// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #include "zstd_compress_internal.h" #include "zstd_lazy.h" #include "../common/bits.h" /* ZSTD_countTrailingZeros64 */ #define kLazySkippingStep 8 /*-************************************* * Binary Tree search ***************************************/ static void ZSTD_updateDUBT(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend, U32 mls) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hashLog = cParams->hashLog; U32* const bt = ms->chainTable; U32 const btLog = cParams->chainLog - 1; U32 const btMask = (1 << btLog) - 1; const BYTE* const base = ms->window.base; U32 const target = (U32)(ip - base); U32 idx = ms->nextToUpdate; if (idx != target) DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)", idx, target, ms->window.dictLimit); assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */ (void)iend; assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */ for ( ; idx < target ; idx++) { size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */ U32 const matchIndex = hashTable[h]; U32* const nextCandidatePtr = bt + 2*(idx&btMask); U32* const sortMarkPtr = nextCandidatePtr + 1; DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx); hashTable[h] = idx; /* Update Hash Table */ *nextCandidatePtr = matchIndex; /* update BT like a chain */ *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK; } ms->nextToUpdate = target; } /* ZSTD_insertDUBT1() : * sort one already inserted but unsorted position * assumption : curr >= btlow == (curr - btmask) * doesn't fail */ static void ZSTD_insertDUBT1(const ZSTD_matchState_t* ms, U32 curr, const BYTE* inputEnd, U32 nbCompares, U32 btLow, const ZSTD_dictMode_e dictMode) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const bt = ms->chainTable; U32 const btLog = cParams->chainLog - 1; U32 const btMask = (1 << btLog) - 1; size_t commonLengthSmaller=0, commonLengthLarger=0; const BYTE* const base = ms->window.base; const BYTE* const dictBase = ms->window.dictBase; const U32 dictLimit = ms->window.dictLimit; const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr; const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* match; U32* smallerPtr = bt + 2*(curr&btMask); U32* largerPtr = smallerPtr + 1; U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */ U32 dummy32; /* to be nullified at the end */ U32 const windowValid = ms->window.lowLimit; U32 const maxDistance = 1U << cParams->windowLog; U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid; DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)", curr, dictLimit, windowLow); assert(curr >= btLow); assert(ip < iend); /* condition for ZSTD_count */ for (; nbCompares && (matchIndex > windowLow); --nbCompares) { U32* const nextPtr = bt + 2*(matchIndex & btMask); size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ assert(matchIndex < curr); /* note : all candidates are now supposed sorted, * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */ if ( (dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit) /* both in current segment*/ || (curr < dictLimit) /* both in extDict */) { const BYTE* const mBase = ( (dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) ? base : dictBase; assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */ || (curr < dictLimit) ); match = mBase + matchIndex; matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); } else { match = dictBase + matchIndex; matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); if (matchIndex+matchLength >= dictLimit) match = base + matchIndex; /* preparation for next read of match[matchLength] */ } DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ", curr, matchIndex, (U32)matchLength); if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ } if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ /* match is smaller than current */ *smallerPtr = matchIndex; /* update smaller idx */ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u", matchIndex, btLow, nextPtr[1]); smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ } else { /* match is larger than current */ *largerPtr = matchIndex; commonLengthLarger = matchLength; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u", matchIndex, btLow, nextPtr[0]); largerPtr = nextPtr; matchIndex = nextPtr[0]; } } *smallerPtr = *largerPtr = 0; } static size_t ZSTD_DUBT_findBetterDictMatch ( const ZSTD_matchState_t* ms, const BYTE* const ip, const BYTE* const iend, size_t* offsetPtr, size_t bestLength, U32 nbCompares, U32 const mls, const ZSTD_dictMode_e dictMode) { const ZSTD_matchState_t * const dms = ms->dictMatchState; const ZSTD_compressionParameters* const dmsCParams = &dms->cParams; const U32 * const dictHashTable = dms->hashTable; U32 const hashLog = dmsCParams->hashLog; size_t const h = ZSTD_hashPtr(ip, hashLog, mls); U32 dictMatchIndex = dictHashTable[h]; const BYTE* const base = ms->window.base; const BYTE* const prefixStart = base + ms->window.dictLimit; U32 const curr = (U32)(ip-base); const BYTE* const dictBase = dms->window.base; const BYTE* const dictEnd = dms->window.nextSrc; U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base); U32 const dictLowLimit = dms->window.lowLimit; U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit; U32* const dictBt = dms->chainTable; U32 const btLog = dmsCParams->chainLog - 1; U32 const btMask = (1 << btLog) - 1; U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask; size_t commonLengthSmaller=0, commonLengthLarger=0; (void)dictMode; assert(dictMode == ZSTD_dictMatchState); for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) { U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask); size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ const BYTE* match = dictBase + dictMatchIndex; matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); if (dictMatchIndex+matchLength >= dictHighLimit) match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */ if (matchLength > bestLength) { U32 matchIndex = dictMatchIndex + dictIndexDelta; if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) { DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)", curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, OFFSET_TO_OFFBASE(curr - matchIndex), dictMatchIndex, matchIndex); bestLength = matchLength, *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); } if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */ break; /* drop, to guarantee consistency (miss a little bit of compression) */ } } if (match[matchLength] < ip[matchLength]) { if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ } else { /* match is larger than current */ if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ commonLengthLarger = matchLength; dictMatchIndex = nextPtr[0]; } } if (bestLength >= MINMATCH) { U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offsetPtr); (void)mIndex; DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)", curr, (U32)bestLength, (U32)*offsetPtr, mIndex); } return bestLength; } static size_t ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms, const BYTE* const ip, const BYTE* const iend, size_t* offBasePtr, U32 const mls, const ZSTD_dictMode_e dictMode) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hashLog = cParams->hashLog; size_t const h = ZSTD_hashPtr(ip, hashLog, mls); U32 matchIndex = hashTable[h]; const BYTE* const base = ms->window.base; U32 const curr = (U32)(ip-base); U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog); U32* const bt = ms->chainTable; U32 const btLog = cParams->chainLog - 1; U32 const btMask = (1 << btLog) - 1; U32 const btLow = (btMask >= curr) ? 0 : curr - btMask; U32 const unsortLimit = MAX(btLow, windowLow); U32* nextCandidate = bt + 2*(matchIndex&btMask); U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1; U32 nbCompares = 1U << cParams->searchLog; U32 nbCandidates = nbCompares; U32 previousCandidate = 0; DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr); assert(ip <= iend-8); /* required for h calculation */ assert(dictMode != ZSTD_dedicatedDictSearch); /* reach end of unsorted candidates list */ while ( (matchIndex > unsortLimit) && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK) && (nbCandidates > 1) ) { DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted", matchIndex); *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */ previousCandidate = matchIndex; matchIndex = *nextCandidate; nextCandidate = bt + 2*(matchIndex&btMask); unsortedMark = bt + 2*(matchIndex&btMask) + 1; nbCandidates --; } /* nullify last candidate if it's still unsorted * simplification, detrimental to compression ratio, beneficial for speed */ if ( (matchIndex > unsortLimit) && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) { DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u", matchIndex); *nextCandidate = *unsortedMark = 0; } /* batch sort stacked candidates */ matchIndex = previousCandidate; while (matchIndex) { /* will end on matchIndex == 0 */ U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1; U32 const nextCandidateIdx = *nextCandidateIdxPtr; ZSTD_insertDUBT1(ms, matchIndex, iend, nbCandidates, unsortLimit, dictMode); matchIndex = nextCandidateIdx; nbCandidates++; } /* find longest match */ { size_t commonLengthSmaller = 0, commonLengthLarger = 0; const BYTE* const dictBase = ms->window.dictBase; const U32 dictLimit = ms->window.dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const prefixStart = base + dictLimit; U32* smallerPtr = bt + 2*(curr&btMask); U32* largerPtr = bt + 2*(curr&btMask) + 1; U32 matchEndIdx = curr + 8 + 1; U32 dummy32; /* to be nullified at the end */ size_t bestLength = 0; matchIndex = hashTable[h]; hashTable[h] = curr; /* Update Hash Table */ for (; nbCompares && (matchIndex > windowLow); --nbCompares) { U32* const nextPtr = bt + 2*(matchIndex & btMask); size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ const BYTE* match; if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) { match = base + matchIndex; matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); } else { match = dictBase + matchIndex; matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); if (matchIndex+matchLength >= dictLimit) match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ } if (matchLength > bestLength) { if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength; if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)*offBasePtr)) ) bestLength = matchLength, *offBasePtr = OFFSET_TO_OFFBASE(curr - matchIndex); if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ if (dictMode == ZSTD_dictMatchState) { nbCompares = 0; /* in addition to avoiding checking any * further in this loop, make sure we * skip checking in the dictionary. */ } break; /* drop, to guarantee consistency (miss a little bit of compression) */ } } if (match[matchLength] < ip[matchLength]) { /* match is smaller than current */ *smallerPtr = matchIndex; /* update smaller idx */ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ } else { /* match is larger than current */ *largerPtr = matchIndex; commonLengthLarger = matchLength; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ largerPtr = nextPtr; matchIndex = nextPtr[0]; } } *smallerPtr = *largerPtr = 0; assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ if (dictMode == ZSTD_dictMatchState && nbCompares) { bestLength = ZSTD_DUBT_findBetterDictMatch( ms, ip, iend, offBasePtr, bestLength, nbCompares, mls, dictMode); } assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */ ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ if (bestLength >= MINMATCH) { U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offBasePtr); (void)mIndex; DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)", curr, (U32)bestLength, (U32)*offBasePtr, mIndex); } return bestLength; } } /* ZSTD_BtFindBestMatch() : Tree updater, providing best match */ FORCE_INLINE_TEMPLATE size_t ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms, const BYTE* const ip, const BYTE* const iLimit, size_t* offBasePtr, const U32 mls /* template */, const ZSTD_dictMode_e dictMode) { DEBUGLOG(7, "ZSTD_BtFindBestMatch"); if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ ZSTD_updateDUBT(ms, ip, iLimit, mls); return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offBasePtr, mls, dictMode); } /* ********************************* * Dedicated dict search ***********************************/ void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip) { const BYTE* const base = ms->window.base; U32 const target = (U32)(ip - base); U32* const hashTable = ms->hashTable; U32* const chainTable = ms->chainTable; U32 const chainSize = 1 << ms->cParams.chainLog; U32 idx = ms->nextToUpdate; U32 const minChain = chainSize < target - idx ? target - chainSize : idx; U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG; U32 const cacheSize = bucketSize - 1; U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize; U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts; /* We know the hashtable is oversized by a factor of `bucketSize`. * We are going to temporarily pretend `bucketSize == 1`, keeping only a * single entry. We will use the rest of the space to construct a temporary * chaintable. */ U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; U32* const tmpHashTable = hashTable; U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog); U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog; U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx; U32 hashIdx; assert(ms->cParams.chainLog <= 24); assert(ms->cParams.hashLog > ms->cParams.chainLog); assert(idx != 0); assert(tmpMinChain <= minChain); /* fill conventional hash table and conventional chain table */ for ( ; idx < target; idx++) { U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch); if (idx >= tmpMinChain) { tmpChainTable[idx - tmpMinChain] = hashTable[h]; } tmpHashTable[h] = idx; } /* sort chains into ddss chain table */ { U32 chainPos = 0; for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) { U32 count; U32 countBeyondMinChain = 0; U32 i = tmpHashTable[hashIdx]; for (count = 0; i >= tmpMinChain && count < cacheSize; count++) { /* skip through the chain to the first position that won't be * in the hash cache bucket */ if (i < minChain) { countBeyondMinChain++; } i = tmpChainTable[i - tmpMinChain]; } if (count == cacheSize) { for (count = 0; count < chainLimit;) { if (i < minChain) { if (!i || ++countBeyondMinChain > cacheSize) { /* only allow pulling `cacheSize` number of entries * into the cache or chainTable beyond `minChain`, * to replace the entries pulled out of the * chainTable into the cache. This lets us reach * back further without increasing the total number * of entries in the chainTable, guaranteeing the * DDSS chain table will fit into the space * allocated for the regular one. */ break; } } chainTable[chainPos++] = i; count++; if (i < tmpMinChain) { break; } i = tmpChainTable[i - tmpMinChain]; } } else { count = 0; } if (count) { tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count; } else { tmpHashTable[hashIdx] = 0; } } assert(chainPos <= chainSize); /* I believe this is guaranteed... */ } /* move chain pointers into the last entry of each hash bucket */ for (hashIdx = (1 << hashLog); hashIdx; ) { U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG; U32 const chainPackedPointer = tmpHashTable[hashIdx]; U32 i; for (i = 0; i < cacheSize; i++) { hashTable[bucketIdx + i] = 0; } hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer; } /* fill the buckets of the hash table */ for (idx = ms->nextToUpdate; idx < target; idx++) { U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch) << ZSTD_LAZY_DDSS_BUCKET_LOG; U32 i; /* Shift hash cache down 1. */ for (i = cacheSize - 1; i; i--) hashTable[h + i] = hashTable[h + i - 1]; hashTable[h] = idx; } ms->nextToUpdate = target; } /* Returns the longest match length found in the dedicated dict search structure. * If none are longer than the argument ml, then ml will be returned. */ FORCE_INLINE_TEMPLATE size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts, const ZSTD_matchState_t* const dms, const BYTE* const ip, const BYTE* const iLimit, const BYTE* const prefixStart, const U32 curr, const U32 dictLimit, const size_t ddsIdx) { const U32 ddsLowestIndex = dms->window.dictLimit; const BYTE* const ddsBase = dms->window.base; const BYTE* const ddsEnd = dms->window.nextSrc; const U32 ddsSize = (U32)(ddsEnd - ddsBase); const U32 ddsIndexDelta = dictLimit - ddsSize; const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG); const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1; U32 ddsAttempt; U32 matchIndex; for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) { PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]); } { U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; U32 const chainIndex = chainPackedPointer >> 8; PREFETCH_L1(&dms->chainTable[chainIndex]); } for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) { size_t currentMl=0; const BYTE* match; matchIndex = dms->hashTable[ddsIdx + ddsAttempt]; match = ddsBase + matchIndex; if (!matchIndex) { return ml; } /* guaranteed by table construction */ (void)ddsLowestIndex; assert(matchIndex >= ddsLowestIndex); assert(match+4 <= ddsEnd); if (MEM_read32(match) == MEM_read32(ip)) { /* assumption : matchIndex <= dictLimit-4 (by table construction) */ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; } /* save best solution */ if (currentMl > ml) { ml = currentMl; *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta)); if (ip+currentMl == iLimit) { /* best possible, avoids read overflow on next attempt */ return ml; } } } { U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; U32 chainIndex = chainPackedPointer >> 8; U32 const chainLength = chainPackedPointer & 0xFF; U32 const chainAttempts = nbAttempts - ddsAttempt; U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts; U32 chainAttempt; for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) { PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]); } for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) { size_t currentMl=0; const BYTE* match; matchIndex = dms->chainTable[chainIndex]; match = ddsBase + matchIndex; /* guaranteed by table construction */ assert(matchIndex >= ddsLowestIndex); assert(match+4 <= ddsEnd); if (MEM_read32(match) == MEM_read32(ip)) { /* assumption : matchIndex <= dictLimit-4 (by table construction) */ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; } /* save best solution */ if (currentMl > ml) { ml = currentMl; *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta)); if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ } } } return ml; } /* ********************************* * Hash Chain ***********************************/ #define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)] /* Update chains up to ip (excluded) Assumption : always within prefix (i.e. not within extDict) */ FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal( ZSTD_matchState_t* ms, const ZSTD_compressionParameters* const cParams, const BYTE* ip, U32 const mls, U32 const lazySkipping) { U32* const hashTable = ms->hashTable; const U32 hashLog = cParams->hashLog; U32* const chainTable = ms->chainTable; const U32 chainMask = (1 << cParams->chainLog) - 1; const BYTE* const base = ms->window.base; const U32 target = (U32)(ip - base); U32 idx = ms->nextToUpdate; while(idx < target) { /* catch up */ size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls); NEXT_IN_CHAIN(idx, chainMask) = hashTable[h]; hashTable[h] = idx; idx++; /* Stop inserting every position when in the lazy skipping mode. */ if (lazySkipping) break; } ms->nextToUpdate = target; return hashTable[ZSTD_hashPtr(ip, hashLog, mls)]; } U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) { const ZSTD_compressionParameters* const cParams = &ms->cParams; return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch, /* lazySkipping*/ 0); } /* inlining is important to hardwire a hot branch (template emulation) */ FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch( ZSTD_matchState_t* ms, const BYTE* const ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 mls, const ZSTD_dictMode_e dictMode) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const chainTable = ms->chainTable; const U32 chainSize = (1 << cParams->chainLog); const U32 chainMask = chainSize-1; const BYTE* const base = ms->window.base; const BYTE* const dictBase = ms->window.dictBase; const U32 dictLimit = ms->window.dictLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const U32 curr = (U32)(ip-base); const U32 maxDistance = 1U << cParams->windowLog; const U32 lowestValid = ms->window.lowLimit; const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; const U32 isDictionary = (ms->loadedDictEnd != 0); const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; const U32 minChain = curr > chainSize ? curr - chainSize : 0; U32 nbAttempts = 1U << cParams->searchLog; size_t ml=4-1; const ZSTD_matchState_t* const dms = ms->dictMatchState; const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0; const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0; U32 matchIndex; if (dictMode == ZSTD_dedicatedDictSearch) { const U32* entry = &dms->hashTable[ddsIdx]; PREFETCH_L1(entry); } /* HC4 match finder */ matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls, ms->lazySkipping); for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) { size_t currentMl=0; if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { const BYTE* const match = base + matchIndex; assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ /* read 4B starting from (match + ml + 1 - sizeof(U32)) */ if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */ currentMl = ZSTD_count(ip, match, iLimit); } else { const BYTE* const match = dictBase + matchIndex; assert(match+4 <= dictEnd); if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; } /* save best solution */ if (currentMl > ml) { ml = currentMl; *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ } if (matchIndex <= minChain) break; matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask); } assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ if (dictMode == ZSTD_dedicatedDictSearch) { ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms, ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); } else if (dictMode == ZSTD_dictMatchState) { const U32* const dmsChainTable = dms->chainTable; const U32 dmsChainSize = (1 << dms->cParams.chainLog); const U32 dmsChainMask = dmsChainSize - 1; const U32 dmsLowestIndex = dms->window.dictLimit; const BYTE* const dmsBase = dms->window.base; const BYTE* const dmsEnd = dms->window.nextSrc; const U32 dmsSize = (U32)(dmsEnd - dmsBase); const U32 dmsIndexDelta = dictLimit - dmsSize; const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0; matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)]; for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) { size_t currentMl=0; const BYTE* const match = dmsBase + matchIndex; assert(match+4 <= dmsEnd); if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; /* save best solution */ if (currentMl > ml) { ml = currentMl; assert(curr > matchIndex + dmsIndexDelta); *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta)); if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ } if (matchIndex <= dmsMinChain) break; matchIndex = dmsChainTable[matchIndex & dmsChainMask]; } } return ml; } /* ********************************* * (SIMD) Row-based matchfinder ***********************************/ /* Constants for row-based hash */ #define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1) #define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */ #define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1) typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */ /* ZSTD_VecMask_next(): * Starting from the LSB, returns the idx of the next non-zero bit. * Basically counting the nb of trailing zeroes. */ MEM_STATIC U32 ZSTD_VecMask_next(ZSTD_VecMask val) { return ZSTD_countTrailingZeros64(val); } /* ZSTD_row_nextIndex(): * Returns the next index to insert at within a tagTable row, and updates the "head" * value to reflect the update. Essentially cycles backwards from [1, {entries per row}) */ FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) { U32 next = (*tagRow-1) & rowMask; next += (next == 0) ? rowMask : 0; /* skip first position */ *tagRow = (BYTE)next; return next; } /* ZSTD_isAligned(): * Checks that a pointer is aligned to "align" bytes which must be a power of 2. */ MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) { assert((align & (align - 1)) == 0); return (((size_t)ptr) & (align - 1)) == 0; } /* ZSTD_row_prefetch(): * Performs prefetching for the hashTable and tagTable at a given row. */ FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* tagTable, U32 const relRow, U32 const rowLog) { PREFETCH_L1(hashTable + relRow); if (rowLog >= 5) { PREFETCH_L1(hashTable + relRow + 16); /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */ } PREFETCH_L1(tagTable + relRow); if (rowLog == 6) { PREFETCH_L1(tagTable + relRow + 32); } assert(rowLog == 4 || rowLog == 5 || rowLog == 6); assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */ assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */ } /* ZSTD_row_fillHashCache(): * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries, * but not beyond iLimit. */ FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base, U32 const rowLog, U32 const mls, U32 idx, const BYTE* const iLimit) { U32 const* const hashTable = ms->hashTable; BYTE const* const tagTable = ms->tagTable; U32 const hashLog = ms->rowHashLog; U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1); U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch); for (; idx < lim; ++idx) { U32 const hash = (U32)ZSTD_hashPtrSalted(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt); U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash; } DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1], ms->hashCache[2], ms->hashCache[3], ms->hashCache[4], ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]); } /* ZSTD_row_nextCachedHash(): * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable. */ FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable, BYTE const* tagTable, BYTE const* base, U32 idx, U32 const hashLog, U32 const rowLog, U32 const mls, U64 const hashSalt) { U32 const newHash = (U32)ZSTD_hashPtrSalted(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt); U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); { U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK]; cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash; return hash; } } /* ZSTD_row_update_internalImpl(): * Updates the hash table with positions starting from updateStartIdx until updateEndIdx. */ FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms, U32 updateStartIdx, U32 const updateEndIdx, U32 const mls, U32 const rowLog, U32 const rowMask, U32 const useCache) { U32* const hashTable = ms->hashTable; BYTE* const tagTable = ms->tagTable; U32 const hashLog = ms->rowHashLog; const BYTE* const base = ms->window.base; DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx); for (; updateStartIdx < updateEndIdx; ++updateStartIdx) { U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls, ms->hashSalt) : (U32)ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt); U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; U32* const row = hashTable + relRow; BYTE* tagRow = tagTable + relRow; U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); assert(hash == ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt)); tagRow[pos] = hash & ZSTD_ROW_HASH_TAG_MASK; row[pos] = updateStartIdx; } } /* ZSTD_row_update_internal(): * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate. * Skips sections of long matches as is necessary. */ FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip, U32 const mls, U32 const rowLog, U32 const rowMask, U32 const useCache) { U32 idx = ms->nextToUpdate; const BYTE* const base = ms->window.base; const U32 target = (U32)(ip - base); const U32 kSkipThreshold = 384; const U32 kMaxMatchStartPositionsToUpdate = 96; const U32 kMaxMatchEndPositionsToUpdate = 32; if (useCache) { /* Only skip positions when using hash cache, i.e. * if we are loading a dict, don't skip anything. * If we decide to skip, then we only update a set number * of positions at the beginning and end of the match. */ if (UNLIKELY(target - idx > kSkipThreshold)) { U32 const bound = idx + kMaxMatchStartPositionsToUpdate; ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache); idx = target - kMaxMatchEndPositionsToUpdate; ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1); } } assert(target >= idx); ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache); ms->nextToUpdate = target; } /* ZSTD_row_update(): * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary * processing. */ void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) { const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); const U32 rowMask = (1u << rowLog) - 1; const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */); DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog); ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* don't use cache */); } /* Returns the mask width of bits group of which will be set to 1. Given not all * architectures have easy movemask instruction, this helps to iterate over * groups of bits easier and faster. */ FORCE_INLINE_TEMPLATE U32 ZSTD_row_matchMaskGroupWidth(const U32 rowEntries) { assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64); assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES); (void)rowEntries; #if defined(ZSTD_ARCH_ARM_NEON) /* NEON path only works for little endian */ if (!MEM_isLittleEndian()) { return 1; } if (rowEntries == 16) { return 4; } if (rowEntries == 32) { return 2; } if (rowEntries == 64) { return 1; } #endif return 1; } #if defined(ZSTD_ARCH_X86_SSE2) FORCE_INLINE_TEMPLATE ZSTD_VecMask ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head) { const __m128i comparisonMask = _mm_set1_epi8((char)tag); int matches[4] = {0}; int i; assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4); for (i=0; i> chunkSize; do { size_t chunk = MEM_readST(&src[i]); chunk ^= splatChar; chunk = (((chunk | x80) - x01) | chunk) & x80; matches <<= chunkSize; matches |= (chunk * extractMagic) >> shiftAmount; i -= chunkSize; } while (i >= 0); } else { /* big endian: reverse bits during extraction */ const size_t msb = xFF ^ (xFF >> 1); const size_t extractMagic = (msb / 0x1FF) | msb; do { size_t chunk = MEM_readST(&src[i]); chunk ^= splatChar; chunk = (((chunk | x80) - x01) | chunk) & x80; matches <<= chunkSize; matches |= ((chunk >> 7) * extractMagic) >> shiftAmount; i -= chunkSize; } while (i >= 0); } matches = ~matches; if (rowEntries == 16) { return ZSTD_rotateRight_U16((U16)matches, headGrouped); } else if (rowEntries == 32) { return ZSTD_rotateRight_U32((U32)matches, headGrouped); } else { return ZSTD_rotateRight_U64((U64)matches, headGrouped); } } #endif } /* The high-level approach of the SIMD row based match finder is as follows: * - Figure out where to insert the new entry: * - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag" * - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines * which row to insert into. * - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can * be considered as a circular buffer with a "head" index that resides in the tagTable. * - Also insert the "tag" into the equivalent row and position in the tagTable. * - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry. * The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively, * for alignment/performance reasons, leaving some bytes unused. * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and * generate a bitfield that we can cycle through to check the collisions in the hash table. * - Pick the longest match. */ FORCE_INLINE_TEMPLATE size_t ZSTD_RowFindBestMatch( ZSTD_matchState_t* ms, const BYTE* const ip, const BYTE* const iLimit, size_t* offsetPtr, const U32 mls, const ZSTD_dictMode_e dictMode, const U32 rowLog) { U32* const hashTable = ms->hashTable; BYTE* const tagTable = ms->tagTable; U32* const hashCache = ms->hashCache; const U32 hashLog = ms->rowHashLog; const ZSTD_compressionParameters* const cParams = &ms->cParams; const BYTE* const base = ms->window.base; const BYTE* const dictBase = ms->window.dictBase; const U32 dictLimit = ms->window.dictLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const U32 curr = (U32)(ip-base); const U32 maxDistance = 1U << cParams->windowLog; const U32 lowestValid = ms->window.lowLimit; const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; const U32 isDictionary = (ms->loadedDictEnd != 0); const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; const U32 rowEntries = (1U << rowLog); const U32 rowMask = rowEntries - 1; const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */ const U32 groupWidth = ZSTD_row_matchMaskGroupWidth(rowEntries); const U64 hashSalt = ms->hashSalt; U32 nbAttempts = 1U << cappedSearchLog; size_t ml=4-1; U32 hash; /* DMS/DDS variables that may be referenced laster */ const ZSTD_matchState_t* const dms = ms->dictMatchState; /* Initialize the following variables to satisfy static analyzer */ size_t ddsIdx = 0; U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */ U32 dmsTag = 0; U32* dmsRow = NULL; BYTE* dmsTagRow = NULL; if (dictMode == ZSTD_dedicatedDictSearch) { const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; { /* Prefetch DDS hashtable entry */ ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG; PREFETCH_L1(&dms->hashTable[ddsIdx]); } ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0; } if (dictMode == ZSTD_dictMatchState) { /* Prefetch DMS rows */ U32* const dmsHashTable = dms->hashTable; BYTE* const dmsTagTable = dms->tagTable; U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls); U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK; dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow); dmsRow = dmsHashTable + dmsRelRow; ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog); } /* Update the hashTable and tagTable up to (but not including) ip */ if (!ms->lazySkipping) { ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */); hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls, hashSalt); } else { /* Stop inserting every position when in the lazy skipping mode. * The hash cache is also not kept up to date in this mode. */ hash = (U32)ZSTD_hashPtrSalted(ip, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt); ms->nextToUpdate = curr; } ms->hashSaltEntropy += hash; /* collect salt entropy */ { /* Get the hash for ip, compute the appropriate row */ U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK; U32* const row = hashTable + relRow; BYTE* tagRow = (BYTE*)(tagTable + relRow); U32 const headGrouped = (*tagRow & rowMask) * groupWidth; U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; size_t numMatches = 0; size_t currMatch = 0; ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, headGrouped, rowEntries); /* Cycle through the matches and prefetch */ for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) { U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask; U32 const matchIndex = row[matchPos]; if(matchPos == 0) continue; assert(numMatches < rowEntries); if (matchIndex < lowLimit) break; if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { PREFETCH_L1(base + matchIndex); } else { PREFETCH_L1(dictBase + matchIndex); } matchBuffer[numMatches++] = matchIndex; --nbAttempts; } /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop in ZSTD_row_update_internal() at the next search. */ { U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); tagRow[pos] = (BYTE)tag; row[pos] = ms->nextToUpdate++; } /* Return the longest match */ for (; currMatch < numMatches; ++currMatch) { U32 const matchIndex = matchBuffer[currMatch]; size_t currentMl=0; assert(matchIndex < curr); assert(matchIndex >= lowLimit); if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { const BYTE* const match = base + matchIndex; assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ /* read 4B starting from (match + ml + 1 - sizeof(U32)) */ if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */ currentMl = ZSTD_count(ip, match, iLimit); } else { const BYTE* const match = dictBase + matchIndex; assert(match+4 <= dictEnd); if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; } /* Save best solution */ if (currentMl > ml) { ml = currentMl; *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ } } } assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ if (dictMode == ZSTD_dedicatedDictSearch) { ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms, ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); } else if (dictMode == ZSTD_dictMatchState) { /* TODO: Measure and potentially add prefetching to DMS */ const U32 dmsLowestIndex = dms->window.dictLimit; const BYTE* const dmsBase = dms->window.base; const BYTE* const dmsEnd = dms->window.nextSrc; const U32 dmsSize = (U32)(dmsEnd - dmsBase); const U32 dmsIndexDelta = dictLimit - dmsSize; { U32 const headGrouped = (*dmsTagRow & rowMask) * groupWidth; U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; size_t numMatches = 0; size_t currMatch = 0; ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, headGrouped, rowEntries); for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) { U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask; U32 const matchIndex = dmsRow[matchPos]; if(matchPos == 0) continue; if (matchIndex < dmsLowestIndex) break; PREFETCH_L1(dmsBase + matchIndex); matchBuffer[numMatches++] = matchIndex; --nbAttempts; } /* Return the longest match */ for (; currMatch < numMatches; ++currMatch) { U32 const matchIndex = matchBuffer[currMatch]; size_t currentMl=0; assert(matchIndex >= dmsLowestIndex); assert(matchIndex < curr); { const BYTE* const match = dmsBase + matchIndex; assert(match+4 <= dmsEnd); if (MEM_read32(match) == MEM_read32(ip)) currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; } if (currentMl > ml) { ml = currentMl; assert(curr > matchIndex + dmsIndexDelta); *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta)); if (ip+currentMl == iLimit) break; } } } } return ml; } /* * Generate search functions templated on (dictMode, mls, rowLog). * These functions are outlined for code size & compilation time. * ZSTD_searchMax() dispatches to the correct implementation function. * * TODO: The start of the search function involves loading and calculating a * bunch of constants from the ZSTD_matchState_t. These computations could be * done in an initialization function, and saved somewhere in the match state. * Then we could pass a pointer to the saved state instead of the match state, * and avoid duplicate computations. * * TODO: Move the match re-winding into searchMax. This improves compression * ratio, and unlocks further simplifications with the next TODO. * * TODO: Try moving the repcode search into searchMax. After the re-winding * and repcode search are in searchMax, there is no more logic in the match * finder loop that requires knowledge about the dictMode. So we should be * able to avoid force inlining it, and we can join the extDict loop with * the single segment loop. It should go in searchMax instead of its own * function to avoid having multiple virtual function calls per search. */ #define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls #define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls #define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog #define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE #define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls) \ ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)( \ ZSTD_matchState_t* ms, \ const BYTE* ip, const BYTE* const iLimit, \ size_t* offBasePtr) \ { \ assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \ } \ #define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls) \ ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)( \ ZSTD_matchState_t* ms, \ const BYTE* ip, const BYTE* const iLimit, \ size_t* offsetPtr) \ { \ assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \ } \ #define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) \ ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)( \ ZSTD_matchState_t* ms, \ const BYTE* ip, const BYTE* const iLimit, \ size_t* offsetPtr) \ { \ assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \ return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \ } \ #define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \ X(dictMode, mls, 4) \ X(dictMode, mls, 5) \ X(dictMode, mls, 6) #define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \ ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \ ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \ ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6) #define ZSTD_FOR_EACH_MLS(X, dictMode) \ X(dictMode, 4) \ X(dictMode, 5) \ X(dictMode, 6) #define ZSTD_FOR_EACH_DICT_MODE(X, ...) \ X(__VA_ARGS__, noDict) \ X(__VA_ARGS__, extDict) \ X(__VA_ARGS__, dictMatchState) \ X(__VA_ARGS__, dedicatedDictSearch) /* Generate row search fns for each combination of (dictMode, mls, rowLog) */ ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN) /* Generate binary Tree search fns for each combination of (dictMode, mls) */ ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN) /* Generate hash chain search fns for each combination of (dictMode, mls) */ ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN) typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e; #define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls) \ case mls: \ return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); #define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls) \ case mls: \ return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); #define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog) \ case rowLog: \ return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr); #define ZSTD_SWITCH_MLS(X, dictMode) \ switch (mls) { \ ZSTD_FOR_EACH_MLS(X, dictMode) \ } #define ZSTD_SWITCH_ROWLOG(dictMode, mls) \ case mls: \ switch (rowLog) { \ ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \ } \ ZSTD_UNREACHABLE; \ break; #define ZSTD_SWITCH_SEARCH_METHOD(dictMode) \ switch (searchMethod) { \ case search_hashChain: \ ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \ break; \ case search_binaryTree: \ ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \ break; \ case search_rowHash: \ ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode) \ break; \ } \ ZSTD_UNREACHABLE; /* * Searches for the longest match at @p ip. * Dispatches to the correct implementation function based on the * (searchMethod, dictMode, mls, rowLog). We use switch statements * here instead of using an indirect function call through a function * pointer because after Spectre and Meltdown mitigations, indirect * function calls can be very costly, especially in the kernel. * * NOTE: dictMode and searchMethod should be templated, so those switch * statements should be optimized out. Only the mls & rowLog switches * should be left. * * @param ms The match state. * @param ip The position to search at. * @param iend The end of the input data. * @param[out] offsetPtr Stores the match offset into this pointer. * @param mls The minimum search length, in the range [4, 6]. * @param rowLog The row log (if applicable), in the range [4, 6]. * @param searchMethod The search method to use (templated). * @param dictMode The dictMode (templated). * * @returns The length of the longest match found, or < mls if no match is found. * If a match is found its offset is stored in @p offsetPtr. */ FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax( ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend, size_t* offsetPtr, U32 const mls, U32 const rowLog, searchMethod_e const searchMethod, ZSTD_dictMode_e const dictMode) { if (dictMode == ZSTD_noDict) { ZSTD_SWITCH_SEARCH_METHOD(noDict) } else if (dictMode == ZSTD_extDict) { ZSTD_SWITCH_SEARCH_METHOD(extDict) } else if (dictMode == ZSTD_dictMatchState) { ZSTD_SWITCH_SEARCH_METHOD(dictMatchState) } else if (dictMode == ZSTD_dedicatedDictSearch) { ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch) } ZSTD_UNREACHABLE; return 0; } /* ******************************* * Common parser - lazy strategy *********************************/ FORCE_INLINE_TEMPLATE size_t ZSTD_compressBlock_lazy_generic( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize, const searchMethod_e searchMethod, const U32 depth, ZSTD_dictMode_e const dictMode) { const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; const BYTE* const base = ms->window.base; const U32 prefixLowestIndex = ms->window.dictLimit; const BYTE* const prefixLowest = base + prefixLowestIndex; const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); U32 offset_1 = rep[0], offset_2 = rep[1]; U32 offsetSaved1 = 0, offsetSaved2 = 0; const int isDMS = dictMode == ZSTD_dictMatchState; const int isDDS = dictMode == ZSTD_dedicatedDictSearch; const int isDxS = isDMS || isDDS; const ZSTD_matchState_t* const dms = ms->dictMatchState; const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0; const BYTE* const dictBase = isDxS ? dms->window.base : NULL; const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL; const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL; const U32 dictIndexDelta = isDxS ? prefixLowestIndex - (U32)(dictEnd - dictBase) : 0; const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest)); DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod); ip += (dictAndPrefixLength == 0); if (dictMode == ZSTD_noDict) { U32 const curr = (U32)(ip - base); U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog); U32 const maxRep = curr - windowLow; if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0; if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0; } if (isDxS) { /* dictMatchState repCode checks don't currently handle repCode == 0 * disabling. */ assert(offset_1 <= dictAndPrefixLength); assert(offset_2 <= dictAndPrefixLength); } /* Reset the lazy skipping state */ ms->lazySkipping = 0; if (searchMethod == search_rowHash) { ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); } /* Match Loop */ #if defined(__x86_64__) /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the * code alignment is perturbed. To fix the instability align the loop on 32-bytes. */ __asm__(".p2align 5"); #endif while (ip < ilimit) { size_t matchLength=0; size_t offBase = REPCODE1_TO_OFFBASE; const BYTE* start=ip+1; DEBUGLOG(7, "search baseline (depth 0)"); /* check repCode */ if (isDxS) { const U32 repIndex = (U32)(ip - base) + 1 - offset_1; const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch) && repIndex < prefixLowestIndex) ? dictBase + (repIndex - dictIndexDelta) : base + repIndex; if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; if (depth==0) goto _storeSequence; } } if ( dictMode == ZSTD_noDict && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) { matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; if (depth==0) goto _storeSequence; } /* first search (depth 0) */ { size_t offbaseFound = 999999999; size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offbaseFound, mls, rowLog, searchMethod, dictMode); if (ml2 > matchLength) matchLength = ml2, start = ip, offBase = offbaseFound; } if (matchLength < 4) { size_t const step = ((size_t)(ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */; ip += step; /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time. * In this mode we stop inserting every position into our tables, and only insert * positions that we search, which is one in step positions. * The exact cutoff is flexible, I've just chosen a number that is reasonably high, * so we minimize the compression ratio loss in "normal" scenarios. This mode gets * triggered once we've gone 2KB without finding any matches. */ ms->lazySkipping = step > kLazySkippingStep; continue; } /* let's try to find a better solution */ if (depth>=1) while (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; int const gain2 = (int)(mlRep * 3); int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); if ((mlRep >= 4) && (gain2 > gain1)) matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; } if (isDxS) { const U32 repIndex = (U32)(ip - base) - offset_1; const BYTE* repMatch = repIndex < prefixLowestIndex ? dictBase + (repIndex - dictIndexDelta) : base + repIndex; if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) && (MEM_read32(repMatch) == MEM_read32(ip)) ) { const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; int const gain2 = (int)(mlRep * 3); int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); if ((mlRep >= 4) && (gain2 > gain1)) matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; } } { size_t ofbCandidate=999999999; size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offBase = ofbCandidate, start = ip; continue; /* search a better one */ } } /* let's find an even better one */ if ((depth==2) && (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; int const gain2 = (int)(mlRep * 4); int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); if ((mlRep >= 4) && (gain2 > gain1)) matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; } if (isDxS) { const U32 repIndex = (U32)(ip - base) - offset_1; const BYTE* repMatch = repIndex < prefixLowestIndex ? dictBase + (repIndex - dictIndexDelta) : base + repIndex; if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) && (MEM_read32(repMatch) == MEM_read32(ip)) ) { const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; int const gain2 = (int)(mlRep * 4); int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); if ((mlRep >= 4) && (gain2 > gain1)) matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; } } { size_t ofbCandidate=999999999; size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offBase = ofbCandidate, start = ip; continue; } } } break; /* nothing found : store previous solution */ } /* NOTE: * Pay attention that `start[-value]` can lead to strange undefined behavior * notably if `value` is unsigned, resulting in a large positive `-value`. */ /* catch up */ if (OFFBASE_IS_OFFSET(offBase)) { if (dictMode == ZSTD_noDict) { while ( ((start > anchor) & (start - OFFBASE_TO_OFFSET(offBase) > prefixLowest)) && (start[-1] == (start-OFFBASE_TO_OFFSET(offBase))[-1]) ) /* only search for offset within prefix */ { start--; matchLength++; } } if (isDxS) { U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase)); const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex; const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest; while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ } offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase); } /* store sequence */ _storeSequence: { size_t const litLength = (size_t)(start - anchor); ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength); anchor = ip = start + matchLength; } if (ms->lazySkipping) { /* We've found a match, disable lazy skipping mode, and refill the hash cache. */ if (searchMethod == search_rowHash) { ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); } ms->lazySkipping = 0; } /* check immediate repcode */ if (isDxS) { while (ip <= ilimit) { U32 const current2 = (U32)(ip-base); U32 const repIndex = current2 - offset_2; const BYTE* repMatch = repIndex < prefixLowestIndex ? dictBase - dictIndexDelta + repIndex : base + repIndex; if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */) && (MEM_read32(repMatch) == MEM_read32(ip)) ) { const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend; matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4; offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset_2 <=> offset_1 */ ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); ip += matchLength; anchor = ip; continue; } break; } } if (dictMode == ZSTD_noDict) { while ( ((ip <= ilimit) & (offset_2>0)) && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) { /* store sequence */ matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap repcodes */ ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); ip += matchLength; anchor = ip; continue; /* faster when present ... (?) */ } } } /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; /* save reps for next block */ rep[0] = offset_1 ? offset_1 : offsetSaved1; rep[1] = offset_2 ? offset_2 : offsetSaved2; /* Return the last literals size */ return (size_t)(iend - anchor); } size_t ZSTD_compressBlock_btlazy2( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict); } size_t ZSTD_compressBlock_lazy2( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict); } size_t ZSTD_compressBlock_lazy( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict); } size_t ZSTD_compressBlock_greedy( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict); } size_t ZSTD_compressBlock_btlazy2_dictMatchState( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_lazy2_dictMatchState( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_lazy_dictMatchState( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_greedy_dictMatchState( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch); } size_t ZSTD_compressBlock_lazy_dedicatedDictSearch( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch); } size_t ZSTD_compressBlock_greedy_dedicatedDictSearch( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch); } /* Row-based matchfinder */ size_t ZSTD_compressBlock_lazy2_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict); } size_t ZSTD_compressBlock_lazy_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict); } size_t ZSTD_compressBlock_greedy_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict); } size_t ZSTD_compressBlock_lazy2_dictMatchState_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_lazy_dictMatchState_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_greedy_dictMatchState_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch); } size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch); } size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch); } FORCE_INLINE_TEMPLATE size_t ZSTD_compressBlock_lazy_extDict_generic( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize, const searchMethod_e searchMethod, const U32 depth) { const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; const BYTE* const base = ms->window.base; const U32 dictLimit = ms->window.dictLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* const dictBase = ms->window.dictBase; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const dictStart = dictBase + ms->window.lowLimit; const U32 windowLog = ms->cParams.windowLog; const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); U32 offset_1 = rep[0], offset_2 = rep[1]; DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod); /* Reset the lazy skipping state */ ms->lazySkipping = 0; /* init */ ip += (ip == prefixStart); if (searchMethod == search_rowHash) { ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); } /* Match Loop */ #if defined(__x86_64__) /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the * code alignment is perturbed. To fix the instability align the loop on 32-bytes. */ __asm__(".p2align 5"); #endif while (ip < ilimit) { size_t matchLength=0; size_t offBase = REPCODE1_TO_OFFBASE; const BYTE* start=ip+1; U32 curr = (U32)(ip-base); /* check repCode */ { const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog); const U32 repIndex = (U32)(curr+1 - offset_1); const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; const BYTE* const repMatch = repBase + repIndex; if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */ & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */ if (MEM_read32(ip+1) == MEM_read32(repMatch)) { /* repcode detected we should take it */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4; if (depth==0) goto _storeSequence; } } /* first search (depth 0) */ { size_t ofbCandidate = 999999999; size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); if (ml2 > matchLength) matchLength = ml2, start = ip, offBase = ofbCandidate; } if (matchLength < 4) { size_t const step = ((size_t)(ip-anchor) >> kSearchStrength); ip += step + 1; /* jump faster over incompressible sections */ /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time. * In this mode we stop inserting every position into our tables, and only insert * positions that we search, which is one in step positions. * The exact cutoff is flexible, I've just chosen a number that is reasonably high, * so we minimize the compression ratio loss in "normal" scenarios. This mode gets * triggered once we've gone 2KB without finding any matches. */ ms->lazySkipping = step > kLazySkippingStep; continue; } /* let's try to find a better solution */ if (depth>=1) while (ip= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ if (MEM_read32(ip) == MEM_read32(repMatch)) { /* repcode detected */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; int const gain2 = (int)(repLength * 3); int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); if ((repLength >= 4) && (gain2 > gain1)) matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip; } } /* search match, depth 1 */ { size_t ofbCandidate = 999999999; size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offBase = ofbCandidate, start = ip; continue; /* search a better one */ } } /* let's find an even better one */ if ((depth==2) && (ip= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ if (MEM_read32(ip) == MEM_read32(repMatch)) { /* repcode detected */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; int const gain2 = (int)(repLength * 4); int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); if ((repLength >= 4) && (gain2 > gain1)) matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip; } } /* search match, depth 2 */ { size_t ofbCandidate = 999999999; size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7); if ((ml2 >= 4) && (gain2 > gain1)) { matchLength = ml2, offBase = ofbCandidate, start = ip; continue; } } } break; /* nothing found : store previous solution */ } /* catch up */ if (OFFBASE_IS_OFFSET(offBase)) { U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase)); const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex; const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart; while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase); } /* store sequence */ _storeSequence: { size_t const litLength = (size_t)(start - anchor); ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength); anchor = ip = start + matchLength; } if (ms->lazySkipping) { /* We've found a match, disable lazy skipping mode, and refill the hash cache. */ if (searchMethod == search_rowHash) { ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); } ms->lazySkipping = 0; } /* check immediate repcode */ while (ip <= ilimit) { const U32 repCurrent = (U32)(ip-base); const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog); const U32 repIndex = repCurrent - offset_2; const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; const BYTE* const repMatch = repBase + repIndex; if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ if (MEM_read32(ip) == MEM_read32(repMatch)) { /* repcode detected we should take it */ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset history */ ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); ip += matchLength; anchor = ip; continue; /* faster when present ... (?) */ } break; } } /* Save reps for next block */ rep[0] = offset_1; rep[1] = offset_2; /* Return the last literals size */ return (size_t)(iend - anchor); } size_t ZSTD_compressBlock_greedy_extDict( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0); } size_t ZSTD_compressBlock_lazy_extDict( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1); } size_t ZSTD_compressBlock_lazy2_extDict( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2); } size_t ZSTD_compressBlock_btlazy2_extDict( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2); } size_t ZSTD_compressBlock_greedy_extDict_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0); } size_t ZSTD_compressBlock_lazy_extDict_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1); } size_t ZSTD_compressBlock_lazy2_extDict_row( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2); }