting an existing superblock, mount options should match. * * - rename(2) is disallowed. * * - "tasks" is removed. Everything should be at process granularity. Use * "cgroup.procs" instead. * * - "cgroup.procs" is not sorted. pids will be unique unless they got * recycled in-between reads. * * - "release_agent" and "notify_on_release" are removed. Replacement * notification mechanism will be implemented. * * - "cgroup.clone_children" is removed. * * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup * and its descendants contain no task; otherwise, 1. The file also * generates kernfs notification which can be monitored through poll and * [di]notify when the value of the file changes. * * - cpuset: tasks will be kept in empty cpusets when hotplug happens and * take masks of ancestors with non-empty cpus/mems, instead of being * moved to an ancestor. * * - cpuset: a task can be moved into an empty cpuset, and again it takes * masks of ancestors. * * - blkcg: blk-throttle becomes properly hierarchical. */ bool cgroup_on_dfl(const struct cgroup *cgrp) { return cgrp->root == &cgrp_dfl_root; } /* IDR wrappers which synchronize using cgroup_idr_lock */ static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) { int ret; idr_preload(gfp_mask); spin_lock_bh(&cgroup_idr_lock); ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); spin_unlock_bh(&cgroup_idr_lock); idr_preload_end(); return ret; } static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) { void *ret; spin_lock_bh(&cgroup_idr_lock); ret = idr_replace(idr, ptr, id); spin_unlock_bh(&cgroup_idr_lock); return ret; } static void cgroup_idr_remove(struct idr *idr, int id) { spin_lock_bh(&cgroup_idr_lock); idr_remove(idr, id); spin_unlock_bh(&cgroup_idr_lock); } static bool cgroup_has_tasks(struct cgroup *cgrp) { return cgrp->nr_populated_csets; } static bool cgroup_is_threaded(struct cgroup *cgrp) { return cgrp->dom_cgrp != cgrp; } /* can @cgrp host both domain and threaded children? */ static bool cgroup_is_mixable(struct cgroup *cgrp) { /* * Root isn't under domain level resource control exempting it from * the no-internal-process constraint, so it can serve as a thread * root and a parent of resource domains at the same time. */ return !cgroup_parent(cgrp); } /* can @cgrp become a thread root? Should always be true for a thread root */ static bool cgroup_can_be_thread_root(struct cgroup *cgrp) { /* mixables don't care */ if (cgroup_is_mixable(cgrp)) return true; /* domain roots can't be nested under threaded */ if (cgroup_is_threaded(cgrp)) return false; /* can only have either domain or threaded children */ if (cgrp->nr_populated_domain_children) return false; /* and no domain controllers can be enabled */ if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) return false; return true; } /* is @cgrp root of a threaded subtree? */ static bool cgroup_is_thread_root(struct cgroup *cgrp) { /* thread root should be a domain */ if (cgroup_is_threaded(cgrp)) return false; /* a domain w/ threaded children is a thread root */ if (cgrp->nr_threaded_children) return true; /* * A domain which has tasks and explicit threaded controllers * enabled is a thread root. */ if (cgroup_has_tasks(cgrp) && (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) return true; return false; } /* a domain which isn't connected to the root w/o brekage can't be used */ static bool cgroup_is_valid_domain(struct cgroup *cgrp) { /* the cgroup itself can be a thread root */ if (cgroup_is_threaded(cgrp)) return false; /* but the ancestors can't be unless mixable */ while ((cgrp = cgroup_parent(cgrp))) { if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) return false; if (cgroup_is_threaded(cgrp)) return false; } return true; } /* subsystems visibly enabled on a cgroup */ static u16 cgroup_control(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); u16 root_ss_mask = cgrp->root->subsys_mask; if (parent) { u16 ss_mask = parent->subtree_control; /* threaded cgroups can only have threaded controllers */ if (cgroup_is_threaded(cgrp)) ss_mask &= cgrp_dfl_threaded_ss_mask; return ss_mask; } if (cgroup_on_dfl(cgrp)) root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | cgrp_dfl_implicit_ss_mask); return root_ss_mask; } /* subsystems enabled on a cgroup */ static u16 cgroup_ss_mask(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); if (parent) { u16 ss_mask = parent->subtree_ss_mask; /* threaded cgroups can only have threaded controllers */ if (cgroup_is_threaded(cgrp)) ss_mask &= cgrp_dfl_threaded_ss_mask; return ss_mask; } return cgrp->root->subsys_mask; } /** * cgroup_css - obtain a cgroup's css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns @cgrp->self) * * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This * function must be called either under cgroup_mutex or rcu_read_lock() and * the caller is responsible for pinning the returned css if it wants to * keep accessing it outside the said locks. This function may return * %NULL if @cgrp doesn't have @subsys_id enabled. */ static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { if (CGROUP_HAS_SUBSYS_CONFIG && ss) return rcu_dereference_check(cgrp->subsys[ss->id], lockdep_is_held(&cgroup_mutex)); else return &cgrp->self; } /** * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns @cgrp->self) * * Similar to cgroup_css() but returns the effective css, which is defined * as the matching css of the nearest ancestor including self which has @ss * enabled. If @ss is associated with the hierarchy @cgrp is on, this * function is guaranteed to return non-NULL css. */ static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, struct cgroup_subsys *ss) { lockdep_assert_held(&cgroup_mutex); if (!ss) return &cgrp->self; /* * This function is used while updating css associations and thus * can't test the csses directly. Test ss_mask. */ while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { cgrp = cgroup_parent(cgrp); if (!cgrp) return NULL; } return cgroup_css(cgrp, ss); } /** * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest * * Find and get the effective css of @cgrp for @ss. The effective css is * defined as the matching css of the nearest ancestor including self which * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, * the root css is returned, so this function always returns a valid css. * * The returned css is not guaranteed to be online, and therefore it is the * callers responsibility to try get a reference for it. */ struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; if (!CGROUP_HAS_SUBSYS_CONFIG) return NULL; do { css = cgroup_css(cgrp, ss); if (css) return css; cgrp = cgroup_parent(cgrp); } while (cgrp); return init_css_set.subsys[ss->id]; } /** * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest * * Find and get the effective css of @cgrp for @ss. The effective css is * defined as the matching css of the nearest ancestor including self which * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, * the root css is returned, so this function always returns a valid css. * The returned css must be put using css_put(). */ struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; if (!CGROUP_HAS_SUBSYS_CONFIG) return NULL; rcu_read_lock(); do { css = cgroup_css(cgrp, ss); if (css && css_tryget_online(css)) goto out_unlock; cgrp = cgroup_parent(cgrp); } while (cgrp); css = init_css_set.subsys[ss->id]; css_get(css); out_unlock: rcu_read_unlock(); return css; } EXPORT_SYMBOL_GPL(cgroup_get_e_css); static void cgroup_get_live(struct cgroup *cgrp) { WARN_ON_ONCE(cgroup_is_dead(cgrp)); cgroup_get(cgrp); } /** * __cgroup_task_count - count the number of tasks in a cgroup. The caller * is responsible for taking the css_set_lock. * @cgrp: the cgroup in question */ int __cgroup_task_count(const struct cgroup *cgrp) { int count = 0; struct cgrp_cset_link *link; lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cgrp->cset_links, cset_link) count += link->cset->nr_tasks; return count; } /** * cgroup_task_count - count the number of tasks in a cgroup. * @cgrp: the cgroup in question */ int cgroup_task_count(const struct cgroup *cgrp) { int count; spin_lock_irq(&css_set_lock); count = __cgroup_task_count(cgrp); spin_unlock_irq(&css_set_lock); return count; } struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) { struct cgroup *cgrp = of->kn->parent->priv; struct cftype *cft = of_cft(of); /* * This is open and unprotected implementation of cgroup_css(). * seq_css() is only called from a kernfs file operation which has * an active reference on the file. Because all the subsystem * files are drained before a css is disassociated with a cgroup, * the matching css from the cgroup's subsys table is guaranteed to * be and stay valid until the enclosing operation is complete. */ if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); else return &cgrp->self; } EXPORT_SYMBOL_GPL(of_css); /** * for_each_css - iterate all css's of a cgroup * @css: the iteration cursor * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end * @cgrp: the target cgroup to iterate css's of * * Should be called under cgroup_mutex. */ #define for_each_css(css, ssid, cgrp) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ if (!((css) = rcu_dereference_check( \ (cgrp)->subsys[(ssid)], \ lockdep_is_held(&cgroup_mutex)))) { } \ else /** * do_each_subsys_mask - filter for_each_subsys with a bitmask * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end * @ss_mask: the bitmask * * The block will only run for cases where the ssid-th bit (1 << ssid) of * @ss_mask is set. */ #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ unsigned long __ss_mask = (ss_mask); \ if (!CGROUP_HAS_SUBSYS_CONFIG) { \ (ssid) = 0; \ break; \ } \ for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ (ss) = cgroup_subsys[ssid]; \ { #define while_each_subsys_mask() \ } \ } \ } while (false) /* iterate over child cgrps, lock should be held throughout iteration */ #define cgroup_for_each_live_child(child, cgrp) \ list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ if (({ lockdep_assert_held(&cgroup_mutex); \ cgroup_is_dead(child); })) \ ; \ else /* walk live descendants in pre order */ #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ if (({ lockdep_assert_held(&cgroup_mutex); \ (dsct) = (d_css)->cgroup; \ cgroup_is_dead(dsct); })) \ ; \ else /* walk live descendants in postorder */ #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ if (({ lockdep_assert_held(&cgroup_mutex); \ (dsct) = (d_css)->cgroup; \ cgroup_is_dead(dsct); })) \ ; \ else /* * The default css_set - used by init and its children prior to any * hierarchies being mounted. It contains a pointer to the root state * for each subsystem. Also used to anchor the list of css_sets. Not * reference-counted, to improve performance when child cgroups * haven't been created. */ struct css_set init_css_set = { .refcount = REFCOUNT_INIT(1), .dom_cset = &init_css_set, .tasks = LIST_HEAD_INIT(init_css_set.tasks), .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), /* * The following field is re-initialized when this cset gets linked * in cgroup_init(). However, let's initialize the field * statically too so that the default cgroup can be accessed safely * early during boot. */ .dfl_cgrp = &cgrp_dfl_root.cgrp, }; static int css_set_count = 1; /* 1 for init_css_set */ static bool css_set_threaded(struct css_set *cset) { return cset->dom_cset != cset; } /** * css_set_populated - does a css_set contain any tasks? * @cset: target css_set * * css_set_populated() should be the same as !!cset->nr_tasks at steady * state. However, css_set_populated() can be called while a task is being * added to or removed from the linked list before the nr_tasks is * properly updated. Hence, we can't just look at ->nr_tasks here. */ static bool css_set_populated(struct css_set *cset) { lockdep_assert_held(&css_set_lock); return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); } /** * cgroup_update_populated - update the populated count of a cgroup * @cgrp: the target cgroup * @populated: inc or dec populated count * * One of the css_sets associated with @cgrp is either getting its first * task or losing the last. Update @cgrp->nr_populated_* accordingly. The * count is propagated towards root so that a given cgroup's * nr_populated_children is zero iff none of its descendants contain any * tasks. * * @cgrp's interface file "cgroup.populated" is zero if both * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and * 1 otherwise. When the sum changes from or to zero, userland is notified * that the content of the interface file has changed. This can be used to * detect when @cgrp and its descendants become populated or empty. */ static void cgroup_update_populated(struct cgroup *cgrp, bool populated) { struct cgroup *child = NULL; int adj = populated ? 1 : -1; lockdep_assert_held(&css_set_lock); do { bool was_populated = cgroup_is_populated(cgrp); if (!child) { cgrp->nr_populated_csets += adj; } else { if (cgroup_is_threaded(child)) cgrp->nr_populated_threaded_children += adj; else cgrp->nr_populated_domain_children += adj; } if (was_populated == cgroup_is_populated(cgrp)) break; cgroup1_check_for_release(cgrp); TRACE_CGROUP_PATH(notify_populated, cgrp, cgroup_is_populated(cgrp)); cgroup_file_notify(&cgrp->events_file); child = cgrp; cgrp = cgroup_parent(cgrp); } while (cgrp); } /** * css_set_update_populated - update populated state of a css_set * @cset: target css_set * @populated: whether @cset is populated or depopulated * * @cset is either getting the first task or losing the last. Update the * populated counters of all associated cgroups accordingly. */ static void css_set_update_populated(struct css_set *cset, bool populated) { struct cgrp_cset_link *link; lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) cgroup_update_populated(link->cgrp, populated); } /* * @task is leaving, advance task iterators which are pointing to it so * that they can resume at the next position. Advancing an iterator might * remove it from the list, use safe walk. See css_task_iter_skip() for * details. */ static void css_set_skip_task_iters(struct css_set *cset, struct task_struct *task) { struct css_task_iter *it, *pos; list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) css_task_iter_skip(it, task); } /** * css_set_move_task - move a task from one css_set to another * @task: task being moved * @from_cset: css_set @task currently belongs to (may be NULL) * @to_cset: new css_set @task is being moved to (may be NULL) * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks * * Move @task from @from_cset to @to_cset. If @task didn't belong to any * css_set, @from_cset can be NULL. If @task is being disassociated * instead of moved, @to_cset can be NULL. * * This function automatically handles populated counter updates and * css_task_iter adjustments but the caller is responsible for managing * @from_cset and @to_cset's reference counts. */ static void css_set_move_task(struct task_struct *task, struct css_set *from_cset, struct css_set *to_cset, bool use_mg_tasks) { lockdep_assert_held(&css_set_lock); if (to_cset && !css_set_populated(to_cset)) css_set_update_populated(to_cset, true); if (from_cset) { WARN_ON_ONCE(list_empty(&task->cg_list)); css_set_skip_task_iters(from_cset, task); list_del_init(&task->cg_list); if (!css_set_populated(from_cset)) css_set_update_populated(from_cset, false); } else { WARN_ON_ONCE(!list_empty(&task->cg_list)); } if (to_cset) { /* * We are synchronized through cgroup_threadgroup_rwsem * against PF_EXITING setting such that we can't race * against cgroup_exit()/cgroup_free() dropping the css_set. */ WARN_ON_ONCE(task->flags & PF_EXITING); cgroup_move_task(task, to_cset); list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : &to_cset->tasks); } } /* * hash table for cgroup groups. This improves the performance to find * an existing css_set. This hash doesn't (currently) take into * account cgroups in empty hierarchies. */ #define CSS_SET_HASH_BITS 7 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); static unsigned long css_set_hash(struct cgroup_subsys_state **css) { unsigned long key = 0UL; struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) key += (unsigned long)css[i]; key = (key >> 16) ^ key; return key; } void put_css_set_locked(struct css_set *cset) { struct cgrp_cset_link *link, *tmp_link; struct cgroup_subsys *ss; int ssid; lockdep_assert_held(&css_set_lock); if (!refcount_dec_and_test(&cset->refcount)) return; WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); /* This css_set is dead. Unlink it and release cgroup and css refs */ for_each_subsys(ss, ssid) { list_del(&cset->e_cset_node[ssid]); css_put(cset->subsys[ssid]); } hash_del(&cset->hlist); css_set_count--; list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { list_del(&link->cset_link); list_del(&link->cgrp_link); if (cgroup_parent(link->cgrp)) cgroup_put(link->cgrp); kfree(link); } if (css_set_threaded(cset)) { list_del(&cset->threaded_csets_node); put_css_set_locked(cset->dom_cset); } kfree_rcu(cset, rcu_head); } /** * compare_css_sets - helper function for find_existing_css_set(). * @cset: candidate css_set being tested * @old_cset: existing css_set for a task * @new_cgrp: cgroup that's being entered by the task * @template: desired set of css pointers in css_set (pre-calculated) * * Returns true if "cset" matches "old_cset" except for the hierarchy * which "new_cgrp" belongs to, for which it should match "new_cgrp". */ static bool compare_css_sets(struct css_set *cset, struct css_set *old_cset, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { struct cgroup *new_dfl_cgrp; struct list_head *l1, *l2; /* * On the default hierarchy, there can be csets which are * associated with the same set of cgroups but different csses. * Let's first ensure that csses match. */ if (memcmp(template, cset->subsys, sizeof(cset->subsys))) return false; /* @cset's domain should match the default cgroup's */ if (cgroup_on_dfl(new_cgrp)) new_dfl_cgrp = new_cgrp; else new_dfl_cgrp = old_cset->dfl_cgrp; if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) return false; /* * Compare cgroup pointers in order to distinguish between * different cgroups in hierarchies. As different cgroups may * share the same effective css, this comparison is always * necessary. */ l1 = &cset->cgrp_links; l2 = &old_cset->cgrp_links; while (1) { struct cgrp_cset_link *link1, *link2; struct cgroup *cgrp1, *cgrp2; l1 = l1->next; l2 = l2->next; /* See if we reached the end - both lists are equal length. */ if (l1 == &cset->cgrp_links) { BUG_ON(l2 != &old_cset->cgrp_links); break; } else { BUG_ON(l2 == &old_cset->cgrp_links); } /* Locate the cgroups associated with these links. */ link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); cgrp1 = link1->cgrp; cgrp2 = link2->cgrp; /* Hierarchies should be linked in the same order. */ BUG_ON(cgrp1->root != cgrp2->root); /* * If this hierarchy is the hierarchy of the cgroup * that's changing, then we need to check that this * css_set points to the new cgroup; if it's any other * hierarchy, then this css_set should point to the * same cgroup as the old css_set. */ if (cgrp1->root == new_cgrp->root) { if (cgrp1 != new_cgrp) return false; } else { if (cgrp1 != cgrp2) return false; } } return true; } /** * find_existing_css_set - init css array and find the matching css_set * @old_cset: the css_set that we're using before the cgroup transition * @cgrp: the cgroup that we're moving into * @template: out param for the new set of csses, should be clear on entry */ static struct css_set *find_existing_css_set(struct css_set *old_cset, struct cgroup *cgrp, struct cgroup_subsys_state **template) { struct cgroup_root *root = cgrp->root; struct cgroup_subsys *ss; struct css_set *cset; unsigned long key; int i; /* * Build the set of subsystem state objects that we want to see in the * new css_set. While subsystems can change globally, the entries here * won't change, so no need for locking. */ for_each_subsys(ss, i) { if (root->subsys_mask & (1UL << i)) { /* * @ss is in this hierarchy, so we want the * effective css from @cgrp. */ template[i] = cgroup_e_css_by_mask(cgrp, ss); } else { /* * @ss is not in this hierarchy, so we don't want * to change the css. */ template[i] = old_cset->subsys[i]; } } key = css_set_hash(template); hash_for_each_possible(css_set_table, cset, hlist, key) { if (!compare_css_sets(cset, old_cset, cgrp, template)) continue; /* This css_set matches what we need */ return cset; } /* No existing cgroup group matched */ return NULL; } static void free_cgrp_cset_links(struct list_head *links_to_free) { struct cgrp_cset_link *link, *tmp_link; list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { list_del(&link->cset_link); kfree(link); } } /** * allocate_cgrp_cset_links - allocate cgrp_cset_links * @count: the number of links to allocate * @tmp_links: list_head the allocated links are put on * * Allocate @count cgrp_cset_link structures and chain them on @tmp_links * through ->cset_link. Returns 0 on success or -errno. */ static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) { struct cgrp_cset_link *link; int i; INIT_LIST_HEAD(tmp_links); for (i = 0; i < count; i++) { link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) { free_cgrp_cset_links(tmp_links); return -ENOMEM; } list_add(&link->cset_link, tmp_links); } return 0; } /** * link_css_set - a helper function to link a css_set to a cgroup * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() * @cset: the css_set to be linked * @cgrp: the destination cgroup */ static void link_css_set(struct list_head *tmp_links, struct css_set *cset, struct cgroup *cgrp) { struct cgrp_cset_link *link; BUG_ON(list_empty(tmp_links)); if (cgroup_on_dfl(cgrp)) cset->dfl_cgrp = cgrp; link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); link->cset = cset; link->cgrp = cgrp; /* * Always add links to the tail of the lists so that the lists are * in chronological order. */ list_move_tail(&link->cset_link, &cgrp->cset_links); list_add_tail(&link->cgrp_link, &cset->cgrp_links); if (cgroup_parent(cgrp)) cgroup_get_live(cgrp); } /** * find_css_set - return a new css_set with one cgroup updated * @old_cset: the baseline css_set * @cgrp: the cgroup to be updated * * Return a new css_set that's equivalent to @old_cset, but with @cgrp * substituted into the appropriate hierarchy. */ static struct css_set *find_css_set(struct css_set *old_cset, struct cgroup *cgrp) { struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; struct css_set *cset; struct list_head tmp_links; struct cgrp_cset_link *link; struct cgroup_subsys *ss; unsigned long key; int ssid; lockdep_assert_held(&cgroup_mutex); /* First see if we already have a cgroup group that matches * the desired set */ spin_lock_irq(&css_set_lock); cset = find_existing_css_set(old_cset, cgrp, template); if (cset) get_css_set(cset); spin_unlock_irq(&css_set_lock); if (cset) return cset; cset = kzalloc(sizeof(*cset), GFP_KERNEL); if (!cset) return NULL; /* Allocate all the cgrp_cset_link objects that we'll need */ if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { kfree(cset); return NULL; } refcount_set(&cset->refcount, 1); cset->dom_cset = cset; INIT_LIST_HEAD(&cset->tasks); INIT_LIST_HEAD(&cset->mg_tasks); INIT_LIST_HEAD(&cset->dying_tasks); INIT_LIST_HEAD(&cset->task_iters); INIT_LIST_HEAD(&cset->threaded_csets); INIT_HLIST_NODE(&cset->hlist); INIT_LIST_HEAD(&cset->cgrp_links); INIT_LIST_HEAD(&cset->mg_src_preload_node); INIT_LIST_HEAD(&cset->mg_dst_preload_node); INIT_LIST_HEAD(&cset->mg_node); /* Copy the set of subsystem state objects generated in * find_existing_css_set() */ memcpy(cset->subsys, template, sizeof(cset->subsys)); spin_lock_irq(&css_set_lock); /* Add reference counts and links from the new css_set. */ list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == cgrp->root) c = cgrp; link_css_set(&tmp_links, cset, c); } BUG_ON(!list_empty(&tmp_links)); css_set_count++; /* Add @cset to the hash table */ key = css_set_hash(cset->subsys); hash_add(css_set_table, &cset->hlist, key); for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cset->subsys[ssid]; list_add_tail(&cset->e_cset_node[ssid], &css->cgroup->e_csets[ssid]); css_get(css); } spin_unlock_irq(&css_set_lock); /* * If @cset should be threaded, look up the matching dom_cset and * link them up. We first fully initialize @cset then look for the * dom_cset. It's simpler this way and safe as @cset is guaranteed * to stay empty until we return. */ if (cgroup_is_threaded(cset->dfl_cgrp)) { struct css_set *dcset; dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); if (!dcset) { put_css_set(cset); return NULL; } spin_lock_irq(&css_set_lock); cset->dom_cset = dcset; list_add_tail(&cset->threaded_csets_node, &dcset->threaded_csets); spin_unlock_irq(&css_set_lock); } return cset; } struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) { struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; return root_cgrp->root; } void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) { bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ if (favor && !favoring) { rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); root->flags |= CGRP_ROOT_FAVOR_DYNMODS; } else if (!favor && favoring) { rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; } } static int cgroup_init_root_id(struct cgroup_root *root) { int id; lockdep_assert_held(&cgroup_mutex); id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); if (id < 0) return id; root->hierarchy_id = id; return 0; } static void cgroup_exit_root_id(struct cgroup_root *root) { lockdep_assert_held(&cgroup_mutex); idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); } void cgroup_free_root(struct cgroup_root *root) { kfree_rcu(root, rcu); } static void cgroup_destroy_root(struct cgroup_root *root) { struct cgroup *cgrp = &root->cgrp; struct cgrp_cset_link *link, *tmp_link; trace_cgroup_destroy_root(root); cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); BUG_ON(atomic_read(&root->nr_cgrps)); BUG_ON(!list_empty(&cgrp->self.children)); /* Rebind all subsystems back to the default hierarchy */ WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); /* * Release all the links from cset_links to this hierarchy's * root cgroup */ spin_lock_irq(&css_set_lock); list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { list_del(&link->cset_link); list_del(&link->cgrp_link); kfree(link); } spin_unlock_irq(&css_set_lock); WARN_ON_ONCE(list_empty(&root->root_list)); list_del_rcu(&root->root_list); cgroup_root_count--; if (!have_favordynmods) cgroup_favor_dynmods(root, false); cgroup_exit_root_id(root); cgroup_unlock(); cgroup_rstat_exit(cgrp); kernfs_destroy_root(root->kf_root); cgroup_free_root(root); } /* * Returned cgroup is without refcount but it's valid as long as cset pins it. */ static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, struct cgroup_root *root) { struct cgroup *res_cgroup = NULL; if (cset == &init_css_set) { res_cgroup = &root->cgrp; } else if (root == &cgrp_dfl_root) { res_cgroup = cset->dfl_cgrp; } else { struct cgrp_cset_link *link; lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == root) { res_cgroup = c; break; } } } /* * If cgroup_mutex is not held, the cgrp_cset_link will be freed * before we remove the cgroup root from the root_list. Consequently, * when accessing a cgroup root, the cset_link may have already been * freed, resulting in a NULL res_cgroup. However, by holding the * cgroup_mutex, we ensure that res_cgroup can't be NULL. * If we don't hold cgroup_mutex in the caller, we must do the NULL * check. */ return res_cgroup; } /* * look up cgroup associated with current task's cgroup namespace on the * specified hierarchy */ static struct cgroup * current_cgns_cgroup_from_root(struct cgroup_root *root) { struct cgroup *res = NULL; struct css_set *cset; lockdep_assert_held(&css_set_lock); rcu_read_lock(); cset = current->nsproxy->cgroup_ns->root_cset; res = __cset_cgroup_from_root(cset, root); rcu_read_unlock(); /* * The namespace_sem is held by current, so the root cgroup can't * be umounted. Therefore, we can ensure that the res is non-NULL. */ WARN_ON_ONCE(!res); return res; } /* * Look up cgroup associated with current task's cgroup namespace on the default * hierarchy. * * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu * pointers. * - css_set_lock is not needed because we just read cset->dfl_cgrp. * - As a bonus returned cgrp is pinned with the current because it cannot * switch cgroup_ns asynchronously. */ static struct cgroup *current_cgns_cgroup_dfl(void) { struct css_set *cset; if (current->nsproxy) { cset = current->nsproxy->cgroup_ns->root_cset; return __cset_cgroup_from_root(cset, &cgrp_dfl_root); } else { /* * NOTE: This function may be called from bpf_cgroup_from_id() * on a task which has already passed exit_task_namespaces() and * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all * cgroups visible for lookups. */ return &cgrp_dfl_root.cgrp; } } /* look up cgroup associated with given css_set on the specified hierarchy */ static struct cgroup *cset_cgroup_from_root(struct css_set *cset, struct cgroup_root *root) { lockdep_assert_held(&css_set_lock); return __cset_cgroup_from_root(cset, root); } /* * Return the cgroup for "task" from the given hierarchy. Must be * called with css_set_lock held to prevent task's groups from being modified. * Must be called with either cgroup_mutex or rcu read lock to prevent the * cgroup root from being destroyed. */ struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup_root *root) { /* * No need to lock the task - since we hold css_set_lock the * task can't change groups. */ return cset_cgroup_from_root(task_css_set(task), root); } /* * A task must hold cgroup_mutex to modify cgroups. * * Any task can increment and decrement the count field without lock. * So in general, code holding cgroup_mutex can't rely on the count * field not changing. However, if the count goes to zero, then only * cgroup_attach_task() can increment it again. Because a count of zero * means that no tasks are currently attached, therefore there is no * way a task attached to that cgroup can fork (the other way to * increment the count). So code holding cgroup_mutex can safely * assume that if the count is zero, it will stay zero. Similarly, if * a task holds cgroup_mutex on a cgroup with zero count, it * knows that the cgroup won't be removed, as cgroup_rmdir() * needs that mutex. * * A cgroup can only be deleted if both its 'count' of using tasks * is zero, and its list of 'children' cgroups is empty. Since all * tasks in the system use _some_ cgroup, and since there is always at * least one task in the system (init, pid == 1), therefore, root cgroup * always has either children cgroups and/or using tasks. So we don't * need a special hack to ensure that root cgroup cannot be deleted. * * P.S. One more locking exception. RCU is used to guard the * update of a tasks cgroup pointer by cgroup_attach_task() */ static struct kernfs_syscall_ops cgroup_kf_syscall_ops; static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, char *buf) { struct cgroup_subsys *ss = cft->ss; if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, cft->name); } else { strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); } return buf; } /** * cgroup_file_mode - deduce file mode of a control file * @cft: the control file in question * * S_IRUGO for read, S_IWUSR for write. */ static umode_t cgroup_file_mode(const struct cftype *cft) { umode_t mode = 0; if (cft->read_u64 || cft->read_s64 || cft->seq_show) mode |= S_IRUGO; if (cft->write_u64 || cft->write_s64 || cft->write) { if (cft->flags & CFTYPE_WORLD_WRITABLE) mode |= S_IWUGO; else mode |= S_IWUSR; } return mode; } /** * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask * @subtree_control: the new subtree_control mask to consider * @this_ss_mask: available subsystems * * On the default hierarchy, a subsystem may request other subsystems to be * enabled together through its ->depends_on mask. In such cases, more * subsystems than specified in "cgroup.subtree_control" may be enabled. * * This function calculates which subsystems need to be enabled if * @subtree_control is to be applied while restricted to @this_ss_mask. */ static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) { u16 cur_ss_mask = subtree_control; struct cgroup_subsys *ss; int ssid; lockdep_assert_held(&cgroup_mutex); cur_ss_mask |= cgrp_dfl_implicit_ss_mask; while (true) { u16 new_ss_mask = cur_ss_mask; do_each_subsys_mask(ss, ssid, cur_ss_mask) { new_ss_mask |= ss->depends_on; } while_each_subsys_mask(); /* * Mask out subsystems which aren't available. This can * happen only if some depended-upon subsystems were bound * to non-default hierarchies. */ new_ss_mask &= this_ss_mask; if (new_ss_mask == cur_ss_mask) break; cur_ss_mask = new_ss_mask; } return cur_ss_mask; } /** * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods * @kn: the kernfs_node being serviced * * This helper undoes cgroup_kn_lock_live() and should be invoked before * the method finishes if locking succeeded. Note that once this function * returns the cgroup returned by cgroup_kn_lock_live() may become * inaccessible any time. If the caller intends to continue to access the * cgroup, it should pin it before invoking this function. */ void cgroup_kn_unlock(struct kernfs_node *kn) { struct cgroup *cgrp; if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else cgrp = kn->parent->priv; cgroup_unlock(); kernfs_unbreak_active_protection(kn); cgroup_put(cgrp); } /** * cgroup_kn_lock_live - locking helper for cgroup kernfs methods * @kn: the kernfs_node being serviced * @drain_offline: perform offline draining on the cgroup * * This helper is to be used by a cgroup kernfs method currently servicing * @kn. It breaks the active protection, performs cgroup locking and * verifies that the associated cgroup is alive. Returns the cgroup if * alive; otherwise, %NULL. A successful return should be undone by a * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the * cgroup is drained of offlining csses before return. * * Any cgroup kernfs method implementation which requires locking the * associated cgroup should use this helper. It avoids nesting cgroup * locking under kernfs active protection and allows all kernfs operations * including self-removal. */ struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) { struct cgroup *cgrp; if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else cgrp = kn->parent->priv; /* * We're gonna grab cgroup_mutex which nests outside kernfs * active_ref. cgroup liveliness check alone provides enough * protection against removal. Ensure @cgrp stays accessible and * break the active_ref protection. */ if (!cgroup_tryget(cgrp)) return NULL; kernfs_break_active_protection(kn); if (drain_offline) cgroup_lock_and_drain_offline(cgrp); else cgroup_lock(); if (!cgroup_is_dead(cgrp)) return cgrp; cgroup_kn_unlock(kn); return NULL; } static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) { char name[CGROUP_FILE_NAME_MAX]; lockdep_assert_held(&cgroup_mutex); if (cft->file_offset) { struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); struct cgroup_file *cfile = (void *)css + cft->file_offset; spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = NULL; spin_unlock_irq(&cgroup_file_kn_lock); del_timer_sync(&cfile->notify_timer); } kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); } /** * css_clear_dir - remove subsys files in a cgroup directory * @css: target css */ static void css_clear_dir(struct cgroup_subsys_state *css) { struct cgroup *cgrp = css->cgroup; struct cftype *cfts; if (!(css->flags & CSS_VISIBLE)) return; css->flags &= ~CSS_VISIBLE; if (!css->ss) { if (cgroup_on_dfl(cgrp)) { cgroup_addrm_files(css, cgrp, cgroup_base_files, false); if (cgroup_psi_enabled()) cgroup_addrm_files(css, cgrp, cgroup_psi_files, false); } else { cgroup_addrm_files(css, cgrp, cgroup1_base_files, false); } } else { list_for_each_entry(cfts, &css->ss->cfts, node) cgroup_addrm_files(css, cgrp, cfts, false); } } /** * css_populate_dir - create subsys files in a cgroup directory * @css: target css * * On failure, no file is added. */ static int css_populate_dir(struct cgroup_subsys_state *css) { struct cgroup *cgrp = css->cgroup; struct cftype *cfts, *failed_cfts; int ret; if (css->flags & CSS_VISIBLE) return 0; if (!css->ss) { if (cgroup_on_dfl(cgrp)) { ret = cgroup_addrm_files(css, cgrp, cgroup_base_files, true); if (ret < 0) return ret; if (cgroup_psi_enabled()) { ret = cgroup_addrm_files(css, cgrp, cgroup_psi_files, true); if (ret < 0) { cgroup_addrm_files(css, cgrp, cgroup_base_files, false); return ret; } } } else { ret = cgroup_addrm_files(css, cgrp, cgroup1_base_files, true); if (ret < 0) return ret; } } else { list_for_each_entry(cfts, &css->ss->cfts, node) { ret = cgroup_addrm_files(css, cgrp, cfts, true); if (ret < 0) { failed_cfts = cfts; goto err; } } } css->flags |= CSS_VISIBLE; return 0; err: list_for_each_entry(cfts, &css->ss->cfts, node) { if (cfts == failed_cfts) break; cgroup_addrm_files(css, cgrp, cfts, false); } return ret; } int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) { struct cgroup *dcgrp = &dst_root->cgrp; struct cgroup_subsys *ss; int ssid, ret; u16 dfl_disable_ss_mask = 0; lockdep_assert_held(&cgroup_mutex); do_each_subsys_mask(ss, ssid, ss_mask) { /* * If @ss has non-root csses attached to it, can't move. * If @ss is an implicit controller, it is exempt from this * rule and can be stolen. */ if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && !ss->implicit_on_dfl) return -EBUSY; /* can't move between two non-dummy roots either */ if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) return -EBUSY; /* * Collect ssid's that need to be disabled from default * hierarchy. */ if (ss->root == &cgrp_dfl_root) dfl_disable_ss_mask |= 1 << ssid; } while_each_subsys_mask(); if (dfl_disable_ss_mask) { struct cgroup *scgrp = &cgrp_dfl_root.cgrp; /* * Controllers from default hierarchy that need to be rebound * are all disabled together in one go. */ cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; WARN_ON(cgroup_apply_control(scgrp)); cgroup_finalize_control(scgrp, 0); } do_each_subsys_mask(ss, ssid, ss_mask) { struct cgroup_root *src_root = ss->root; struct cgroup *scgrp = &src_root->cgrp; struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); struct css_set *cset, *cset_pos; struct css_task_iter *it; WARN_ON(!css || cgroup_css(dcgrp, ss)); if (src_root != &cgrp_dfl_root) { /* disable from the source */ src_root->subsys_mask &= ~(1 << ssid); WARN_ON(cgroup_apply_control(scgrp)); cgroup_finalize_control(scgrp, 0); } /* rebind */ RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); rcu_assign_pointer(dcgrp->subsys[ssid], css); ss->root = dst_root; spin_lock_irq(&css_set_lock); css->cgroup = dcgrp; WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], e_cset_node[ss->id]) { list_move_tail(&cset->e_cset_node[ss->id], &dcgrp->e_csets[ss->id]); /* * all css_sets of scgrp together in same order to dcgrp, * patch in-flight iterators to preserve correct iteration. * since the iterator is always advanced right away and * finished when it->cset_pos meets it->cset_head, so only * update it->cset_head is enough here. */ list_for_each_entry(it, &cset->task_iters, iters_node) if (it->cset_head == &scgrp->e_csets[ss->id]) it->cset_head = &dcgrp->e_csets[ss->id]; } spin_unlock_irq(&css_set_lock); if (ss->css_rstat_flush) { list_del_rcu(&css->rstat_css_node); synchronize_rcu(); list_add_rcu(&css->rstat_css_node, &dcgrp->rstat_css_list); } /* default hierarchy doesn't enable controllers by default */ dst_root->subsys_mask |= 1 << ssid; if (dst_root == &cgrp_dfl_root) { static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); } else { dcgrp->subtree_control |= 1 << ssid; static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); } ret = cgroup_apply_control(dcgrp); if (ret) pr_warn("partial failure to rebind %s controller (err=%d)\n", ss->name, ret); if (ss->bind) ss->bind(css); } while_each_subsys_mask(); kernfs_activate(dcgrp->kn); return 0; } int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, struct kernfs_root *kf_root) { int len = 0; char *buf = NULL; struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); struct cgroup *ns_cgroup; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) return -ENOMEM; spin_lock_irq(&css_set_lock); ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); spin_unlock_irq(&css_set_lock); if (len == -E2BIG) len = -ERANGE; else if (len > 0) { seq_escape(sf, buf, " \t\n\\"); len = 0; } kfree(buf); return len; } enum cgroup2_param { Opt_nsdelegate, Opt_favordynmods, Opt_memory_localevents, Opt_memory_recursiveprot, Opt_memory_hugetlb_accounting, Opt_pids_localevents, nr__cgroup2_params }; static const struct fs_parameter_spec cgroup2_fs_parameters[] = { fsparam_flag("nsdelegate", Opt_nsdelegate), fsparam_flag("favordynmods", Opt_favordynmods), fsparam_flag("memory_localevents", Opt_memory_localevents), fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), fsparam_flag("pids_localevents", Opt_pids_localevents), {} }; static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct fs_parse_result result; int opt; opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_nsdelegate: ctx->flags |= CGRP_ROOT_NS_DELEGATE; return 0; case Opt_favordynmods: ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; return 0; case Opt_memory_localevents: ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; return 0; case Opt_memory_recursiveprot: ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; return 0; case Opt_memory_hugetlb_accounting: ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; return 0; case Opt_pids_localevents: ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; return 0; } return -EINVAL; } struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) { struct cgroup_file_ctx *ctx = of->priv; return &ctx->peak; } static void apply_cgroup_root_flags(unsigned int root_flags) { if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { if (root_flags & CGRP_ROOT_NS_DELEGATE) cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; else cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; cgroup_favor_dynmods(&cgrp_dfl_root, root_flags & CGRP_ROOT_FAVOR_DYNMODS); if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; else cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; else cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; else cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; else cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; } } static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) { if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) seq_puts(seq, ",nsdelegate"); if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) seq_puts(seq, ",favordynmods"); if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) seq_puts(seq, ",memory_localevents"); if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) seq_puts(seq, ",memory_recursiveprot"); if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) seq_puts(seq, ",memory_hugetlb_accounting"); if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) seq_puts(seq, ",pids_localevents"); return 0; } static int cgroup_reconfigure(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); apply_cgroup_root_flags(ctx->flags); return 0; } static void init_cgroup_housekeeping(struct cgroup *cgrp) { struct cgroup_subsys *ss; int ssid; INIT_LIST_HEAD(&cgrp->self.sibling); INIT_LIST_HEAD(&cgrp->self.children); INIT_LIST_HEAD(&cgrp->cset_links); INIT_LIST_HEAD(&cgrp->pidlists); mutex_init(&cgrp->pidlist_mutex); cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE; cgrp->dom_cgrp = cgrp; cgrp->max_descendants = INT_MAX; cgrp->max_depth = INT_MAX; INIT_LIST_HEAD(&cgrp->rstat_css_list); prev_cputime_init(&cgrp->prev_cputime); for_each_subsys(ss, ssid) INIT_LIST_HEAD(&cgrp->e_csets[ssid]); init_waitqueue_head(&cgrp->offline_waitq); INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); } void init_cgroup_root(struct cgroup_fs_context *ctx) { struct cgroup_root *root = ctx->root; struct cgroup *cgrp = &root->cgrp; INIT_LIST_HEAD_RCU(&root->root_list); atomic_set(&root->nr_cgrps, 1); cgrp->root = root; init_cgroup_housekeeping(cgrp); /* DYNMODS must be modified through cgroup_favor_dynmods() */ root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; if (ctx->release_agent) strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); if (ctx->name) strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); if (ctx->cpuset_clone_children) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); } int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) { LIST_HEAD(tmp_links); struct cgroup *root_cgrp = &root->cgrp; struct kernfs_syscall_ops *kf_sops; struct css_set *cset; int i, ret; lockdep_assert_held(&cgroup_mutex); ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, GFP_KERNEL); if (ret) goto out; /* * We're accessing css_set_count without locking css_set_lock here, * but that's OK - it can only be increased by someone holding * cgroup_lock, and that's us. Later rebinding may disable * controllers on the default hierarchy and thus create new csets, * which can't be more than the existing ones. Allocate 2x. */ ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); if (ret) goto cancel_ref; ret = cgroup_init_root_id(root); if (ret) goto cancel_ref; kf_sops = root == &cgrp_dfl_root ? &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; root->kf_root = kernfs_create_root(kf_sops, KERNFS_ROOT_CREATE_DEACTIVATED | KERNFS_ROOT_SUPPORT_EXPORTOP | KERNFS_ROOT_SUPPORT_USER_XATTR, root_cgrp); if (IS_ERR(root->kf_root)) { ret = PTR_ERR(root->kf_root); goto exit_root_id; } root_cgrp->kn = kernfs_root_to_node(root->kf_root); WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); root_cgrp->ancestors[0] = root_cgrp; ret = css_populate_dir(&root_cgrp->self); if (ret) goto destroy_root; ret = cgroup_rstat_init(root_cgrp); if (ret) goto destroy_root; ret = rebind_subsystems(root, ss_mask); if (ret) goto exit_stats; if (root == &cgrp_dfl_root) { ret = cgroup_bpf_inherit(root_cgrp); WARN_ON_ONCE(ret); } trace_cgroup_setup_root(root); /* * There must be no failure case after here, since rebinding takes * care of subsystems' refcounts, which are explicitly dropped in * the failure exit path. */ list_add_rcu(&root->root_list, &cgroup_roots); cgroup_root_count++; /* * Link the root cgroup in this hierarchy into all the css_set * objects. */ spin_lock_irq(&css_set_lock); hash_for_each(css_set_table, i, cset, hlist) { link_css_set(&tmp_links, cset, root_cgrp); if (css_set_populated(cset)) cgroup_update_populated(root_cgrp, true); } spin_unlock_irq(&css_set_lock); BUG_ON(!list_empty(&root_cgrp->self.children)); BUG_ON(atomic_read(&root->nr_cgrps) != 1); ret = 0; goto out; exit_stats: cgroup_rstat_exit(root_cgrp); destroy_root: kernfs_destroy_root(root->kf_root); root->kf_root = NULL; exit_root_id: cgroup_exit_root_id(root); cancel_ref: percpu_ref_exit(&root_cgrp->self.refcnt); out: free_cgrp_cset_links(&tmp_links); return ret; } int cgroup_do_get_tree(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); int ret; ctx->kfc.root = ctx->root->kf_root; if (fc->fs_type == &cgroup2_fs_type) ctx->kfc.magic = CGROUP2_SUPER_MAGIC; else ctx->kfc.magic = CGROUP_SUPER_MAGIC; ret = kernfs_get_tree(fc); /* * In non-init cgroup namespace, instead of root cgroup's dentry, * we return the dentry corresponding to the cgroupns->root_cgrp. */ if (!ret && ctx->ns != &init_cgroup_ns) { struct dentry *nsdentry; struct super_block *sb = fc->root->d_sb; struct cgroup *cgrp; cgroup_lock(); spin_lock_irq(&css_set_lock); cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); spin_unlock_irq(&css_set_lock); cgroup_unlock(); nsdentry = kernfs_node_dentry(cgrp->kn, sb); dput(fc->root); if (IS_ERR(nsdentry)) { deactivate_locked_super(sb); ret = PTR_ERR(nsdentry); nsdentry = NULL; } fc->root = nsdentry; } if (!ctx->kfc.new_sb_created) cgroup_put(&ctx->root->cgrp); return ret; } /* * Destroy a cgroup filesystem context. */ static void cgroup_fs_context_free(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); kfree(ctx->name); kfree(ctx->release_agent); put_cgroup_ns(ctx->ns); kernfs_free_fs_context(fc); kfree(ctx); } static int cgroup_get_tree(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); int ret; WRITE_ONCE(cgrp_dfl_visible, true); cgroup_get_live(&cgrp_dfl_root.cgrp); ctx->root = &cgrp_dfl_root; ret = cgroup_do_get_tree(fc); if (!ret) apply_cgroup_root_flags(ctx->flags); return ret; } static const struct fs_context_operations cgroup_fs_context_ops = { .free = cgroup_fs_context_free, .parse_param = cgroup2_parse_param, .get_tree = cgroup_get_tree, .reconfigure = cgroup_reconfigure, }; static const struct fs_context_operations cgroup1_fs_context_ops = { .free = cgroup_fs_context_free, .parse_param = cgroup1_parse_param, .get_tree = cgroup1_get_tree, .reconfigure = cgroup1_reconfigure, }; /* * Initialise the cgroup filesystem creation/reconfiguration context. Notably, * we select the namespace we're going to use. */ static int cgroup_init_fs_context(struct fs_context *fc) { struct cgroup_fs_context *ctx; ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->ns = current->nsproxy->cgroup_ns; get_cgroup_ns(ctx->ns); fc->fs_private = &ctx->kfc; if (fc->fs_type == &cgroup2_fs_type) fc->ops = &cgroup_fs_context_ops; else fc->ops = &cgroup1_fs_context_ops; put_user_ns(fc->user_ns); fc->user_ns = get_user_ns(ctx->ns->user_ns); fc->global = true; if (have_favordynmods) ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; return 0; } static void cgroup_kill_sb(struct super_block *sb) { struct kernfs_root *kf_root = kernfs_root_from_sb(sb); struct cgroup_root *root = cgroup_root_from_kf(kf_root); /* * If @root doesn't have any children, start killing it. * This prevents new mounts by disabling percpu_ref_tryget_live(). * * And don't kill the default root. */ if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && !percpu_ref_is_dying(&root->cgrp.self.refcnt)) percpu_ref_kill(&root->cgrp.self.refcnt); cgroup_put(&root->cgrp); kernfs_kill_sb(sb); } struct file_system_type cgroup_fs_type = { .name = "cgroup", .init_fs_context = cgroup_init_fs_context, .parameters = cgroup1_fs_parameters, .kill_sb = cgroup_kill_sb, .fs_flags = FS_USERNS_MOUNT, }; static struct file_system_type cgroup2_fs_type = { .name = "cgroup2", .init_fs_context = cgroup_init_fs_context, .parameters = cgroup2_fs_parameters, .kill_sb = cgroup_kill_sb, .fs_flags = FS_USERNS_MOUNT, }; #ifdef CONFIG_CPUSETS_V1 static const struct fs_context_operations cpuset_fs_context_ops = { .get_tree = cgroup1_get_tree, .free = cgroup_fs_context_free, }; /* * This is ugly, but preserves the userspace API for existing cpuset * users. If someone tries to mount the "cpuset" filesystem, we * silently switch it to mount "cgroup" instead */ static int cpuset_init_fs_context(struct fs_context *fc) { char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); struct cgroup_fs_context *ctx; int err; err = cgroup_init_fs_context(fc); if (err) { kfree(agent); return err; } fc->ops = &cpuset_fs_context_ops; ctx = cgroup_fc2context(fc); ctx->subsys_mask = 1 << cpuset_cgrp_id; ctx->flags |= CGRP_ROOT_NOPREFIX; ctx->release_agent = agent; get_filesystem(&cgroup_fs_type); put_filesystem(fc->fs_type); fc->fs_type = &cgroup_fs_type; return 0; } static struct file_system_type cpuset_fs_type = { .name = "cpuset", .init_fs_context = cpuset_init_fs_context, .fs_flags = FS_USERNS_MOUNT, }; #endif int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns) { struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); } int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns) { int ret; cgroup_lock(); spin_lock_irq(&css_set_lock); ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); spin_unlock_irq(&css_set_lock); cgroup_unlock(); return ret; } EXPORT_SYMBOL_GPL(cgroup_path_ns); /** * cgroup_attach_lock - Lock for ->attach() * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem * * cgroup migration sometimes needs to stabilize threadgroups against forks and * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() * implementations (e.g. cpuset), also need to disable CPU hotplug. * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can * lead to deadlocks. * * Bringing up a CPU may involve creating and destroying tasks which requires * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while * write-locking threadgroup_rwsem, the locking order is reversed and we end up * waiting for an on-going CPU hotplug operation which in turn is waiting for * the threadgroup_rwsem to be released to create new tasks. For more details: * * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu * * Resolve the situation by always acquiring cpus_read_lock() before optionally * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that * CPU hotplug is disabled on entry. */ void cgroup_attach_lock(bool lock_threadgroup) { cpus_read_lock(); if (lock_threadgroup) percpu_down_write(&cgroup_threadgroup_rwsem); } /** * cgroup_attach_unlock - Undo cgroup_attach_lock() * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem */ void cgroup_attach_unlock(bool lock_threadgroup) { if (lock_threadgroup) percpu_up_write(&cgroup_threadgroup_rwsem); cpus_read_unlock(); } /** * cgroup_migrate_add_task - add a migration target task to a migration context * @task: target task * @mgctx: target migration context * * Add @task, which is a migration target, to @mgctx->tset. This function * becomes noop if @task doesn't need to be migrated. @task's css_set * should have been added as a migration source and @task->cg_list will be * moved from the css_set's tasks list to mg_tasks one. */ static void cgroup_migrate_add_task(struct task_struct *task, struct cgroup_mgctx *mgctx) { struct css_set *cset; lockdep_assert_held(&css_set_lock); /* @task either already exited or can't exit until the end */ if (task->flags & PF_EXITING) return; /* cgroup_threadgroup_rwsem protects racing against forks */ WARN_ON_ONCE(list_empty(&task->cg_list)); cset = task_css_set(task); if (!cset->mg_src_cgrp) return; mgctx->tset.nr_tasks++; list_move_tail(&task->cg_list, &cset->mg_tasks); if (list_empty(&cset->mg_node)) list_add_tail(&cset->mg_node, &mgctx->tset.src_csets); if (list_empty(&cset->mg_dst_cset->mg_node)) list_add_tail(&cset->mg_dst_cset->mg_node, &mgctx->tset.dst_csets); } /** * cgroup_taskset_first - reset taskset and return the first task * @tset: taskset of interest * @dst_cssp: output variable for the destination css * * @tset iteration is initialized and the first task is returned. */ struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp) { tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); tset->cur_task = NULL; return cgroup_taskset_next(tset, dst_cssp); } /** * cgroup_taskset_next - iterate to the next task in taskset * @tset: taskset of interest * @dst_cssp: output variable for the destination css * * Return the next task in @tset. Iteration must have been initialized * with cgroup_taskset_first(). */ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp) { struct css_set *cset = tset->cur_cset; struct task_struct *task = tset->cur_task; while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { if (!task) task = list_first_entry(&cset->mg_tasks, struct task_struct, cg_list); else task = list_next_entry(task, cg_list); if (&task->cg_list != &cset->mg_tasks) { tset->cur_cset = cset; tset->cur_task = task; /* * This function may be called both before and * after cgroup_migrate_execute(). The two cases * can be distinguished by looking at whether @cset * has its ->mg_dst_cset set. */ if (cset->mg_dst_cset) *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; else *dst_cssp = cset->subsys[tset->ssid]; return task; } cset = list_next_entry(cset, mg_node); task = NULL; } return NULL; } /** * cgroup_migrate_execute - migrate a taskset * @mgctx: migration context * * Migrate tasks in @mgctx as setup by migration preparation functions. * This function fails iff one of the ->can_attach callbacks fails and * guarantees that either all or none of the tasks in @mgctx are migrated. * @mgctx is consumed regardless of success. */ static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) { struct cgroup_taskset *tset = &mgctx->tset; struct cgroup_subsys *ss; struct task_struct *task, *tmp_task; struct css_set *cset, *tmp_cset; int ssid, failed_ssid, ret; /* check that we can legitimately attach to the cgroup */ if (tset->nr_tasks) { do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { if (ss->can_attach) { tset->ssid = ssid; ret = ss->can_attach(tset); if (ret) { failed_ssid = ssid; goto out_cancel_attach; } } } while_each_subsys_mask(); } /* * Now that we're guaranteed success, proceed to move all tasks to * the new cgroup. There are no failure cases after here, so this * is the commit point. */ spin_lock_irq(&css_set_lock); list_for_each_entry(cset, &tset->src_csets, mg_node) { list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { struct css_set *from_cset = task_css_set(task); struct css_set *to_cset = cset->mg_dst_cset; get_css_set(to_cset); to_cset->nr_tasks++; css_set_move_task(task, from_cset, to_cset, true); from_cset->nr_tasks--; /* * If the source or destination cgroup is frozen, * the task might require to change its state. */ cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, to_cset->dfl_cgrp); put_css_set_locked(from_cset); } } spin_unlock_irq(&css_set_lock); /* * Migration is committed, all target tasks are now on dst_csets. * Nothing is sensitive to fork() after this point. Notify * controllers that migration is complete. */ tset->csets = &tset->dst_csets; if (tset->nr_tasks) { do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { if (ss->attach) { tset->ssid = ssid; ss->attach(tset); } } while_each_subsys_mask(); } ret = 0; goto out_release_tset; out_cancel_attach: if (tset->nr_tasks) { do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { if (ssid == failed_ssid) break; if (ss->cancel_attach) { tset->ssid = ssid; ss->cancel_attach(tset); } } while_each_subsys_mask(); } out_release_tset: spin_lock_irq(&css_set_lock); list_splice_init(&tset->dst_csets, &tset->src_csets); list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { list_splice_tail_init(&cset->mg_tasks, &cset->tasks); list_del_init(&cset->mg_node); } spin_unlock_irq(&css_set_lock); /* * Re-initialize the cgroup_taskset structure in case it is reused * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() * iteration. */ tset->nr_tasks = 0; tset->csets = &tset->src_csets; return ret; } /** * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination * @dst_cgrp: destination cgroup to test * * On the default hierarchy, except for the mixable, (possible) thread root * and threaded cgroups, subtree_control must be zero for migration * destination cgroups with tasks so that child cgroups don't compete * against tasks. */ int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) { /* v1 doesn't have any restriction */ if (!cgroup_on_dfl(dst_cgrp)) return 0; /* verify @dst_cgrp can host resources */ if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) return -EOPNOTSUPP; /* * If @dst_cgrp is already or can become a thread root or is * threaded, it doesn't matter. */ if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) return 0; /* apply no-internal-process constraint */ if (dst_cgrp->subtree_control) return -EBUSY; return 0; } /** * cgroup_migrate_finish - cleanup after attach * @mgctx: migration context * * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See * those functions for details. */ void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) { struct css_set *cset, *tmp_cset; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, mg_src_preload_node) { cset->mg_src_cgrp = NULL; cset->mg_dst_cgrp = NULL; cset->mg_dst_cset = NULL; list_del_init(&cset->mg_src_preload_node); put_css_set_locked(cset); } list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, mg_dst_preload_node) { cset->mg_src_cgrp = NULL; cset->mg_dst_cgrp = NULL; cset->mg_dst_cset = NULL; list_del_init(&cset->mg_dst_preload_node); put_css_set_locked(cset); } spin_unlock_irq(&css_set_lock); } /** * cgroup_migrate_add_src - add a migration source css_set * @src_cset: the source css_set to add * @dst_cgrp: the destination cgroup * @mgctx: migration context * * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin * @src_cset and add it to @mgctx->src_csets, which should later be cleaned * up by cgroup_migrate_finish(). * * This function may be called without holding cgroup_threadgroup_rwsem * even if the target is a process. Threads may be created and destroyed * but as long as cgroup_mutex is not dropped, no new css_set can be put * into play and the preloaded css_sets are guaranteed to cover all * migrations. */ void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct cgroup_mgctx *mgctx) { struct cgroup *src_cgrp; lockdep_assert_held(&cgroup_mutex); lockdep_assert_held(&css_set_lock); /* * If ->dead, @src_set is associated with one or more dead cgroups * and doesn't contain any migratable tasks. Ignore it early so * that the rest of migration path doesn't get confused by it. */ if (src_cset->dead) return; if (!list_empty(&src_cset->mg_src_preload_node)) return; src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); WARN_ON(src_cset->mg_src_cgrp); WARN_ON(src_cset->mg_dst_cgrp); WARN_ON(!list_empty(&src_cset->mg_tasks)); WARN_ON(!list_empty(&src_cset->mg_node)); src_cset->mg_src_cgrp = src_cgrp; src_cset->mg_dst_cgrp = dst_cgrp; get_css_set(src_cset); list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); } /** * cgroup_migrate_prepare_dst - prepare destination css_sets for migration * @mgctx: migration context * * Tasks are about to be moved and all the source css_sets have been * preloaded to @mgctx->preloaded_src_csets. This function looks up and * pins all destination css_sets, links each to its source, and append them * to @mgctx->preloaded_dst_csets. * * This function must be called after cgroup_migrate_add_src() has been * called on each migration source css_set. After migration is performed * using cgroup_migrate(), cgroup_migrate_finish() must be called on * @mgctx. */ int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) { struct css_set *src_cset, *tmp_cset; lockdep_assert_held(&cgroup_mutex); /* look up the dst cset for each src cset and link it to src */ list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, mg_src_preload_node) { struct css_set *dst_cset; struct cgroup_subsys *ss; int ssid; dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); if (!dst_cset) return -ENOMEM; WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); /* * If src cset equals dst, it's noop. Drop the src. * cgroup_migrate() will skip the cset too. Note that we * can't handle src == dst as some nodes are used by both. */ if (src_cset == dst_cset) { src_cset->mg_src_cgrp = NULL; src_cset->mg_dst_cgrp = NULL; list_del_init(&src_cset->mg_src_preload_node); put_css_set(src_cset); put_css_set(dst_cset); continue; } src_cset->mg_dst_cset = dst_cset; if (list_empty(&dst_cset->mg_dst_preload_node)) list_add_tail(&dst_cset->mg_dst_preload_node, &mgctx->preloaded_dst_csets); else put_css_set(dst_cset); for_each_subsys(ss, ssid) if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) mgctx->ss_mask |= 1 << ssid; } return 0; } /** * cgroup_migrate - migrate a process or task to a cgroup * @leader: the leader of the process or the task to migrate * @threadgroup: whether @leader points to the whole process or a single task * @mgctx: migration context * * Migrate a process or task denoted by @leader. If migrating a process, * the caller must be holding cgroup_threadgroup_rwsem. The caller is also * responsible for invoking cgroup_migrate_add_src() and * cgroup_migrate_prepare_dst() on the targets before invoking this * function and following up with cgroup_migrate_finish(). * * As long as a controller's ->can_attach() doesn't fail, this function is * guaranteed to succeed. This means that, excluding ->can_attach() * failure, when migrating multiple targets, the success or failure can be * decided for all targets by invoking group_migrate_prepare_dst() before * actually starting migrating. */ int cgroup_migrate(struct task_struct *leader, bool threadgroup, struct cgroup_mgctx *mgctx) { struct task_struct *task; /* * The following thread iteration should be inside an RCU critical * section to prevent tasks from being freed while taking the snapshot. * spin_lock_irq() implies RCU critical section here. */ spin_lock_irq(&css_set_lock); task = leader; do { cgroup_migrate_add_task(task, mgctx); if (!threadgroup) break; } while_each_thread(leader, task); spin_unlock_irq(&css_set_lock); return cgroup_migrate_execute(mgctx); } /** * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup * @dst_cgrp: the cgroup to attach to * @leader: the task or the leader of the threadgroup to be attached * @threadgroup: attach the whole threadgroup? * * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. */ int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, bool threadgroup) { DEFINE_CGROUP_MGCTX(mgctx); struct task_struct *task; int ret = 0; /* look up all src csets */ spin_lock_irq(&css_set_lock); rcu_read_lock(); task = leader; do { cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); if (!threadgroup) break; } while_each_thread(leader, task); rcu_read_unlock(); spin_unlock_irq(&css_set_lock); /* prepare dst csets and commit */ ret = cgroup_migrate_prepare_dst(&mgctx); if (!ret) ret = cgroup_migrate(leader, threadgroup, &mgctx); cgroup_migrate_finish(&mgctx); if (!ret) TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); return ret; } struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, bool *threadgroup_locked) { struct task_struct *tsk; pid_t pid; if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) return ERR_PTR(-EINVAL); /* * If we migrate a single thread, we don't care about threadgroup * stability. If the thread is `current`, it won't exit(2) under our * hands or change PID through exec(2). We exclude * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write * callers by cgroup_mutex. * Therefore, we can skip the global lock. */ lockdep_assert_held(&cgroup_mutex); *threadgroup_locked = pid || threadgroup; cgroup_attach_lock(*threadgroup_locked); rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { tsk = ERR_PTR(-ESRCH); goto out_unlock_threadgroup; } } else { tsk = current; } if (threadgroup) tsk = tsk->group_leader; /* * kthreads may acquire PF_NO_SETAFFINITY during initialization. * If userland migrates such a kthread to a non-root cgroup, it can * become trapped in a cpuset, or RT kthread may be born in a * cgroup with no rt_runtime allocated. Just say no. */ if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { tsk = ERR_PTR(-EINVAL); goto out_unlock_threadgroup; } get_task_struct(tsk); goto out_unlock_rcu; out_unlock_threadgroup: cgroup_attach_unlock(*threadgroup_locked); *threadgroup_locked = false; out_unlock_rcu: rcu_read_unlock(); return tsk; } void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) { struct cgroup_subsys *ss; int ssid; /* release reference from cgroup_procs_write_start() */ put_task_struct(task); cgroup_attach_unlock(threadgroup_locked); for_each_subsys(ss, ssid) if (ss->post_attach) ss->post_attach(); } static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) { struct cgroup_subsys *ss; bool printed = false; int ssid; do_each_subsys_mask(ss, ssid, ss_mask) { if (printed) seq_putc(seq, ' '); seq_puts(seq, ss->name); printed = true; } while_each_subsys_mask(); if (printed) seq_putc(seq, '\n'); } /* show controllers which are enabled from the parent */ static int cgroup_controllers_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; cgroup_print_ss_mask(seq, cgroup_control(cgrp)); return 0; } /* show controllers which are enabled for a given cgroup's children */ static int cgroup_subtree_control_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; cgroup_print_ss_mask(seq, cgrp->subtree_control); return 0; } /** * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy * @cgrp: root of the subtree to update csses for * * @cgrp's control masks have changed and its subtree's css associations * need to be updated accordingly. This function looks up all css_sets * which are attached to the subtree, creates the matching updated css_sets * and migrates the tasks to the new ones. */ static int cgroup_update_dfl_csses(struct cgroup *cgrp) { DEFINE_CGROUP_MGCTX(mgctx); struct cgroup_subsys_state *d_css; struct cgroup *dsct; struct css_set *src_cset; bool has_tasks; int ret; lockdep_assert_held(&cgroup_mutex); /* look up all csses currently attached to @cgrp's subtree */ spin_lock_irq(&css_set_lock); cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { struct cgrp_cset_link *link; /* * As cgroup_update_dfl_csses() is only called by * cgroup_apply_control(). The csses associated with the * given cgrp will not be affected by changes made to * its subtree_control file. We can skip them. */ if (dsct == cgrp) continue; list_for_each_entry(link, &dsct->cset_links, cset_link) cgroup_migrate_add_src(link->cset, dsct, &mgctx); } spin_unlock_irq(&css_set_lock); /* * We need to write-lock threadgroup_rwsem while migrating tasks. * However, if there are no source csets for @cgrp, changing its * controllers isn't gonna produce any task migrations and the * write-locking can be skipped safely. */ has_tasks = !list_empty(&mgctx.preloaded_src_csets); cgroup_attach_lock(has_tasks); /* NULL dst indicates self on default hierarchy */ ret = cgroup_migrate_prepare_dst(&mgctx); if (ret) goto out_finish; spin_lock_irq(&css_set_lock); list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_src_preload_node) { struct task_struct *task, *ntask; /* all tasks in src_csets need to be migrated */ list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) cgroup_migrate_add_task(task, &mgctx); } spin_unlock_irq(&css_set_lock); ret = cgroup_migrate_execute(&mgctx); out_finish: cgroup_migrate_finish(&mgctx); cgroup_attach_unlock(has_tasks); return ret; } /** * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses * @cgrp: root of the target subtree * * Because css offlining is asynchronous, userland may try to re-enable a * controller while the previous css is still around. This function grabs * cgroup_mutex and drains the previous css instances of @cgrp's subtree. */ void cgroup_lock_and_drain_offline(struct cgroup *cgrp) __acquires(&cgroup_mutex) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid; restart: cgroup_lock(); cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); DEFINE_WAIT(wait); if (!css || !percpu_ref_is_dying(&css->refcnt)) continue; cgroup_get_live(dsct); prepare_to_wait(&dsct->offline_waitq, &wait, TASK_UNINTERRUPTIBLE); cgroup_unlock(); schedule(); finish_wait(&dsct->offline_waitq, &wait); cgroup_put(dsct); goto restart; } } } /** * cgroup_save_control - save control masks and dom_cgrp of a subtree * @cgrp: root of the target subtree * * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the * respective old_ prefixed fields for @cgrp's subtree including @cgrp * itself. */ static void cgroup_save_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { dsct->old_subtree_control = dsct->subtree_control; dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; dsct->old_dom_cgrp = dsct->dom_cgrp; } } /** * cgroup_propagate_control - refresh control masks of a subtree * @cgrp: root of the target subtree * * For @cgrp and its subtree, ensure ->subtree_ss_mask matches * ->subtree_control and propagate controller availability through the * subtree so that descendants don't have unavailable controllers enabled. */ static void cgroup_propagate_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { dsct->subtree_control &= cgroup_control(dsct); dsct->subtree_ss_mask = cgroup_calc_subtree_ss_mask(dsct->subtree_control, cgroup_ss_mask(dsct)); } } /** * cgroup_restore_control - restore control masks and dom_cgrp of a subtree * @cgrp: root of the target subtree * * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the * respective old_ prefixed fields for @cgrp's subtree including @cgrp * itself. */ static void cgroup_restore_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { dsct->subtree_control = dsct->old_subtree_control; dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; dsct->dom_cgrp = dsct->old_dom_cgrp; } } static bool css_visible(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; if (cgroup_control(cgrp) & (1 << ss->id)) return true; if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) return false; return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; } /** * cgroup_apply_control_enable - enable or show csses according to control * @cgrp: root of the target subtree * * Walk @cgrp's subtree and create new csses or make the existing ones * visible. A css is created invisible if it's being implicitly enabled * through dependency. An invisible css is made visible when the userland * explicitly enables it. * * Returns 0 on success, -errno on failure. On failure, csses which have * been processed already aren't cleaned up. The caller is responsible for * cleaning up with cgroup_apply_control_disable(). */ static int cgroup_apply_control_enable(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid, ret; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) continue; if (!css) { css = css_create(dsct, ss); if (IS_ERR(css)) return PTR_ERR(css); } WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); if (css_visible(css)) { ret = css_populate_dir(css); if (ret) return ret; } } } return 0; } /** * cgroup_apply_control_disable - kill or hide csses according to control * @cgrp: root of the target subtree * * Walk @cgrp's subtree and kill and hide csses so that they match * cgroup_ss_mask() and cgroup_visible_mask(). * * A css is hidden when the userland requests it to be disabled while other * subsystems are still depending on it. The css must not actively control * resources and be in the vanilla state if it's made visible again later. * Controllers which may be depended upon should provide ->css_reset() for * this purpose. */ static void cgroup_apply_control_disable(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid; cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); if (!css) continue; WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); if (css->parent && !(cgroup_ss_mask(dsct) & (1 << ss->id))) { kill_css(css); } else if (!css_visible(css)) { css_clear_dir(css); if (ss->css_reset) ss->css_reset(css); } } } } /** * cgroup_apply_control - apply control mask updates to the subtree * @cgrp: root of the target subtree * * subsystems can be enabled and disabled in a subtree using the following * steps. * * 1. Call cgroup_save_control() to stash the current state. * 2. Update ->subtree_control masks in the subtree as desired. * 3. Call cgroup_apply_control() to apply the changes. * 4. Optionally perform other related operations. * 5. Call cgroup_finalize_control() to finish up. * * This function implements step 3 and propagates the mask changes * throughout @cgrp's subtree, updates csses accordingly and perform * process migrations. */ static int cgroup_apply_control(struct cgroup *cgrp) { int ret; cgroup_propagate_control(cgrp); ret = cgroup_apply_control_enable(cgrp); if (ret) return ret; /* * At this point, cgroup_e_css_by_mask() results reflect the new csses * making the following cgroup_update_dfl_csses() properly update * css associations of all tasks in the subtree. */ return cgroup_update_dfl_csses(cgrp); } /** * cgroup_finalize_control - finalize control mask update * @cgrp: root of the target subtree * @ret: the result of the update * * Finalize control mask update. See cgroup_apply_control() for more info. */ static void cgroup_finalize_control(struct cgroup *cgrp, int ret) { if (ret) { cgroup_restore_control(cgrp); cgroup_propagate_control(cgrp); } cgroup_apply_control_disable(cgrp); } static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) { u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; /* if nothing is getting enabled, nothing to worry about */ if (!enable) return 0; /* can @cgrp host any resources? */ if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) return -EOPNOTSUPP; /* mixables don't care */ if (cgroup_is_mixable(cgrp)) return 0; if (domain_enable) { /* can't enable domain controllers inside a thread subtree */ if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) return -EOPNOTSUPP; } else { /* * Threaded controllers can handle internal competitions * and are always allowed inside a (prospective) thread * subtree. */ if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) return 0; } /* * Controllers can't be enabled for a cgroup with tasks to avoid * child cgroups competing against tasks. */ if (cgroup_has_tasks(cgrp)) return -EBUSY; return 0; } /* change the enabled child controllers for a cgroup in the default hierarchy */ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { u16 enable = 0, disable = 0; struct cgroup *cgrp, *child; struct cgroup_subsys *ss; char *tok; int ssid, ret; /* * Parse input - space separated list of subsystem names prefixed * with either + or -. */ buf = strstrip(buf); while ((tok = strsep(&buf, " "))) { if (tok[0] == '\0') continue; do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { if (!cgroup_ssid_enabled(ssid) || strcmp(tok + 1, ss->name)) continue; if (*tok == '+') { enable |= 1 << ssid; disable &= ~(1 << ssid); } else if (*tok == '-') { disable |= 1 << ssid; enable &= ~(1 << ssid); } else { return -EINVAL; } break; } while_each_subsys_mask(); if (ssid == CGROUP_SUBSYS_COUNT) return -EINVAL; } cgrp = cgroup_kn_lock_live(of->kn, true); if (!cgrp) return -ENODEV; for_each_subsys(ss, ssid) { if (enable & (1 << ssid)) { if (cgrp->subtree_control & (1 << ssid)) { enable &= ~(1 << ssid); continue; } if (!(cgroup_control(cgrp) & (1 << ssid))) { ret = -ENOENT; goto out_unlock; } } else if (disable & (1 << ssid)) { if (!(cgrp->subtree_control & (1 << ssid))) { disable &= ~(1 << ssid); continue; } /* a child has it enabled? */ cgroup_for_each_live_child(child, cgrp) { if (child->subtree_control & (1 << ssid)) { ret = -EBUSY; goto out_unlock; } } } } if (!enable && !disable) { ret = 0; goto out_unlock; } ret = cgroup_vet_subtree_control_enable(cgrp, enable); if (ret) goto out_unlock; /* save and update control masks and prepare csses */ cgroup_save_control(cgrp); cgrp->subtree_control |= enable; cgrp->subtree_control &= ~disable; ret = cgroup_apply_control(cgrp); cgroup_finalize_control(cgrp, ret); if (ret) goto out_unlock; kernfs_activate(cgrp->kn); out_unlock: cgroup_kn_unlock(of->kn); return ret ?: nbytes; } /** * cgroup_enable_threaded - make @cgrp threaded * @cgrp: the target cgroup * * Called when "threaded" is written to the cgroup.type interface file and * tries to make @cgrp threaded and join the parent's resource domain. * This function is never called on the root cgroup as cgroup.type doesn't * exist on it. */ static int cgroup_enable_threaded(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup *dom_cgrp = parent->dom_cgrp; struct cgroup *dsct; struct cgroup_subsys_state *d_css; int ret; lockdep_assert_held(&cgroup_mutex); /* noop if already threaded */ if (cgroup_is_threaded(cgrp)) return 0; /* * If @cgroup is populated or has domain controllers enabled, it * can't be switched. While the below cgroup_can_be_thread_root() * test can catch the same conditions, that's only when @parent is * not mixable, so let's check it explicitly. */ if (cgroup_is_populated(cgrp) || cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) return -EOPNOTSUPP; /* we're joining the parent's domain, ensure its validity */ if (!cgroup_is_valid_domain(dom_cgrp) || !cgroup_can_be_thread_root(dom_cgrp)) return -EOPNOTSUPP; /* * The following shouldn't cause actual migrations and should * always succeed. */ cgroup_save_control(cgrp); cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) if (dsct == cgrp || cgroup_is_threaded(dsct)) dsct->dom_cgrp = dom_cgrp; ret = cgroup_apply_control(cgrp); if (!ret) parent->nr_threaded_children++; cgroup_finalize_control(cgrp, ret); return ret; } static int cgroup_type_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; if (cgroup_is_threaded(cgrp)) seq_puts(seq, "threaded\n"); else if (!cgroup_is_valid_domain(cgrp)) seq_puts(seq, "domain invalid\n"); else if (cgroup_is_thread_root(cgrp)) seq_puts(seq, "domain threaded\n"); else seq_puts(seq, "domain\n"); return 0; } static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; int ret; /* only switching to threaded mode is supported */ if (strcmp(strstrip(buf), "threaded")) return -EINVAL; /* drain dying csses before we re-apply (threaded) subtree control */ cgrp = cgroup_kn_lock_live(of->kn, true); if (!cgrp) return -ENOENT; /* threaded can only be enabled */ ret = cgroup_enable_threaded(cgrp); cgroup_kn_unlock(of->kn); return ret ?: nbytes; } static int cgroup_max_descendants_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; int descendants = READ_ONCE(cgrp->max_descendants); if (descendants == INT_MAX) seq_puts(seq, "max\n"); else seq_printf(seq, "%d\n", descendants); return 0; } static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; int descendants; ssize_t ret; buf = strstrip(buf); if (!strcmp(buf, "max")) { descendants = INT_MAX; } else { ret = kstrtoint(buf, 0, &descendants); if (ret) return ret; } if (descendants < 0) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; cgrp->max_descendants = descendants; cgroup_kn_unlock(of->kn); return nbytes; } static int cgroup_max_depth_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; int depth = READ_ONCE(cgrp->max_depth); if (depth == INT_MAX) seq_puts(seq, "max\n"); else seq_printf(seq, "%d\n", depth); return 0; } static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; ssize_t ret; int depth; buf = strstrip(buf); if (!strcmp(buf, "max")) { depth = INT_MAX; } else { ret = kstrtoint(buf, 0, &depth); if (ret) return ret; } if (depth < 0) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; cgrp->max_depth = depth; cgroup_kn_unlock(of->kn); return nbytes; } static int cgroup_events_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); return 0; } static int cgroup_stat_show(struct seq_file *seq, void *v) { struct cgroup *cgroup = seq_css(seq)->cgroup; struct cgroup_subsys_state *css; int dying_cnt[CGROUP_SUBSYS_COUNT]; int ssid; seq_printf(seq, "nr_descendants %d\n", cgroup->nr_descendants); /* * Show the number of live and dying csses associated with each of * non-inhibited cgroup subsystems that is bound to cgroup v2. * * Without proper lock protection, racing is possible. So the * numbers may not be consistent when that happens. */ rcu_read_lock(); for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { dying_cnt[ssid] = -1; if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) continue; css = rcu_dereference_raw(cgroup->subsys[ssid]); dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, css ? (css->nr_descendants + 1) : 0); } seq_printf(seq, "nr_dying_descendants %d\n", cgroup->nr_dying_descendants); for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { if (dying_cnt[ssid] >= 0) seq_printf(seq, "nr_dying_subsys_%s %d\n", cgroup_subsys[ssid]->name, dying_cnt[ssid]); } rcu_read_unlock(); return 0; } #ifdef CONFIG_CGROUP_SCHED /** * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest * * Find and get @cgrp's css associated with @ss. If the css doesn't exist * or is offline, %NULL is returned. */ static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; rcu_read_lock(); css = cgroup_css(cgrp, ss); if (css && !css_tryget_online(css)) css = NULL; rcu_read_unlock(); return css; } static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct cgroup_subsys *ss = cgroup_subsys[ssid]; struct cgroup_subsys_state *css; int ret; if (!ss->css_extra_stat_show) return 0; css = cgroup_tryget_css(cgrp, ss); if (!css) return 0; ret = ss->css_extra_stat_show(seq, css); css_put(css); return ret; } static int cgroup_local_stat_show(struct seq_file *seq, struct cgroup *cgrp, int ssid) { struct cgroup_subsys *ss = cgroup_subsys[ssid]; struct cgroup_subsys_state *css; int ret; if (!ss->css_local_stat_show) return 0; css = cgroup_tryget_css(cgrp, ss); if (!css) return 0; ret = ss->css_local_stat_show(seq, css); css_put(css); return ret; } #endif static int cpu_stat_show(struct seq_file *seq, void *v) { int ret = 0; cgroup_base_stat_cputime_show(seq); #ifdef CONFIG_CGROUP_SCHED ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); #endif return ret; } static int cpu_local_stat_show(struct seq_file *seq, void *v) { struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; int ret = 0; #ifdef CONFIG_CGROUP_SCHED ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); #endif return ret; } #ifdef CONFIG_PSI static int cgroup_io_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_IO); } static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_MEM); } static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_CPU); } static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, enum psi_res res) { struct cgroup_file_ctx *ctx = of->priv; struct psi_trigger *new; struct cgroup *cgrp; struct psi_group *psi; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; cgroup_get(cgrp); cgroup_kn_unlock(of->kn); /* Allow only one trigger per file descriptor */ if (ctx->psi.trigger) { cgroup_put(cgrp); return -EBUSY; } psi = cgroup_psi(cgrp); new = psi_trigger_create(psi, buf, res, of->file, of); if (IS_ERR(new)) { cgroup_put(cgrp); return PTR_ERR(new); } smp_store_release(&ctx->psi.trigger, new); cgroup_put(cgrp); return nbytes; } static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_IO); } static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_MEM); } static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_CPU); } #ifdef CONFIG_IRQ_TIME_ACCOUNTING static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_IRQ); } static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_IRQ); } #endif static int cgroup_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); seq_printf(seq, "%d\n", psi->enabled); return 0; } static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { ssize_t ret; int enable; struct cgroup *cgrp; struct psi_group *psi; ret = kstrtoint(strstrip(buf), 0, &enable); if (ret) return ret; if (enable < 0 || enable > 1) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; psi = cgroup_psi(cgrp); if (psi->enabled != enable) { int i; /* show or hide {cpu,memory,io,irq}.pressure files */ for (i = 0; i < NR_PSI_RESOURCES; i++) cgroup_file_show(&cgrp->psi_files[i], enable); psi->enabled = enable; if (enable) psi_cgroup_restart(psi); } cgroup_kn_unlock(of->kn); return nbytes; } static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, poll_table *pt) { struct cgroup_file_ctx *ctx = of->priv; return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); } static void cgroup_pressure_release(struct kernfs_open_file *of) { struct cgroup_file_ctx *ctx = of->priv; psi_trigger_destroy(ctx->psi.trigger); } bool cgroup_psi_enabled(void) { if (static_branch_likely(&psi_disabled)) return false; return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; } #else /* CONFIG_PSI */ bool cgroup_psi_enabled(void) { return false; } #endif /* CONFIG_PSI */ static int cgroup_freeze_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; seq_printf(seq, "%d\n", cgrp->freezer.freeze); return 0; } static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; ssize_t ret; int freeze; ret = kstrtoint(strstrip(buf), 0, &freeze); if (ret) return ret; if (freeze < 0 || freeze > 1) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; cgroup_freeze(cgrp, freeze); cgroup_kn_unlock(of->kn); return nbytes; } static void __cgroup_kill(struct cgroup *cgrp) { struct css_task_iter it; struct task_struct *task; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); set_bit(CGRP_KILL, &cgrp->flags); spin_unlock_irq(&css_set_lock); css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); while ((task = css_task_iter_next(&it))) { /* Ignore kernel threads here. */ if (task->flags & PF_KTHREAD) continue; /* Skip tasks that are already dying. */ if (__fatal_signal_pending(task)) continue; send_sig(SIGKILL, task, 0); } css_task_iter_end(&it); spin_lock_irq(&css_set_lock); clear_bit(CGRP_KILL, &cgrp->flags); spin_unlock_irq(&css_set_lock); } static void cgroup_kill(struct cgroup *cgrp) { struct cgroup_subsys_state *css; struct cgroup *dsct; lockdep_assert_held(&cgroup_mutex); cgroup_for_each_live_descendant_pre(dsct, css, cgrp) __cgroup_kill(dsct); } static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { ssize_t ret = 0; int kill; struct cgroup *cgrp; ret = kstrtoint(strstrip(buf), 0, &kill); if (ret) return ret; if (kill != 1) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; /* * Killing is a process directed operation, i.e. the whole thread-group * is taken down so act like we do for cgroup.procs and only make this * writable in non-threaded cgroups. */ if (cgroup_is_threaded(cgrp)) ret = -EOPNOTSUPP; else cgroup_kill(cgrp); cgroup_kn_unlock(of->kn); return ret ?: nbytes; } static int cgroup_file_open(struct kernfs_open_file *of) { struct cftype *cft = of_cft(of); struct cgroup_file_ctx *ctx; int ret; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->ns = current->nsproxy->cgroup_ns; get_cgroup_ns(ctx->ns); of->priv = ctx; if (!cft->open) return 0; ret = cft->open(of); if (ret) { put_cgroup_ns(ctx->ns); kfree(ctx); } return ret; } static void cgroup_file_release(struct kernfs_open_file *of) { struct cftype *cft = of_cft(of); struct cgroup_file_ctx *ctx = of->priv; if (cft->release) cft->release(of); put_cgroup_ns(ctx->ns); kfree(ctx); } static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup_file_ctx *ctx = of->priv; struct cgroup *cgrp = of->kn->parent->priv; struct cftype *cft = of_cft(of); struct cgroup_subsys_state *css; int ret; if (!nbytes) return 0; /* * If namespaces are delegation boundaries, disallow writes to * files in an non-init namespace root from inside the namespace * except for the files explicitly marked delegatable - * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. */ if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && !(cft->flags & CFTYPE_NS_DELEGATABLE) && ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) return -EPERM; if (cft->write) return cft->write(of, buf, nbytes, off); /* * kernfs guarantees that a file isn't deleted with operations in * flight, which means that the matching css is and stays alive and * doesn't need to be pinned. The RCU locking is not necessary * either. It's just for the convenience of using cgroup_css(). */ rcu_read_lock(); css = cgroup_css(cgrp, cft->ss); rcu_read_unlock(); if (cft->write_u64) { unsigned long long v; ret = kstrtoull(buf, 0, &v); if (!ret) ret = cft->write_u64(css, cft, v); } else if (cft->write_s64) { long long v; ret = kstrtoll(buf, 0, &v); if (!ret) ret = cft->write_s64(css, cft, v); } else { ret = -EINVAL; } return ret ?: nbytes; } static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) { struct cftype *cft = of_cft(of); if (cft->poll) return cft->poll(of, pt); return kernfs_generic_poll(of, pt); } static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) { return seq_cft(seq)->seq_start(seq, ppos); } static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) { return seq_cft(seq)->seq_next(seq, v, ppos); } static void cgroup_seqfile_stop(struct seq_file *seq, void *v) { if (seq_cft(seq)->seq_stop) seq_cft(seq)->seq_stop(seq, v); } static int cgroup_seqfile_show(struct seq_file *m, void *arg) { struct cftype *cft = seq_cft(m); struct cgroup_subsys_state *css = seq_css(m); if (cft->seq_show) return cft->seq_show(m, arg); if (cft->read_u64) seq_printf(m, "%llu\n", cft->read_u64(css, cft)); else if (cft->read_s64) seq_printf(m, "%lld\n", cft->read_s64(css, cft)); else return -EINVAL; return 0; } static struct kernfs_ops cgroup_kf_single_ops = { .atomic_write_len = PAGE_SIZE, .open = cgroup_file_open, .release = cgroup_file_release, .write = cgroup_file_write, .poll = cgroup_file_poll, .seq_show = cgroup_seqfile_show, }; static struct kernfs_ops cgroup_kf_ops = { .atomic_write_len = PAGE_SIZE, .open = cgroup_file_open, .release = cgroup_file_release, .write = cgroup_file_write, .poll = cgroup_file_poll, .seq_start = cgroup_seqfile_start, .seq_next = cgroup_seqfile_next, .seq_stop = cgroup_seqfile_stop, .seq_show = cgroup_seqfile_show, }; static void cgroup_file_notify_timer(struct timer_list *timer) { cgroup_file_notify(container_of(timer, struct cgroup_file, notify_timer)); } static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype *cft) { char name[CGROUP_FILE_NAME_MAX]; struct kernfs_node *kn; struct lock_class_key *key = NULL; #ifdef CONFIG_DEBUG_LOCK_ALLOC key = &cft->lockdep_key; #endif kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), cgroup_file_mode(cft), current_fsuid(), current_fsgid(), 0, cft->kf_ops, cft, NULL, key); if (IS_ERR(kn)) return PTR_ERR(kn); if (cft->file_offset) { struct cgroup_file *cfile = (void *)css + cft->file_offset; timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = kn; spin_unlock_irq(&cgroup_file_kn_lock); } return 0; } /** * cgroup_addrm_files - add or remove files to a cgroup directory * @css: the target css * @cgrp: the target cgroup (usually css->cgroup) * @cfts: array of cftypes to be added * @is_add: whether to add or remove * * Depending on @is_add, add or remove files defined by @cfts on @cgrp. * For removals, this function never fails. */ static int cgroup_addrm_files(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype cfts[], bool is_add) { struct cftype *cft, *cft_end = NULL; int ret = 0; lockdep_assert_held(&cgroup_mutex); restart: for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { /* does cft->flags tell us to skip this file on @cgrp? */ if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) continue; if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) continue; if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) continue; if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) continue; if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) continue; if (is_add) { ret = cgroup_add_file(css, cgrp, cft); if (ret) { pr_warn("%s: failed to add %s, err=%d\n", __func__, cft->name, ret); cft_end = cft; is_add = false; goto restart; } } else { cgroup_rm_file(cgrp, cft); } } return ret; } static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) { struct cgroup_subsys *ss = cfts[0].ss; struct cgroup *root = &ss->root->cgrp; struct cgroup_subsys_state *css; int ret = 0; lockdep_assert_held(&cgroup_mutex); /* add/rm files for all cgroups created before */ css_for_each_descendant_pre(css, cgroup_css(root, ss)) { struct cgroup *cgrp = css->cgroup; if (!(css->flags & CSS_VISIBLE)) continue; ret = cgroup_addrm_files(css, cgrp, cfts, is_add); if (ret) break; } if (is_add && !ret) kernfs_activate(root->kn); return ret; } static void cgroup_exit_cftypes(struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft->name[0] != '\0'; cft++) { /* free copy for custom atomic_write_len, see init_cftypes() */ if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) kfree(cft->kf_ops); cft->kf_ops = NULL; cft->ss = NULL; /* revert flags set by cgroup core while adding @cfts */ cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | __CFTYPE_ADDED); } } static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; int ret = 0; for (cft = cfts; cft->name[0] != '\0'; cft++) { struct kernfs_ops *kf_ops; WARN_ON(cft->ss || cft->kf_ops); if (cft->flags & __CFTYPE_ADDED) { ret = -EBUSY; break; } if (cft->seq_start) kf_ops = &cgroup_kf_ops; else kf_ops = &cgroup_kf_single_ops; /* * Ugh... if @cft wants a custom max_write_len, we need to * make a copy of kf_ops to set its atomic_write_len. */ if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); if (!kf_ops) { ret = -ENOMEM; break; } kf_ops->atomic_write_len = cft->max_write_len; } cft->kf_ops = kf_ops; cft->ss = ss; cft->flags |= __CFTYPE_ADDED; } if (ret) cgroup_exit_cftypes(cfts); return ret; } static void cgroup_rm_cftypes_locked(struct cftype *cfts) { lockdep_assert_held(&cgroup_mutex); list_del(&cfts->node); cgroup_apply_cftypes(cfts, false); cgroup_exit_cftypes(cfts); } /** * cgroup_rm_cftypes - remove an array of cftypes from a subsystem * @cfts: zero-length name terminated array of cftypes * * Unregister @cfts. Files described by @cfts are removed from all * existing cgroups and all future cgroups won't have them either. This * function can be called anytime whether @cfts' subsys is attached or not. * * Returns 0 on successful unregistration, -ENOENT if @cfts is not * registered. */ int cgroup_rm_cftypes(struct cftype *cfts) { if (!cfts || cfts[0].name[0] == '\0') return 0; if (!(cfts[0].flags & __CFTYPE_ADDED)) return -ENOENT; cgroup_lock(); cgroup_rm_cftypes_locked(cfts); cgroup_unlock(); return 0; } /** * cgroup_add_cftypes - add an array of cftypes to a subsystem * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Register @cfts to @ss. Files described by @cfts are created for all * existing cgroups to which @ss is attached and all future cgroups will * have them too. This function can be called anytime whether @ss is * attached or not. * * Returns 0 on successful registration, -errno on failure. Note that this * function currently returns 0 as long as @cfts registration is successful * even if some file creation attempts on existing cgroups fail. */ static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { int ret; if (!cgroup_ssid_enabled(ss->id)) return 0; if (!cfts || cfts[0].name[0] == '\0') return 0; ret = cgroup_init_cftypes(ss, cfts); if (ret) return ret; cgroup_lock(); list_add_tail(&cfts->node, &ss->cfts); ret = cgroup_apply_cftypes(cfts, true); if (ret) cgroup_rm_cftypes_locked(cfts); cgroup_unlock(); return ret; } /** * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Similar to cgroup_add_cftypes() but the added files are only used for * the default hierarchy. */ int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft && cft->name[0] != '\0'; cft++) cft->flags |= __CFTYPE_ONLY_ON_DFL; return cgroup_add_cftypes(ss, cfts); } /** * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Similar to cgroup_add_cftypes() but the added files are only used for * the legacy hierarchies. */ int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft && cft->name[0] != '\0'; cft++) cft->flags |= __CFTYPE_NOT_ON_DFL; return cgroup_add_cftypes(ss, cfts); } /** * cgroup_file_notify - generate a file modified event for a cgroup_file * @cfile: target cgroup_file * * @cfile must have been obtained by setting cftype->file_offset. */ void cgroup_file_notify(struct cgroup_file *cfile) { unsigned long flags; spin_lock_irqsave(&cgroup_file_kn_lock, flags); if (cfile->kn) { unsigned long last = cfile->notified_at; unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; if (time_in_range(jiffies, last, next)) { timer_reduce(&cfile->notify_timer, next); } else { kernfs_notify(cfile->kn); cfile->notified_at = jiffies; } } spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); } /** * cgroup_file_show - show or hide a hidden cgroup file * @cfile: target cgroup_file obtained by setting cftype->file_offset * @show: whether to show or hide */ void cgroup_file_show(struct cgroup_file *cfile, bool show) { struct kernfs_node *kn; spin_lock_irq(&cgroup_file_kn_lock); kn = cfile->kn; kernfs_get(kn); spin_unlock_irq(&cgroup_file_kn_lock); if (kn) kernfs_show(kn, show); kernfs_put(kn); } /** * css_next_child - find the next child of a given css * @pos: the current position (%NULL to initiate traversal) * @parent: css whose children to walk * * This function returns the next child of @parent and should be called * under either cgroup_mutex or RCU read lock. The only requirement is * that @parent and @pos are accessible. The next sibling is guaranteed to * be returned regardless of their states. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *parent) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* * @pos could already have been unlinked from the sibling list. * Once a cgroup is removed, its ->sibling.next is no longer * updated when its next sibling changes. CSS_RELEASED is set when * @pos is taken off list, at which time its next pointer is valid, * and, as releases are serialized, the one pointed to by the next * pointer is guaranteed to not have started release yet. This * implies that if we observe !CSS_RELEASED on @pos in this RCU * critical section, the one pointed to by its next pointer is * guaranteed to not have finished its RCU grace period even if we * have dropped rcu_read_lock() in-between iterations. * * If @pos has CSS_RELEASED set, its next pointer can't be * dereferenced; however, as each css is given a monotonically * increasing unique serial number and always appended to the * sibling list, the next one can be found by walking the parent's * children until the first css with higher serial number than * @pos's. While this path can be slower, it happens iff iteration * races against release and the race window is very small. */ if (!pos) { next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); } else if (likely(!(pos->flags & CSS_RELEASED))) { next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); } else { list_for_each_entry_rcu(next, &parent->children, sibling, lockdep_is_held(&cgroup_mutex)) if (next->serial_nr > pos->serial_nr) break; } /* * @next, if not pointing to the head, can be dereferenced and is * the next sibling. */ if (&next->sibling != &parent->children) return next; return NULL; } /** * css_next_descendant_pre - find the next descendant for pre-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_pre(). Find the next descendant * to visit for pre-order traversal of @root's descendants. @root is * included in the iteration and the first node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. Additionally, it isn't necessary to hold onto a reference to @pos. * This function will return the correct next descendant as long as both @pos * and @root are accessible and @pos is a descendant of @root. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state * css_next_descendant_pre(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit @root */ if (!pos) return root; /* visit the first child if exists */ next = css_next_child(NULL, pos); if (next) return next; /* no child, visit my or the closest ancestor's next sibling */ while (pos != root) { next = css_next_child(pos, pos->parent); if (next) return next; pos = pos->parent; } return NULL; } EXPORT_SYMBOL_GPL(css_next_descendant_pre); /** * css_rightmost_descendant - return the rightmost descendant of a css * @pos: css of interest * * Return the rightmost descendant of @pos. If there's no descendant, @pos * is returned. This can be used during pre-order traversal to skip * subtree of @pos. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. Additionally, it isn't necessary to hold onto a reference to @pos. * This function will return the correct rightmost descendant as long as @pos * is accessible. */ struct cgroup_subsys_state * css_rightmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last, *tmp; cgroup_assert_mutex_or_rcu_locked(); do { last = pos; /* ->prev isn't RCU safe, walk ->next till the end */ pos = NULL; css_for_each_child(tmp, last) pos = tmp; } while (pos); return last; } static struct cgroup_subsys_state * css_leftmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last; do { last = pos; pos = css_next_child(NULL, pos); } while (pos); return last; } /** * css_next_descendant_post - find the next descendant for post-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_post(). Find the next descendant * to visit for post-order traversal of @root's descendants. @root is * included in the iteration and the last node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. Additionally, it isn't necessary to hold onto a reference to @pos. * This function will return the correct next descendant as long as both @pos * and @cgroup are accessible and @pos is a descendant of @cgroup. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state * css_next_descendant_post(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit leftmost descendant which may be @root */ if (!pos) return css_leftmost_descendant(root); /* if we visited @root, we're done */ if (pos == root) return NULL; /* if there's an unvisited sibling, visit its leftmost descendant */ next = css_next_child(pos, pos->parent); if (next) return css_leftmost_descendant(next); /* no sibling left, visit parent */ return pos->parent; } /** * css_has_online_children - does a css have online children * @css: the target css * * Returns %true if @css has any online children; otherwise, %false. This * function can be called from any context but the caller is responsible * for synchronizing against on/offlining as necessary. */ bool css_has_online_children(struct cgroup_subsys_state *css) { struct cgroup_subsys_state *child; bool ret = false; rcu_read_lock(); css_for_each_child(child, css) { if (child->flags & CSS_ONLINE) { ret = true; break; } } rcu_read_unlock(); return ret; } static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) { struct list_head *l; struct cgrp_cset_link *link; struct css_set *cset; lockdep_assert_held(&css_set_lock); /* find the next threaded cset */ if (it->tcset_pos) { l = it->tcset_pos->next; if (l != it->tcset_head) { it->tcset_pos = l; return container_of(l, struct css_set, threaded_csets_node); } it->tcset_pos = NULL; } /* find the next cset */ l = it->cset_pos; l = l->next; if (l == it->cset_head) { it->cset_pos = NULL; return NULL; } if (it->ss) { cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); } else { link = list_entry(l, struct cgrp_cset_link, cset_link); cset = link->cset; } it->cset_pos = l; /* initialize threaded css_set walking */ if (it->flags & CSS_TASK_ITER_THREADED) { if (it->cur_dcset) put_css_set_locked(it->cur_dcset); it->cur_dcset = cset; get_css_set(cset); it->tcset_head = &cset->threaded_csets; it->tcset_pos = &cset->threaded_csets; } return cset; } /** * css_task_iter_advance_css_set - advance a task iterator to the next css_set * @it: the iterator to advance * * Advance @it to the next css_set to walk. */ static void css_task_iter_advance_css_set(struct css_task_iter *it) { struct css_set *cset; lockdep_assert_held(&css_set_lock); /* Advance to the next non-empty css_set and find first non-empty tasks list*/ while ((cset = css_task_iter_next_css_set(it))) { if (!list_empty(&cset->tasks)) { it->cur_tasks_head = &cset->tasks; break; } else if (!list_empty(&cset->mg_tasks)) { it->cur_tasks_head = &cset->mg_tasks; break; } else if (!list_empty(&cset->dying_tasks)) { it->cur_tasks_head = &cset->dying_tasks; break; } } if (!cset) { it->task_pos = NULL; return; } it->task_pos = it->cur_tasks_head->next; /* * We don't keep css_sets locked across iteration steps and thus * need to take steps to ensure that iteration can be resumed after * the lock is re-acquired. Iteration is performed at two levels - * css_sets and tasks in them. * * Once created, a css_set never leaves its cgroup lists, so a * pinned css_set is guaranteed to stay put and we can resume * iteration afterwards. * * Tasks may leave @cset across iteration steps. This is resolved * by registering each iterator with the css_set currently being * walked and making css_set_move_task() advance iterators whose * next task is leaving. */ if (it->cur_cset) { list_del(&it->iters_node); put_css_set_locked(it->cur_cset); } get_css_set(cset); it->cur_cset = cset; list_add(&it->iters_node, &cset->task_iters); } static void css_task_iter_skip(struct css_task_iter *it, struct task_struct *task) { lockdep_assert_held(&css_set_lock); if (it->task_pos == &task->cg_list) { it->task_pos = it->task_pos->next; it->flags |= CSS_TASK_ITER_SKIPPED; } } static void css_task_iter_advance(struct css_task_iter *it) { struct task_struct *task; lockdep_assert_held(&css_set_lock); repeat: if (it->task_pos) { /* * Advance iterator to find next entry. We go through cset * tasks, mg_tasks and dying_tasks, when consumed we move onto * the next cset. */ if (it->flags & CSS_TASK_ITER_SKIPPED) it->flags &= ~CSS_TASK_ITER_SKIPPED; else it->task_pos = it->task_pos->next; if (it->task_pos == &it->cur_cset->tasks) { it->cur_tasks_head = &it->cur_cset->mg_tasks; it->task_pos = it->cur_tasks_head->next; } if (it->task_pos == &it->cur_cset->mg_tasks) { it->cur_tasks_head = &it->cur_cset->dying_tasks; it->task_pos = it->cur_tasks_head->next; } if (it->task_pos == &it->cur_cset->dying_tasks) css_task_iter_advance_css_set(it); } else { /* called from start, proceed to the first cset */ css_task_iter_advance_css_set(it); } if (!it->task_pos) return; task = list_entry(it->task_pos, struct task_struct, cg_list); if (it->flags & CSS_TASK_ITER_PROCS) { /* if PROCS, skip over tasks which aren't group leaders */ if (!thread_group_leader(task)) goto repeat; /* and dying leaders w/o live member threads */ if (it->cur_tasks_head == &it->cur_cset->dying_tasks && !atomic_read(&task->signal->live)) goto repeat; } else { /* skip all dying ones */ if (it->cur_tasks_head == &it->cur_cset->dying_tasks) goto repeat; } } /** * css_task_iter_start - initiate task iteration * @css: the css to walk tasks of * @flags: CSS_TASK_ITER_* flags * @it: the task iterator to use * * Initiate iteration through the tasks of @css. The caller can call * css_task_iter_next() to walk through the tasks until the function * returns NULL. On completion of iteration, css_task_iter_end() must be * called. */ void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, struct css_task_iter *it) { unsigned long irqflags; memset(it, 0, sizeof(*it)); spin_lock_irqsave(&css_set_lock, irqflags); it->ss = css->ss; it->flags = flags; if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) it->cset_pos = &css->cgroup->e_csets[css->ss->id]; else it->cset_pos = &css->cgroup->cset_links; it->cset_head = it->cset_pos; css_task_iter_advance(it); spin_unlock_irqrestore(&css_set_lock, irqflags); } /** * css_task_iter_next - return the next task for the iterator * @it: the task iterator being iterated * * The "next" function for task iteration. @it should have been * initialized via css_task_iter_start(). Returns NULL when the iteration * reaches the end. */ struct task_struct *css_task_iter_next(struct css_task_iter *it) { unsigned long irqflags; if (it->cur_task) { put_task_struct(it->cur_task); it->cur_task = NULL; } spin_lock_irqsave(&css_set_lock, irqflags); /* @it may be half-advanced by skips, finish advancing */ if (it->flags & CSS_TASK_ITER_SKIPPED) css_task_iter_advance(it); if (it->task_pos) { it->cur_task = list_entry(it->task_pos, struct task_struct, cg_list); get_task_struct(it->cur_task); css_task_iter_advance(it); } spin_unlock_irqrestore(&css_set_lock, irqflags); return it->cur_task; } /** * css_task_iter_end - finish task iteration * @it: the task iterator to finish * * Finish task iteration started by css_task_iter_start(). */ void css_task_iter_end(struct css_task_iter *it) { unsigned long irqflags; if (it->cur_cset) { spin_lock_irqsave(&css_set_lock, irqflags); list_del(&it->iters_node); put_css_set_locked(it->cur_cset); spin_unlock_irqrestore(&css_set_lock, irqflags); } if (it->cur_dcset) put_css_set(it->cur_dcset); if (it->cur_task) put_task_struct(it->cur_task); } static void cgroup_procs_release(struct kernfs_open_file *of) { struct cgroup_file_ctx *ctx = of->priv; if (ctx->procs.started) css_task_iter_end(&ctx->procs.iter); } static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) { struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; if (pos) (*pos)++; return css_task_iter_next(&ctx->procs.iter); } static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, unsigned int iter_flags) { struct kernfs_open_file *of = s->private; struct cgroup *cgrp = seq_css(s)->cgroup; struct cgroup_file_ctx *ctx = of->priv; struct css_task_iter *it = &ctx->procs.iter; /* * When a seq_file is seeked, it's always traversed sequentially * from position 0, so we can simply keep iterating on !0 *pos. */ if (!ctx->procs.started) { if (WARN_ON_ONCE((*pos))) return ERR_PTR(-EINVAL); css_task_iter_start(&cgrp->self, iter_flags, it); ctx->procs.started = true; } else if (!(*pos)) { css_task_iter_end(it); css_task_iter_start(&cgrp->self, iter_flags, it); } else return it->cur_task; return cgroup_procs_next(s, NULL, NULL); } static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) { struct cgroup *cgrp = seq_css(s)->cgroup; /* * All processes of a threaded subtree belong to the domain cgroup * of the subtree. Only threads can be distributed across the * subtree. Reject reads on cgroup.procs in the subtree proper. * They're always empty anyway. */ if (cgroup_is_threaded(cgrp)) return ERR_PTR(-EOPNOTSUPP); return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED); } static int cgroup_procs_show(struct seq_file *s, void *v) { seq_printf(s, "%d\n", task_pid_vnr(v)); return 0; } static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) { int ret; struct inode *inode; lockdep_assert_held(&cgroup_mutex); inode = kernfs_get_inode(sb, cgrp->procs_file.kn); if (!inode) return -ENOMEM; ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); iput(inode); return ret; } static int cgroup_procs_write_permission(struct cgroup *src_cgrp, struct cgroup *dst_cgrp, struct super_block *sb, struct cgroup_namespace *ns) { struct cgroup *com_cgrp = src_cgrp; int ret; lockdep_assert_held(&cgroup_mutex); /* find the common ancestor */ while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) com_cgrp = cgroup_parent(com_cgrp); /* %current should be authorized to migrate to the common ancestor */ ret = cgroup_may_write(com_cgrp, sb); if (ret) return ret; /* * If namespaces are delegation boundaries, %current must be able * to see both source and destination cgroups from its namespace. */ if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) return -ENOENT; return 0; } static int cgroup_attach_permissions(struct cgroup *src_cgrp, struct cgroup *dst_cgrp, struct super_block *sb, bool threadgroup, struct cgroup_namespace *ns) { int ret = 0; ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); if (ret) return ret; ret = cgroup_migrate_vet_dst(dst_cgrp); if (ret) return ret; if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) ret = -EOPNOTSUPP; return ret; } static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, bool threadgroup) { struct cgroup_file_ctx *ctx = of->priv; struct cgroup *src_cgrp, *dst_cgrp; struct task_struct *task; const struct cred *saved_cred; ssize_t ret; bool threadgroup_locked; dst_cgrp = cgroup_kn_lock_live(of->kn, false); if (!dst_cgrp) return -ENODEV; task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); ret = PTR_ERR_OR_ZERO(task); if (ret) goto out_unlock; /* find the source cgroup */ spin_lock_irq(&css_set_lock); src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); spin_unlock_irq(&css_set_lock); /* * Process and thread migrations follow same delegation rule. Check * permissions using the credentials from file open to protect against * inherited fd attacks. */ saved_cred = override_creds(of->file->f_cred); ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, of->file->f_path.dentry->d_sb, threadgroup, ctx->ns); revert_creds(saved_cred); if (ret) goto out_finish; ret = cgroup_attach_task(dst_cgrp, task, threadgroup); out_finish: cgroup_procs_write_finish(task, threadgroup_locked); out_unlock: cgroup_kn_unlock(of->kn); return ret; } static ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup_procs_write(of, buf, true) ?: nbytes; } static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) { return __cgroup_procs_start(s, pos, 0); } static ssize_t cgroup_threads_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup_procs_write(of, buf, false) ?: nbytes; } /* cgroup core interface files for the default hierarchy */ static struct cftype cgroup_base_files[] = { { .name = "cgroup.type", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = cgroup_type_show, .write = cgroup_type_write, }, { .name = "cgroup.procs", .flags = CFTYPE_NS_DELEGATABLE, .file_offset = offsetof(struct cgroup, procs_file), .release = cgroup_procs_release, .seq_start = cgroup_procs_start, .seq_next = cgroup_procs_next, .seq_show = cgroup_procs_show, .write = cgroup_procs_write, }, { .name = "cgroup.threads", .flags = CFTYPE_NS_DELEGATABLE, .release = cgroup_procs_release, .seq_start = cgroup_threads_start, .seq_next = cgroup_procs_next, .seq_show = cgroup_procs_show, .write = cgroup_threads_write, }, { .name = "cgroup.controllers", .seq_show = cgroup_controllers_show, }, { .name = "cgroup.subtree_control", .flags = CFTYPE_NS_DELEGATABLE, .seq_show = cgroup_subtree_control_show, .write = cgroup_subtree_control_write, }, { .name = "cgroup.events", .flags = CFTYPE_NOT_ON_ROOT, .file_offset = offsetof(struct cgroup, events_file), .seq_show = cgroup_events_show, }, { .name = "cgroup.max.descendants", .seq_show = cgroup_max_descendants_show, .write = cgroup_max_descendants_write, }, { .name = "cgroup.max.depth", .seq_show = cgroup_max_depth_show, .write = cgroup_max_depth_write, }, { .name = "cgroup.stat", .seq_show = cgroup_stat_show, }, { .name = "cgroup.freeze", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = cgroup_freeze_show, .write = cgroup_freeze_write, }, { .name = "cgroup.kill", .flags = CFTYPE_NOT_ON_ROOT, .write = cgroup_kill_write, }, { .name = "cpu.stat", .seq_show = cpu_stat_show, }, { .name = "cpu.stat.local", .seq_show = cpu_local_stat_show, }, { } /* terminate */ }; static struct cftype cgroup_psi_files[] = { #ifdef CONFIG_PSI { .name = "io.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), .seq_show = cgroup_io_pressure_show, .write = cgroup_io_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, { .name = "memory.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), .seq_show = cgroup_memory_pressure_show, .write = cgroup_memory_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, { .name = "cpu.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), .seq_show = cgroup_cpu_pressure_show, .write = cgroup_cpu_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, #ifdef CONFIG_IRQ_TIME_ACCOUNTING { .name = "irq.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), .seq_show = cgroup_irq_pressure_show, .write = cgroup_irq_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, #endif { .name = "cgroup.pressure", .seq_show = cgroup_pressure_show, .write = cgroup_pressure_write, }, #endif /* CONFIG_PSI */ { } /* terminate */ }; /* * css destruction is four-stage process. * * 1. Destruction starts. Killing of the percpu_ref is initiated. * Implemented in kill_css(). * * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs * and thus css_tryget_online() is guaranteed to fail, the css can be * offlined by invoking offline_css(). After offlining, the base ref is * put. Implemented in css_killed_work_fn(). * * 3. When the percpu_ref reaches zero, the only possible remaining * accessors are inside RCU read sections. css_release() schedules the * RCU callback. * * 4. After the grace period, the css can be freed. Implemented in * css_free_rwork_fn(). * * It is actually hairier because both step 2 and 4 require process context * and thus involve punting to css->destroy_work adding two additional * steps to the already complex sequence. */ static void css_free_rwork_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(to_rcu_work(work), struct cgroup_subsys_state, destroy_rwork); struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; percpu_ref_exit(&css->refcnt); if (ss) { /* css free path */ struct cgroup_subsys_state *parent = css->parent; int id = css->id; ss->css_free(css); cgroup_idr_remove(&ss->css_idr, id); cgroup_put(cgrp); if (parent) css_put(parent); } else { /* cgroup free path */ atomic_dec(&cgrp->root->nr_cgrps); if (!cgroup_on_dfl(cgrp)) cgroup1_pidlist_destroy_all(cgrp); cancel_work_sync(&cgrp->release_agent_work); bpf_cgrp_storage_free(cgrp); if (cgroup_parent(cgrp)) { /* * We get a ref to the parent, and put the ref when * this cgroup is being freed, so it's guaranteed * that the parent won't be destroyed before its * children. */ cgroup_put(cgroup_parent(cgrp)); kernfs_put(cgrp->kn); psi_cgroup_free(cgrp); cgroup_rstat_exit(cgrp); kfree(cgrp); } else { /* * This is root cgroup's refcnt reaching zero, * which indicates that the root should be * released. */ cgroup_destroy_root(cgrp->root); } } } static void css_release_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; cgroup_lock(); css->flags |= CSS_RELEASED; list_del_rcu(&css->sibling); if (ss) { struct cgroup *parent_cgrp; /* css release path */ if (!list_empty(&css->rstat_css_node)) { cgroup_rstat_flush(cgrp); list_del_rcu(&css->rstat_css_node); } cgroup_idr_replace(&ss->css_idr, NULL, css->id); if (ss->css_released) ss->css_released(css); cgrp->nr_dying_subsys[ss->id]--; /* * When a css is released and ready to be freed, its * nr_descendants must be zero. However, the corresponding * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem * is activated and deactivated multiple times with one or * more of its previous activation leaving behind dying csses. */ WARN_ON_ONCE(css->nr_descendants); parent_cgrp = cgroup_parent(cgrp); while (parent_cgrp) { parent_cgrp->nr_dying_subsys[ss->id]--; parent_cgrp = cgroup_parent(parent_cgrp); } } else { struct cgroup *tcgrp; /* cgroup release path */ TRACE_CGROUP_PATH(release, cgrp); cgroup_rstat_flush(cgrp); spin_lock_irq(&css_set_lock); for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) tcgrp->nr_dying_descendants--; spin_unlock_irq(&css_set_lock); /* * There are two control paths which try to determine * cgroup from dentry without going through kernfs - * cgroupstats_build() and css_tryget_online_from_dir(). * Those are supported by RCU protecting clearing of * cgrp->kn->priv backpointer. */ if (cgrp->kn) RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); } cgroup_unlock(); INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); } static void css_release(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); INIT_WORK(&css->destroy_work, css_release_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } static void init_and_link_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss, struct cgroup *cgrp) { lockdep_assert_held(&cgroup_mutex); cgroup_get_live(cgrp); memset(css, 0, sizeof(*css)); css->cgroup = cgrp; css->ss = ss; css->id = -1; INIT_LIST_HEAD(&css->sibling); INIT_LIST_HEAD(&css->children); INIT_LIST_HEAD(&css->rstat_css_node); css->serial_nr = css_serial_nr_next++; atomic_set(&css->online_cnt, 0); if (cgroup_parent(cgrp)) { css->parent = cgroup_css(cgroup_parent(cgrp), ss); css_get(css->parent); } if (ss->css_rstat_flush) list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); BUG_ON(cgroup_css(cgrp, ss)); } /* invoke ->css_online() on a new CSS and mark it online if successful */ static int online_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; int ret = 0; lockdep_assert_held(&cgroup_mutex); if (ss->css_online) ret = ss->css_online(css); if (!ret) { css->flags |= CSS_ONLINE; rcu_assign_pointer(css->cgroup->subsys[ss->id], css); atomic_inc(&css->online_cnt); if (css->parent) { atomic_inc(&css->parent->online_cnt); while ((css = css->parent)) css->nr_descendants++; } } return ret; } /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ static void offline_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; lockdep_assert_held(&cgroup_mutex); if (!(css->flags & CSS_ONLINE)) return; if (ss->css_offline) ss->css_offline(css); css->flags &= ~CSS_ONLINE; RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); wake_up_all(&css->cgroup->offline_waitq); css->cgroup->nr_dying_subsys[ss->id]++; /* * Parent css and cgroup cannot be freed until after the freeing * of child css, see css_free_rwork_fn(). */ while ((css = css->parent)) { css->nr_descendants--; css->cgroup->nr_dying_subsys[ss->id]++; } } /** * css_create - create a cgroup_subsys_state * @cgrp: the cgroup new css will be associated with * @ss: the subsys of new css * * Create a new css associated with @cgrp - @ss pair. On success, the new * css is online and installed in @cgrp. This function doesn't create the * interface files. Returns 0 on success, -errno on failure. */ static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); struct cgroup_subsys_state *css; int err; lockdep_assert_held(&cgroup_mutex); css = ss->css_alloc(parent_css); if (!css) css = ERR_PTR(-ENOMEM); if (IS_ERR(css)) return css; init_and_link_css(css, ss, cgrp); err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); if (err) goto err_free_css; err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); if (err < 0) goto err_free_css; css->id = err; /* @css is ready to be brought online now, make it visible */ list_add_tail_rcu(&css->sibling, &parent_css->children); cgroup_idr_replace(&ss->css_idr, css, css->id); err = online_css(css); if (err) goto err_list_del; return css; err_list_del: list_del_rcu(&css->sibling); err_free_css: list_del_rcu(&css->rstat_css_node); INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); return ERR_PTR(err); } /* * The returned cgroup is fully initialized including its control mask, but * it doesn't have the control mask applied. */ static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, umode_t mode) { struct cgroup_root *root = parent->root; struct cgroup *cgrp, *tcgrp; struct kernfs_node *kn; int level = parent->level + 1; int ret; /* allocate the cgroup and its ID, 0 is reserved for the root */ cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); if (!cgrp) return ERR_PTR(-ENOMEM); ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); if (ret) goto out_free_cgrp; ret = cgroup_rstat_init(cgrp); if (ret) goto out_cancel_ref; /* create the directory */ kn = kernfs_create_dir_ns(parent->kn, name, mode, current_fsuid(), current_fsgid(), cgrp, NULL); if (IS_ERR(kn)) { ret = PTR_ERR(kn); goto out_stat_exit; } cgrp->kn = kn; init_cgroup_housekeeping(cgrp); cgrp->self.parent = &parent->self; cgrp->root = root; cgrp->level = level; ret = psi_cgroup_alloc(cgrp); if (ret) goto out_kernfs_remove; if (cgrp->root == &cgrp_dfl_root) { ret = cgroup_bpf_inherit(cgrp); if (ret) goto out_psi_free; } /* * New cgroup inherits effective freeze counter, and * if the parent has to be frozen, the child has too. */ cgrp->freezer.e_freeze = parent->freezer.e_freeze; if (cgrp->freezer.e_freeze) { /* * Set the CGRP_FREEZE flag, so when a process will be * attached to the child cgroup, it will become frozen. * At this point the new cgroup is unpopulated, so we can * consider it frozen immediately. */ set_bit(CGRP_FREEZE, &cgrp->flags); set_bit(CGRP_FROZEN, &cgrp->flags); } spin_lock_irq(&css_set_lock); for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { cgrp->ancestors[tcgrp->level] = tcgrp; if (tcgrp != cgrp) { tcgrp->nr_descendants++; /* * If the new cgroup is frozen, all ancestor cgroups * get a new frozen descendant, but their state can't * change because of this. */ if (cgrp->freezer.e_freeze) tcgrp->freezer.nr_frozen_descendants++; } } spin_unlock_irq(&css_set_lock); if (notify_on_release(parent)) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); cgrp->self.serial_nr = css_serial_nr_next++; /* allocation complete, commit to creation */ list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); atomic_inc(&root->nr_cgrps); cgroup_get_live(parent); /* * On the default hierarchy, a child doesn't automatically inherit * subtree_control from the parent. Each is configured manually. */ if (!cgroup_on_dfl(cgrp)) cgrp->subtree_control = cgroup_control(cgrp); cgroup_propagate_control(cgrp); return cgrp; out_psi_free: psi_cgroup_free(cgrp); out_kernfs_remove: kernfs_remove(cgrp->kn); out_stat_exit: cgroup_rstat_exit(cgrp); out_cancel_ref: percpu_ref_exit(&cgrp->self.refcnt); out_free_cgrp: kfree(cgrp); return ERR_PTR(ret); } static bool cgroup_check_hierarchy_limits(struct cgroup *parent) { struct cgroup *cgroup; int ret = false; int level = 0; lockdep_assert_held(&cgroup_mutex); for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { if (cgroup->nr_descendants >= cgroup->max_descendants) goto fail; if (level >= cgroup->max_depth) goto fail; level++; } ret = true; fail: return ret; } int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) { struct cgroup *parent, *cgrp; int ret; /* do not accept '\n' to prevent making /proc//cgroup unparsable */ if (strchr(name, '\n')) return -EINVAL; parent = cgroup_kn_lock_live(parent_kn, false); if (!parent) return -ENODEV; if (!cgroup_check_hierarchy_limits(parent)) { ret = -EAGAIN; goto out_unlock; } cgrp = cgroup_create(parent, name, mode); if (IS_ERR(cgrp)) { ret = PTR_ERR(cgrp); goto out_unlock; } /* * This extra ref will be put in css_free_rwork_fn() and guarantees * that @cgrp->kn is always accessible. */ kernfs_get(cgrp->kn); ret = css_populate_dir(&cgrp->self); if (ret) goto out_destroy; ret = cgroup_apply_control_enable(cgrp); if (ret) goto out_destroy; TRACE_CGROUP_PATH(mkdir, cgrp); /* let's create and online css's */ kernfs_activate(cgrp->kn); ret = 0; goto out_unlock; out_destroy: cgroup_destroy_locked(cgrp); out_unlock: cgroup_kn_unlock(parent_kn); return ret; } /* * This is called when the refcnt of a css is confirmed to be killed. * css_tryget_online() is now guaranteed to fail. Tell the subsystem to * initiate destruction and put the css ref from kill_css(). */ static void css_killed_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); cgroup_lock(); do { offline_css(css); css_put(css); /* @css can't go away while we're holding cgroup_mutex */ css = css->parent; } while (css && atomic_dec_and_test(&css->online_cnt)); cgroup_unlock(); } /* css kill confirmation processing requires process context, bounce */ static void css_killed_ref_fn(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); if (atomic_dec_and_test(&css->online_cnt)) { INIT_WORK(&css->destroy_work, css_killed_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } } /** * kill_css - destroy a css * @css: css to destroy * * This function initiates destruction of @css by removing cgroup interface * files and putting its base reference. ->css_offline() will be invoked * asynchronously once css_tryget_online() is guaranteed to fail and when * the reference count reaches zero, @css will be released. */ static void kill_css(struct cgroup_subsys_state *css) { lockdep_assert_held(&cgroup_mutex); if (css->flags & CSS_DYING) return; css->flags |= CSS_DYING; /* * This must happen before css is disassociated with its cgroup. * See seq_css() for details. */ css_clear_dir(css); /* * Killing would put the base ref, but we need to keep it alive * until after ->css_offline(). */ css_get(css); /* * cgroup core guarantees that, by the time ->css_offline() is * invoked, no new css reference will be given out via * css_tryget_online(). We can't simply call percpu_ref_kill() and * proceed to offlining css's because percpu_ref_kill() doesn't * guarantee that the ref is seen as killed on all CPUs on return. * * Use percpu_ref_kill_and_confirm() to get notifications as each * css is confirmed to be seen as killed on all CPUs. */ percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); } /** * cgroup_destroy_locked - the first stage of cgroup destruction * @cgrp: cgroup to be destroyed * * css's make use of percpu refcnts whose killing latency shouldn't be * exposed to userland and are RCU protected. Also, cgroup core needs to * guarantee that css_tryget_online() won't succeed by the time * ->css_offline() is invoked. To satisfy all the requirements, * destruction is implemented in the following two steps. * * s1. Verify @cgrp can be destroyed and mark it dying. Remove all * userland visible parts and start killing the percpu refcnts of * css's. Set up so that the next stage will be kicked off once all * the percpu refcnts are confirmed to be killed. * * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the * rest of destruction. Once all cgroup references are gone, the * cgroup is RCU-freed. * * This function implements s1. After this step, @cgrp is gone as far as * the userland is concerned and a new cgroup with the same name may be * created. As cgroup doesn't care about the names internally, this * doesn't cause any problem. */ static int cgroup_destroy_locked(struct cgroup *cgrp) __releases(&cgroup_mutex) __acquires(&cgroup_mutex) { struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); struct cgroup_subsys_state *css; struct cgrp_cset_link *link; int ssid; lockdep_assert_held(&cgroup_mutex); /* * Only migration can raise populated from zero and we're already * holding cgroup_mutex. */ if (cgroup_is_populated(cgrp)) return -EBUSY; /* * Make sure there's no live children. We can't test emptiness of * ->self.children as dead children linger on it while being * drained; otherwise, "rmdir parent/child parent" may fail. */ if (css_has_online_children(&cgrp->self)) return -EBUSY; /* * Mark @cgrp and the associated csets dead. The former prevents * further task migration and child creation by disabling * cgroup_kn_lock_live(). The latter makes the csets ignored by * the migration path. */ cgrp->self.flags &= ~CSS_ONLINE; spin_lock_irq(&css_set_lock); list_for_each_entry(link, &cgrp->cset_links, cset_link) link->cset->dead = true; spin_unlock_irq(&css_set_lock); /* initiate massacre of all css's */ for_each_css(css, ssid, cgrp) kill_css(css); /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ css_clear_dir(&cgrp->self); kernfs_remove(cgrp->kn); if (cgroup_is_threaded(cgrp)) parent->nr_threaded_children--; spin_lock_irq(&css_set_lock); for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { tcgrp->nr_descendants--; tcgrp->nr_dying_descendants++; /* * If the dying cgroup is frozen, decrease frozen descendants * counters of ancestor cgroups. */ if (test_bit(CGRP_FROZEN, &cgrp->flags)) tcgrp->freezer.nr_frozen_descendants--; } spin_unlock_irq(&css_set_lock); cgroup1_check_for_release(parent); if (cgrp->root == &cgrp_dfl_root) cgroup_bpf_offline(cgrp); /* put the base reference */ percpu_ref_kill(&cgrp->self.refcnt); return 0; }; int cgroup_rmdir(struct kernfs_node *kn) { struct cgroup *cgrp; int ret = 0; cgrp = cgroup_kn_lock_live(kn, false); if (!cgrp) return 0; ret = cgroup_destroy_locked(cgrp); if (!ret) TRACE_CGROUP_PATH(rmdir, cgrp); cgroup_kn_unlock(kn); return ret; } static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { .show_options = cgroup_show_options, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .show_path = cgroup_show_path, }; static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) { struct cgroup_subsys_state *css; pr_debug("Initializing cgroup subsys %s\n", ss->name); cgroup_lock(); idr_init(&ss->css_idr); INIT_LIST_HEAD(&ss->cfts); /* Create the root cgroup state for this subsystem */ ss->root = &cgrp_dfl_root; css = ss->css_alloc(NULL); /* We don't handle early failures gracefully */ BUG_ON(IS_ERR(css)); init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); /* * Root csses are never destroyed and we can't initialize * percpu_ref during early init. Disable refcnting. */ css->flags |= CSS_NO_REF; if (early) { /* allocation can't be done safely during early init */ css->id = 1; } else { css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); BUG_ON(css->id < 0); } /* Update the init_css_set to contain a subsys * pointer to this state - since the subsystem is * newly registered, all tasks and hence the * init_css_set is in the subsystem's root cgroup. */ init_css_set.subsys[ss->id] = css; have_fork_callback |= (bool)ss->fork << ss->id; have_exit_callback |= (bool)ss->exit << ss->id; have_release_callback |= (bool)ss->release << ss->id; have_canfork_callback |= (bool)ss->can_fork << ss->id; /* At system boot, before all subsystems have been * registered, no tasks have been forked, so we don't * need to invoke fork callbacks here. */ BUG_ON(!list_empty(&init_task.tasks)); BUG_ON(online_css(css)); cgroup_unlock(); } /** * cgroup_init_early - cgroup initialization at system boot * * Initialize cgroups at system boot, and initialize any * subsystems that request early init. */ int __init cgroup_init_early(void) { static struct cgroup_fs_context __initdata ctx; struct cgroup_subsys *ss; int i; ctx.root = &cgrp_dfl_root; init_cgroup_root(&ctx); cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; RCU_INIT_POINTER(init_task.cgroups, &init_css_set); for_each_subsys(ss, i) { WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, ss->id, ss->name); WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); ss->id = i; ss->name = cgroup_subsys_name[i]; if (!ss->legacy_name) ss->legacy_name = cgroup_subsys_name[i]; if (ss->early_init) cgroup_init_subsys(ss, true); } return 0; } /** * cgroup_init - cgroup initialization * * Register cgroup filesystem and /proc file, and initialize * any subsystems that didn't request early init. */ int __init cgroup_init(void) { struct cgroup_subsys *ss; int ssid; BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); cgroup_rstat_boot(); get_user_ns(init_cgroup_ns.user_ns); cgroup_lock(); /* * Add init_css_set to the hash table so that dfl_root can link to * it during init. */ hash_add(css_set_table, &init_css_set.hlist, css_set_hash(init_css_set.subsys)); BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); cgroup_unlock(); for_each_subsys(ss, ssid) { if (ss->early_init) { struct cgroup_subsys_state *css = init_css_set.subsys[ss->id]; css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); BUG_ON(css->id < 0); } else { cgroup_init_subsys(ss, false); } list_add_tail(&init_css_set.e_cset_node[ssid], &cgrp_dfl_root.cgrp.e_csets[ssid]); /* * Setting dfl_root subsys_mask needs to consider the * disabled flag and cftype registration needs kmalloc, * both of which aren't available during early_init. */ if (!cgroup_ssid_enabled(ssid)) continue; if (cgroup1_ssid_disabled(ssid)) pr_info("Disabling %s control group subsystem in v1 mounts\n", ss->legacy_name); cgrp_dfl_root.subsys_mask |= 1 << ss->id; /* implicit controllers must be threaded too */ WARN_ON(ss->implicit_on_dfl && !ss->threaded); if (ss->implicit_on_dfl) cgrp_dfl_implicit_ss_mask |= 1 << ss->id; else if (!ss->dfl_cftypes) cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; if (ss->threaded) cgrp_dfl_threaded_ss_mask |= 1 << ss->id; if (ss->dfl_cftypes == ss->legacy_cftypes) { WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); } else { WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); } if (ss->bind) ss->bind(init_css_set.subsys[ssid]); cgroup_lock(); css_populate_dir(init_css_set.subsys[ssid]); cgroup_unlock(); } /* init_css_set.subsys[] has been updated, re-hash */ hash_del(&init_css_set.hlist); hash_add(css_set_table, &init_css_set.hlist, css_set_hash(init_css_set.subsys)); WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); WARN_ON(register_filesystem(&cgroup_fs_type)); WARN_ON(register_filesystem(&cgroup2_fs_type)); WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); #ifdef CONFIG_CPUSETS_V1 WARN_ON(register_filesystem(&cpuset_fs_type)); #endif return 0; } static int __init cgroup_wq_init(void) { /* * There isn't much point in executing destruction path in * parallel. Good chunk is serialized with cgroup_mutex anyway. * Use 1 for @max_active. * * We would prefer to do this in cgroup_init() above, but that * is called before init_workqueues(): so leave this until after. */ cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); BUG_ON(!cgroup_destroy_wq); return 0; } core_initcall(cgroup_wq_init); void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) { struct kernfs_node *kn; kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); if (!kn) return; kernfs_path(kn, buf, buflen); kernfs_put(kn); } /* * cgroup_get_from_id : get the cgroup associated with cgroup id * @id: cgroup id * On success return the cgrp or ERR_PTR on failure * Only cgroups within current task's cgroup NS are valid. */ struct cgroup *cgroup_get_from_id(u64 id) { struct kernfs_node *kn; struct cgroup *cgrp, *root_cgrp; kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); if (!kn) return ERR_PTR(-ENOENT); if (kernfs_type(kn) != KERNFS_DIR) { kernfs_put(kn); return ERR_PTR(-ENOENT); } rcu_read_lock(); cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (cgrp && !cgroup_tryget(cgrp)) cgrp = NULL; rcu_read_unlock(); kernfs_put(kn); if (!cgrp) return ERR_PTR(-ENOENT); root_cgrp = current_cgns_cgroup_dfl(); if (!cgroup_is_descendant(cgrp, root_cgrp)) { cgroup_put(cgrp); return ERR_PTR(-ENOENT); } return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_id); /* * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy * - Used for /proc//cgroup. */ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk) { char *buf; int retval; struct cgroup_root *root; retval = -ENOMEM; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; rcu_read_lock(); spin_lock_irq(&css_set_lock); for_each_root(root) { struct cgroup_subsys *ss; struct cgroup *cgrp; int ssid, count = 0; if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) continue; cgrp = task_cgroup_from_root(tsk, root); /* The root has already been unmounted. */ if (!cgrp) continue; seq_printf(m, "%d:", root->hierarchy_id); if (root != &cgrp_dfl_root) for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_printf(m, "%s%s", count++ ? "," : "", ss->legacy_name); if (strlen(root->name)) seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); /* * On traditional hierarchies, all zombie tasks show up as * belonging to the root cgroup. On the default hierarchy, * while a zombie doesn't show up in "cgroup.procs" and * thus can't be migrated, its /proc/PID/cgroup keeps * reporting the cgroup it belonged to before exiting. If * the cgroup is removed before the zombie is reaped, * " (deleted)" is appended to the cgroup path. */ if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, current->nsproxy->cgroup_ns); if (retval == -E2BIG) retval = -ENAMETOOLONG; if (retval < 0) goto out_unlock; seq_puts(m, buf); } else { seq_puts(m, "/"); } if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) seq_puts(m, " (deleted)\n"); else seq_putc(m, '\n'); } retval = 0; out_unlock: spin_unlock_irq(&css_set_lock); rcu_read_unlock(); kfree(buf); out: return retval; } /** * cgroup_fork - initialize cgroup related fields during copy_process() * @child: pointer to task_struct of forking parent process. * * A task is associated with the init_css_set until cgroup_post_fork() * attaches it to the target css_set. */ void cgroup_fork(struct task_struct *child) { RCU_INIT_POINTER(child->cgroups, &init_css_set); INIT_LIST_HEAD(&child->cg_list); } /** * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer * @f: file corresponding to cgroup_dir * * Find the cgroup from a file pointer associated with a cgroup directory. * Returns a pointer to the cgroup on success. ERR_PTR is returned if the * cgroup cannot be found. */ static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) { struct cgroup_subsys_state *css; css = css_tryget_online_from_dir(f->f_path.dentry, NULL); if (IS_ERR(css)) return ERR_CAST(css); return css->cgroup; } /** * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports * cgroup2. * @f: file corresponding to cgroup2_dir */ static struct cgroup *cgroup_get_from_file(struct file *f) { struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); if (IS_ERR(cgrp)) return ERR_CAST(cgrp); if (!cgroup_on_dfl(cgrp)) { cgroup_put(cgrp); return ERR_PTR(-EBADF); } return cgrp; } /** * cgroup_css_set_fork - find or create a css_set for a child process * @kargs: the arguments passed to create the child process * * This functions finds or creates a new css_set which the child * process will be attached to in cgroup_post_fork(). By default, * the child process will be given the same css_set as its parent. * * If CLONE_INTO_CGROUP is specified this function will try to find an * existing css_set which includes the requested cgroup and if not create * a new css_set that the child will be attached to later. If this function * succeeds it will hold cgroup_threadgroup_rwsem on return. If * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex * before grabbing cgroup_threadgroup_rwsem and will hold a reference * to the target cgroup. */ static int cgroup_css_set_fork(struct kernel_clone_args *kargs) __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) { int ret; struct cgroup *dst_cgrp = NULL; struct css_set *cset; struct super_block *sb; if (kargs->flags & CLONE_INTO_CGROUP) cgroup_lock(); cgroup_threadgroup_change_begin(current); spin_lock_irq(&css_set_lock); cset = task_css_set(current); get_css_set(cset); spin_unlock_irq(&css_set_lock); if (!(kargs->flags & CLONE_INTO_CGROUP)) { kargs->cset = cset; return 0; } CLASS(fd_raw, f)(kargs->cgroup); if (fd_empty(f)) { ret = -EBADF; goto err; } sb = fd_file(f)->f_path.dentry->d_sb; dst_cgrp = cgroup_get_from_file(fd_file(f)); if (IS_ERR(dst_cgrp)) { ret = PTR_ERR(dst_cgrp); dst_cgrp = NULL; goto err; } if (cgroup_is_dead(dst_cgrp)) { ret = -ENODEV; goto err; } /* * Verify that we the target cgroup is writable for us. This is * usually done by the vfs layer but since we're not going through * the vfs layer here we need to do it "manually". */ ret = cgroup_may_write(dst_cgrp, sb); if (ret) goto err; /* * Spawning a task directly into a cgroup works by passing a file * descriptor to the target cgroup directory. This can even be an O_PATH * file descriptor. But it can never be a cgroup.procs file descriptor. * This was done on purpose so spawning into a cgroup could be * conceptualized as an atomic * * fd = openat(dfd_cgroup, "cgroup.procs", ...); * write(fd, , ...); * * sequence, i.e. it's a shorthand for the caller opening and writing * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us * to always use the caller's credentials. */ ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, !(kargs->flags & CLONE_THREAD), current->nsproxy->cgroup_ns); if (ret) goto err; kargs->cset = find_css_set(cset, dst_cgrp); if (!kargs->cset) { ret = -ENOMEM; goto err; } put_css_set(cset); kargs->cgrp = dst_cgrp; return ret; err: cgroup_threadgroup_change_end(current); cgroup_unlock(); if (dst_cgrp) cgroup_put(dst_cgrp); put_css_set(cset); if (kargs->cset) put_css_set(kargs->cset); return ret; } /** * cgroup_css_set_put_fork - drop references we took during fork * @kargs: the arguments passed to create the child process * * Drop references to the prepared css_set and target cgroup if * CLONE_INTO_CGROUP was requested. */ static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) { struct cgroup *cgrp = kargs->cgrp; struct css_set *cset = kargs->cset; cgroup_threadgroup_change_end(current); if (cset) { put_css_set(cset); kargs->cset = NULL; } if (kargs->flags & CLONE_INTO_CGROUP) { cgroup_unlock(); if (cgrp) { cgroup_put(cgrp); kargs->cgrp = NULL; } } } /** * cgroup_can_fork - called on a new task before the process is exposed * @child: the child process * @kargs: the arguments passed to create the child process * * This prepares a new css_set for the child process which the child will * be attached to in cgroup_post_fork(). * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() * callback returns an error, the fork aborts with that error code. This * allows for a cgroup subsystem to conditionally allow or deny new forks. */ int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) { struct cgroup_subsys *ss; int i, j, ret; ret = cgroup_css_set_fork(kargs); if (ret) return ret; do_each_subsys_mask(ss, i, have_canfork_callback) { ret = ss->can_fork(child, kargs->cset); if (ret) goto out_revert; } while_each_subsys_mask(); return 0; out_revert: for_each_subsys(ss, j) { if (j >= i) break; if (ss->cancel_fork) ss->cancel_fork(child, kargs->cset); } cgroup_css_set_put_fork(kargs); return ret; } /** * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() * @child: the child process * @kargs: the arguments passed to create the child process * * This calls the cancel_fork() callbacks if a fork failed *after* * cgroup_can_fork() succeeded and cleans up references we took to * prepare a new css_set for the child process in cgroup_can_fork(). */ void cgroup_cancel_fork(struct task_struct *child, struct kernel_clone_args *kargs) { struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) if (ss->cancel_fork) ss->cancel_fork(child, kargs->cset); cgroup_css_set_put_fork(kargs); } /** * cgroup_post_fork - finalize cgroup setup for the child process * @child: the child process * @kargs: the arguments passed to create the child process * * Attach the child process to its css_set calling the subsystem fork() * callbacks. */ void cgroup_post_fork(struct task_struct *child, struct kernel_clone_args *kargs) __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) { unsigned long cgrp_flags = 0; bool kill = false; struct cgroup_subsys *ss; struct css_set *cset; int i; cset = kargs->cset; kargs->cset = NULL; spin_lock_irq(&css_set_lock); /* init tasks are special, only link regular threads */ if (likely(child->pid)) { if (kargs->cgrp) cgrp_flags = kargs->cgrp->flags; else cgrp_flags = cset->dfl_cgrp->flags; WARN_ON_ONCE(!list_empty(&child->cg_list)); cset->nr_tasks++; css_set_move_task(child, NULL, cset, false); } else { put_css_set(cset); cset = NULL; } if (!(child->flags & PF_KTHREAD)) { if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { /* * If the cgroup has to be frozen, the new task has * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to * get the task into the frozen state. */ spin_lock(&child->sighand->siglock); WARN_ON_ONCE(child->frozen); child->jobctl |= JOBCTL_TRAP_FREEZE; spin_unlock(&child->sighand->siglock); /* * Calling cgroup_update_frozen() isn't required here, * because it will be called anyway a bit later from * do_freezer_trap(). So we avoid cgroup's transient * switch from the frozen state and back. */ } /* * If the cgroup is to be killed notice it now and take the * child down right after we finished preparing it for * userspace. */ kill = test_bit(CGRP_KILL, &cgrp_flags); } spin_unlock_irq(&css_set_lock); /* * Call ss->fork(). This must happen after @child is linked on * css_set; otherwise, @child might change state between ->fork() * and addition to css_set. */ do_each_subsys_mask(ss, i, have_fork_callback) { ss->fork(child); } while_each_subsys_mask(); /* Make the new cset the root_cset of the new cgroup namespace. */ if (kargs->flags & CLONE_NEWCGROUP) { struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; get_css_set(cset); child->nsproxy->cgroup_ns->root_cset = cset; put_css_set(rcset); } /* Cgroup has to be killed so take down child immediately. */ if (unlikely(kill)) do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); cgroup_css_set_put_fork(kargs); } /** * cgroup_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process * * Description: Detach cgroup from @tsk. * */ void cgroup_exit(struct task_struct *tsk) { struct cgroup_subsys *ss; struct css_set *cset; int i; spin_lock_irq(&css_set_lock); WARN_ON_ONCE(list_empty(&tsk->cg_list)); cset = task_css_set(tsk); css_set_move_task(tsk, cset, NULL, false); cset->nr_tasks--; /* matches the signal->live check in css_task_iter_advance() */ if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) list_add_tail(&tsk->cg_list, &cset->dying_tasks); if (dl_task(tsk)) dec_dl_tasks_cs(tsk); WARN_ON_ONCE(cgroup_task_frozen(tsk)); if (unlikely(!(tsk->flags & PF_KTHREAD) && test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) cgroup_update_frozen(task_dfl_cgroup(tsk)); spin_unlock_irq(&css_set_lock); /* see cgroup_post_fork() for details */ do_each_subsys_mask(ss, i, have_exit_callback) { ss->exit(tsk); } while_each_subsys_mask(); } void cgroup_release(struct task_struct *task) { struct cgroup_subsys *ss; int ssid; do_each_subsys_mask(ss, ssid, have_release_callback) { ss->release(task); } while_each_subsys_mask(); if (!list_empty(&task->cg_list)) { spin_lock_irq(&css_set_lock); css_set_skip_task_iters(task_css_set(task), task); list_del_init(&task->cg_list); spin_unlock_irq(&css_set_lock); } } void cgroup_free(struct task_struct *task) { struct css_set *cset = task_css_set(task); put_css_set(cset); } static int __init cgroup_disable(char *str) { struct cgroup_subsys *ss; char *token; int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; for_each_subsys(ss, i) { if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) continue; static_branch_disable(cgroup_subsys_enabled_key[i]); pr_info("Disabling %s control group subsystem\n", ss->name); } for (i = 0; i < OPT_FEATURE_COUNT; i++) { if (strcmp(token, cgroup_opt_feature_names[i])) continue; cgroup_feature_disable_mask |= 1 << i; pr_info("Disabling %s control group feature\n", cgroup_opt_feature_names[i]); break; } } return 1; } __setup("cgroup_disable=", cgroup_disable); void __init __weak enable_debug_cgroup(void) { } static int __init enable_cgroup_debug(char *str) { cgroup_debug = true; enable_debug_cgroup(); return 1; } __setup("cgroup_debug", enable_cgroup_debug); static int __init cgroup_favordynmods_setup(char *str) { return (kstrtobool(str, &have_favordynmods) == 0); } __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); /** * css_tryget_online_from_dir - get corresponding css from a cgroup dentry * @dentry: directory dentry of interest * @ss: subsystem of interest * * If @dentry is a directory for a cgroup which has @ss enabled on it, try * to get the corresponding css and return it. If such css doesn't exist * or can't be pinned, an ERR_PTR value is returned. */ struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, struct cgroup_subsys *ss) { struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct file_system_type *s_type = dentry->d_sb->s_type; struct cgroup_subsys_state *css = NULL; struct cgroup *cgrp; /* is @dentry a cgroup dir? */ if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || !kn || kernfs_type(kn) != KERNFS_DIR) return ERR_PTR(-EBADF); rcu_read_lock(); /* * This path doesn't originate from kernfs and @kn could already * have been or be removed at any point. @kn->priv is RCU * protected for this access. See css_release_work_fn() for details. */ cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (cgrp) css = cgroup_css(cgrp, ss); if (!css || !css_tryget_online(css)) css = ERR_PTR(-ENOENT); rcu_read_unlock(); return css; } /** * css_from_id - lookup css by id * @id: the cgroup id * @ss: cgroup subsys to be looked into * * Returns the css if there's valid one with @id, otherwise returns NULL. * Should be called under rcu_read_lock(). */ struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) { WARN_ON_ONCE(!rcu_read_lock_held()); return idr_find(&ss->css_idr, id); } /** * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path * @path: path on the default hierarchy * * Find the cgroup at @path on the default hierarchy, increment its * reference count and return it. Returns pointer to the found cgroup on * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. */ struct cgroup *cgroup_get_from_path(const char *path) { struct kernfs_node *kn; struct cgroup *cgrp = ERR_PTR(-ENOENT); struct cgroup *root_cgrp; root_cgrp = current_cgns_cgroup_dfl(); kn = kernfs_walk_and_get(root_cgrp->kn, path); if (!kn) goto out; if (kernfs_type(kn) != KERNFS_DIR) { cgrp = ERR_PTR(-ENOTDIR); goto out_kernfs; } rcu_read_lock(); cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (!cgrp || !cgroup_tryget(cgrp)) cgrp = ERR_PTR(-ENOENT); rcu_read_unlock(); out_kernfs: kernfs_put(kn); out: return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_path); /** * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd * @fd: fd obtained by open(cgroup_dir) * * Find the cgroup from a fd which should be obtained * by opening a cgroup directory. Returns a pointer to the * cgroup on success. ERR_PTR is returned if the cgroup * cannot be found. */ struct cgroup *cgroup_v1v2_get_from_fd(int fd) { CLASS(fd_raw, f)(fd); if (fd_empty(f)) return ERR_PTR(-EBADF); return cgroup_v1v2_get_from_file(fd_file(f)); } /** * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports * cgroup2. * @fd: fd obtained by open(cgroup2_dir) */ struct cgroup *cgroup_get_from_fd(int fd) { struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); if (IS_ERR(cgrp)) return ERR_CAST(cgrp); if (!cgroup_on_dfl(cgrp)) { cgroup_put(cgrp); return ERR_PTR(-EBADF); } return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_fd); static u64 power_of_ten(int power) { u64 v = 1; while (power--) v *= 10; return v; } /** * cgroup_parse_float - parse a floating number * @input: input string * @dec_shift: number of decimal digits to shift * @v: output * * Parse a decimal floating point number in @input and store the result in * @v with decimal point right shifted @dec_shift times. For example, if * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. * Returns 0 on success, -errno otherwise. * * There's nothing cgroup specific about this function except that it's * currently the only user. */ int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) { s64 whole, frac = 0; int fstart = 0, fend = 0, flen; if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) return -EINVAL; if (frac < 0) return -EINVAL; flen = fend > fstart ? fend - fstart : 0; if (flen < dec_shift) frac *= power_of_ten(dec_shift - flen); else frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); *v = whole * power_of_ten(dec_shift) + frac; return 0; } /* * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data * definition in cgroup-defs.h. */ #ifdef CONFIG_SOCK_CGROUP_DATA void cgroup_sk_alloc(struct sock_cgroup_data *skcd) { struct cgroup *cgroup; rcu_read_lock(); /* Don't associate the sock with unrelated interrupted task's cgroup. */ if (in_interrupt()) { cgroup = &cgrp_dfl_root.cgrp; cgroup_get(cgroup); goto out; } while (true) { struct css_set *cset; cset = task_css_set(current); if (likely(cgroup_tryget(cset->dfl_cgrp))) { cgroup = cset->dfl_cgrp; break; } cpu_relax(); } out: skcd->cgroup = cgroup; cgroup_bpf_get(cgroup); rcu_read_unlock(); } void cgroup_sk_clone(struct sock_cgroup_data *skcd) { struct cgroup *cgrp = sock_cgroup_ptr(skcd); /* * We might be cloning a socket which is left in an empty * cgroup and the cgroup might have already been rmdir'd. * Don't use cgroup_get_live(). */ cgroup_get(cgrp); cgroup_bpf_get(cgrp); } void cgroup_sk_free(struct sock_cgroup_data *skcd) { struct cgroup *cgrp = sock_cgroup_ptr(skcd); cgroup_bpf_put(cgrp); cgroup_put(cgrp); } #endif /* CONFIG_SOCK_CGROUP_DATA */ #ifdef CONFIG_SYSFS static ssize_t show_delegatable_files(struct cftype *files, char *buf, ssize_t size, const char *prefix) { struct cftype *cft; ssize_t ret = 0; for (cft = files; cft && cft->name[0] != '\0'; cft++) { if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) continue; if (prefix) ret += snprintf(buf + ret, size - ret, "%s.", prefix); ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); if (WARN_ON(ret >= size)) break; } return ret; } static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct cgroup_subsys *ss; int ssid; ssize_t ret = 0; ret = show_delegatable_files(cgroup_base_files, buf + ret, PAGE_SIZE - ret, NULL); if (cgroup_psi_enabled()) ret += show_delegatable_files(cgroup_psi_files, buf + ret, PAGE_SIZE - ret, NULL); for_each_subsys(ss, ssid) ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, PAGE_SIZE - ret, cgroup_subsys_name[ssid]); return ret; } static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "nsdelegate\n" "favordynmods\n" "memory_localevents\n" "memory_recursiveprot\n" "memory_hugetlb_accounting\n" "pids_localevents\n"); } static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); static struct attribute *cgroup_sysfs_attrs[] = { &cgroup_delegate_attr.attr, &cgroup_features_attr.attr, NULL, }; static const struct attribute_group cgroup_sysfs_attr_group = { .attrs = cgroup_sysfs_attrs, .name = "cgroup", }; static int __init cgroup_sysfs_init(void) { return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); } subsys_initcall(cgroup_sysfs_init); #endif /* CONFIG_SYSFS */