// SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/namespace.c * * (C) Copyright Al Viro 2000, 2001 * * Based on code from fs/super.c, copyright Linus Torvalds and others. * Heavily rewritten. */ #include #include #include #include #include #include #include #include #include #include /* init_rootfs */ #include /* get_fs_root et.al. */ #include /* fsnotify_vfsmount_delete */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pnode.h" #include "internal.h" /* Maximum number of mounts in a mount namespace */ static unsigned int sysctl_mount_max __read_mostly = 100000; static unsigned int m_hash_mask __ro_after_init; static unsigned int m_hash_shift __ro_after_init; static unsigned int mp_hash_mask __ro_after_init; static unsigned int mp_hash_shift __ro_after_init; static __initdata unsigned long mhash_entries; static int __init set_mhash_entries(char *str) { if (!str) return 0; mhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mhash_entries=", set_mhash_entries); static __initdata unsigned long mphash_entries; static int __init set_mphash_entries(char *str) { if (!str) return 0; mphash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mphash_entries=", set_mphash_entries); static u64 event; static DEFINE_IDA(mnt_id_ida); static DEFINE_IDA(mnt_group_ida); /* Don't allow confusion with old 32bit mount ID */ static atomic64_t mnt_id_ctr = ATOMIC64_INIT(1ULL << 32); static struct hlist_head *mount_hashtable __ro_after_init; static struct hlist_head *mountpoint_hashtable __ro_after_init; static struct kmem_cache *mnt_cache __ro_after_init; static DECLARE_RWSEM(namespace_sem); static HLIST_HEAD(unmounted); /* protected by namespace_sem */ static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ static DEFINE_RWLOCK(mnt_ns_tree_lock); static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ struct mount_kattr { unsigned int attr_set; unsigned int attr_clr; unsigned int propagation; unsigned int lookup_flags; bool recurse; struct user_namespace *mnt_userns; struct mnt_idmap *mnt_idmap; }; /* /sys/fs */ struct kobject *fs_kobj __ro_after_init; EXPORT_SYMBOL_GPL(fs_kobj); /* * vfsmount lock may be taken for read to prevent changes to the * vfsmount hash, ie. during mountpoint lookups or walking back * up the tree. * * It should be taken for write in all cases where the vfsmount * tree or hash is modified or when a vfsmount structure is modified. */ __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns) { u64 seq_b = ns->seq; if (seq < seq_b) return -1; if (seq > seq_b) return 1; return 0; } static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) { if (!node) return NULL; return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); } static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b) { struct mnt_namespace *ns_a = node_to_mnt_ns(a); struct mnt_namespace *ns_b = node_to_mnt_ns(b); u64 seq_a = ns_a->seq; return mnt_ns_cmp(seq_a, ns_b) < 0; } static void mnt_ns_tree_add(struct mnt_namespace *ns) { guard(write_lock)(&mnt_ns_tree_lock); rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less); } static void mnt_ns_release(struct mnt_namespace *ns) { lockdep_assert_not_held(&mnt_ns_tree_lock); /* keep alive for {list,stat}mount() */ if (refcount_dec_and_test(&ns->passive)) { put_user_ns(ns->user_ns); kfree(ns); } } DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) static void mnt_ns_tree_remove(struct mnt_namespace *ns) { /* remove from global mount namespace list */ if (!is_anon_ns(ns)) { guard(write_lock)(&mnt_ns_tree_lock); rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); } mnt_ns_release(ns); } /* * Returns the mount namespace which either has the specified id, or has the * next smallest id afer the specified one. */ static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id) { struct rb_node *node = mnt_ns_tree.rb_node; struct mnt_namespace *ret = NULL; lockdep_assert_held(&mnt_ns_tree_lock); while (node) { struct mnt_namespace *n = node_to_mnt_ns(node); if (mnt_ns_id <= n->seq) { ret = node_to_mnt_ns(node); if (mnt_ns_id == n->seq) break; node = node->rb_left; } else { node = node->rb_right; } } return ret; } /* * Lookup a mount namespace by id and take a passive reference count. Taking a * passive reference means the mount namespace can be emptied if e.g., the last * task holding an active reference exits. To access the mounts of the * namespace the @namespace_sem must first be acquired. If the namespace has * already shut down before acquiring @namespace_sem, {list,stat}mount() will * see that the mount rbtree of the namespace is empty. */ static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) { struct mnt_namespace *ns; guard(read_lock)(&mnt_ns_tree_lock); ns = mnt_ns_find_id_at(mnt_ns_id); if (!ns || ns->seq != mnt_ns_id) return NULL; refcount_inc(&ns->passive); return ns; } static inline void lock_mount_hash(void) { write_seqlock(&mount_lock); } static inline void unlock_mount_hash(void) { write_sequnlock(&mount_lock); } static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) { unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); tmp += ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> m_hash_shift); return &mount_hashtable[tmp & m_hash_mask]; } static inline struct hlist_head *mp_hash(struct dentry *dentry) { unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> mp_hash_shift); return &mountpoint_hashtable[tmp & mp_hash_mask]; } static int mnt_alloc_id(struct mount *mnt) { int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); if (res < 0) return res; mnt->mnt_id = res; mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr); return 0; } static void mnt_free_id(struct mount *mnt) { ida_free(&mnt_id_ida, mnt->mnt_id); } /* * Allocate a new peer group ID */ static int mnt_alloc_group_id(struct mount *mnt) { int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); if (res < 0) return res; mnt->mnt_group_id = res; return 0; } /* * Release a peer group ID */ void mnt_release_group_id(struct mount *mnt) { ida_free(&mnt_group_ida, mnt->mnt_group_id); mnt->mnt_group_id = 0; } /* * vfsmount lock must be held for read */ static inline void mnt_add_count(struct mount *mnt, int n) { #ifdef CONFIG_SMP this_cpu_add(mnt->mnt_pcp->mnt_count, n); #else preempt_disable(); mnt->mnt_count += n; preempt_enable(); #endif } /* * vfsmount lock must be held for write */ int mnt_get_count(struct mount *mnt) { #ifdef CONFIG_SMP int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; } return count; #else return mnt->mnt_count; #endif } static struct mount *alloc_vfsmnt(const char *name) { struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); if (mnt) { int err; err = mnt_alloc_id(mnt); if (err) goto out_free_cache; if (name) { mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL_ACCOUNT); if (!mnt->mnt_devname) goto out_free_id; } #ifdef CONFIG_SMP mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); if (!mnt->mnt_pcp) goto out_free_devname; this_cpu_add(mnt->mnt_pcp->mnt_count, 1); #else mnt->mnt_count = 1; mnt->mnt_writers = 0; #endif INIT_HLIST_NODE(&mnt->mnt_hash); INIT_LIST_HEAD(&mnt->mnt_child); INIT_LIST_HEAD(&mnt->mnt_mounts); INIT_LIST_HEAD(&mnt->mnt_list); INIT_LIST_HEAD(&mnt->mnt_expire); INIT_LIST_HEAD(&mnt->mnt_share); INIT_LIST_HEAD(&mnt->mnt_slave_list); INIT_LIST_HEAD(&mnt->mnt_slave); INIT_HLIST_NODE(&mnt->mnt_mp_list); INIT_LIST_HEAD(&mnt->mnt_umounting); INIT_HLIST_HEAD(&mnt->mnt_stuck_children); mnt->mnt.mnt_idmap = &nop_mnt_idmap; } return mnt; #ifdef CONFIG_SMP out_free_devname: kfree_const(mnt->mnt_devname); #endif out_free_id: mnt_free_id(mnt); out_free_cache: kmem_cache_free(mnt_cache, mnt); return NULL; } /* * Most r/o checks on a fs are for operations that take * discrete amounts of time, like a write() or unlink(). * We must keep track of when those operations start * (for permission checks) and when they end, so that * we can determine when writes are able to occur to * a filesystem. */ /* * __mnt_is_readonly: check whether a mount is read-only * @mnt: the mount to check for its write status * * This shouldn't be used directly ouside of the VFS. * It does not guarantee that the filesystem will stay * r/w, just that it is right *now*. This can not and * should not be used in place of IS_RDONLY(inode). * mnt_want/drop_write() will _keep_ the filesystem * r/w. */ bool __mnt_is_readonly(struct vfsmount *mnt) { return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(__mnt_is_readonly); static inline void mnt_inc_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_inc(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers++; #endif } static inline void mnt_dec_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_dec(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers--; #endif } static unsigned int mnt_get_writers(struct mount *mnt) { #ifdef CONFIG_SMP unsigned int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; } return count; #else return mnt->mnt_writers; #endif } static int mnt_is_readonly(struct vfsmount *mnt) { if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) return 1; /* * The barrier pairs with the barrier in sb_start_ro_state_change() * making sure if we don't see s_readonly_remount set yet, we also will * not see any superblock / mount flag changes done by remount. * It also pairs with the barrier in sb_end_ro_state_change() * assuring that if we see s_readonly_remount already cleared, we will * see the values of superblock / mount flags updated by remount. */ smp_rmb(); return __mnt_is_readonly(mnt); } /* * Most r/o & frozen checks on a fs are for operations that take discrete * amounts of time, like a write() or unlink(). We must keep track of when * those operations start (for permission checks) and when they end, so that we * can determine when writes are able to occur to a filesystem. */ /** * mnt_get_write_access - get write access to a mount without freeze protection * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mnt it read-write) before * returning success. This operation does not protect against filesystem being * frozen. When the write operation is finished, mnt_put_write_access() must be * called. This is effectively a refcount. */ int mnt_get_write_access(struct vfsmount *m) { struct mount *mnt = real_mount(m); int ret = 0; preempt_disable(); mnt_inc_writers(mnt); /* * The store to mnt_inc_writers must be visible before we pass * MNT_WRITE_HOLD loop below, so that the slowpath can see our * incremented count after it has set MNT_WRITE_HOLD. */ smp_mb(); might_lock(&mount_lock.lock); while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { cpu_relax(); } else { /* * This prevents priority inversion, if the task * setting MNT_WRITE_HOLD got preempted on a remote * CPU, and it prevents life lock if the task setting * MNT_WRITE_HOLD has a lower priority and is bound to * the same CPU as the task that is spinning here. */ preempt_enable(); lock_mount_hash(); unlock_mount_hash(); preempt_disable(); } } /* * The barrier pairs with the barrier sb_start_ro_state_change() making * sure that if we see MNT_WRITE_HOLD cleared, we will also see * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in * mnt_is_readonly() and bail in case we are racing with remount * read-only. */ smp_rmb(); if (mnt_is_readonly(m)) { mnt_dec_writers(mnt); ret = -EROFS; } preempt_enable(); return ret; } EXPORT_SYMBOL_GPL(mnt_get_write_access); /** * mnt_want_write - get write access to a mount * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mount is read-write, filesystem * is not frozen) before returning success. When the write operation is * finished, mnt_drop_write() must be called. This is effectively a refcount. */ int mnt_want_write(struct vfsmount *m) { int ret; sb_start_write(m->mnt_sb); ret = mnt_get_write_access(m); if (ret) sb_end_write(m->mnt_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write); /** * mnt_get_write_access_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like mnt_get_write_access, but if @file is already open for write it * skips incrementing mnt_writers (since the open file already has a reference) * and instead only does the check for emergency r/o remounts. This must be * paired with mnt_put_write_access_file. */ int mnt_get_write_access_file(struct file *file) { if (file->f_mode & FMODE_WRITER) { /* * Superblock may have become readonly while there are still * writable fd's, e.g. due to a fs error with errors=remount-ro */ if (__mnt_is_readonly(file->f_path.mnt)) return -EROFS; return 0; } return mnt_get_write_access(file->f_path.mnt); } /** * mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like mnt_want_write, but if the file is already open for writing it * skips incrementing mnt_writers (since the open file already has a reference) * and instead only does the freeze protection and the check for emergency r/o * remounts. This must be paired with mnt_drop_write_file. */ int mnt_want_write_file(struct file *file) { int ret; sb_start_write(file_inode(file)->i_sb); ret = mnt_get_write_access_file(file); if (ret) sb_end_write(file_inode(file)->i_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write_file); /** * mnt_put_write_access - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done * performing writes to it. Must be matched with * mnt_get_write_access() call above. */ void mnt_put_write_access(struct vfsmount *mnt) { preempt_disable(); mnt_dec_writers(real_mount(mnt)); preempt_enable(); } EXPORT_SYMBOL_GPL(mnt_put_write_access); /** * mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done performing writes to it and * also allows filesystem to be frozen again. Must be matched with * mnt_want_write() call above. */ void mnt_drop_write(struct vfsmount *mnt) { mnt_put_write_access(mnt); sb_end_write(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(mnt_drop_write); void mnt_put_write_access_file(struct file *file) { if (!(file->f_mode & FMODE_WRITER)) mnt_put_write_access(file->f_path.mnt); } void mnt_drop_write_file(struct file *file) { mnt_put_write_access_file(file); sb_end_write(file_inode(file)->i_sb); } EXPORT_SYMBOL(mnt_drop_write_file); /** * mnt_hold_writers - prevent write access to the given mount * @mnt: mnt to prevent write access to * * Prevents write access to @mnt if there are no active writers for @mnt. * This function needs to be called and return successfully before changing * properties of @mnt that need to remain stable for callers with write access * to @mnt. * * After this functions has been called successfully callers must pair it with * a call to mnt_unhold_writers() in order to stop preventing write access to * @mnt. * * Context: This function expects lock_mount_hash() to be held serializing * setting MNT_WRITE_HOLD. * Return: On success 0 is returned. * On error, -EBUSY is returned. */ static inline int mnt_hold_writers(struct mount *mnt) { mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; /* * After storing MNT_WRITE_HOLD, we'll read the counters. This store * should be visible before we do. */ smp_mb(); /* * With writers on hold, if this value is zero, then there are * definitely no active writers (although held writers may subsequently * increment the count, they'll have to wait, and decrement it after * seeing MNT_READONLY). * * It is OK to have counter incremented on one CPU and decremented on * another: the sum will add up correctly. The danger would be when we * sum up each counter, if we read a counter before it is incremented, * but then read another CPU's count which it has been subsequently * decremented from -- we would see more decrements than we should. * MNT_WRITE_HOLD protects against this scenario, because * mnt_want_write first increments count, then smp_mb, then spins on * MNT_WRITE_HOLD, so it can't be decremented by another CPU while * we're counting up here. */ if (mnt_get_writers(mnt) > 0) return -EBUSY; return 0; } /** * mnt_unhold_writers - stop preventing write access to the given mount * @mnt: mnt to stop preventing write access to * * Stop preventing write access to @mnt allowing callers to gain write access * to @mnt again. * * This function can only be called after a successful call to * mnt_hold_writers(). * * Context: This function expects lock_mount_hash() to be held. */ static inline void mnt_unhold_writers(struct mount *mnt) { /* * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers * that become unheld will see MNT_READONLY. */ smp_wmb(); mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; } static int mnt_make_readonly(struct mount *mnt) { int ret; ret = mnt_hold_writers(mnt); if (!ret) mnt->mnt.mnt_flags |= MNT_READONLY; mnt_unhold_writers(mnt); return ret; } int sb_prepare_remount_readonly(struct super_block *sb) { struct mount *mnt; int err = 0; /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ if (atomic_long_read(&sb->s_remove_count)) return -EBUSY; lock_mount_hash(); list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { err = mnt_hold_writers(mnt); if (err) break; } } if (!err && atomic_long_read(&sb->s_remove_count)) err = -EBUSY; if (!err) sb_start_ro_state_change(sb); list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; } unlock_mount_hash(); return err; } static void free_vfsmnt(struct mount *mnt) { mnt_idmap_put(mnt_idmap(&mnt->mnt)); kfree_const(mnt->mnt_devname); #ifdef CONFIG_SMP free_percpu(mnt->mnt_pcp); #endif kmem_cache_free(mnt_cache, mnt); } static void delayed_free_vfsmnt(struct rcu_head *head) { free_vfsmnt(container_of(head, struct mount, mnt_rcu)); } /* call under rcu_read_lock */ int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) { struct mount *mnt; if (read_seqretry(&mount_lock, seq)) return 1; if (bastard == NULL) return 0; mnt = real_mount(bastard); mnt_add_count(mnt, 1); smp_mb(); // see mntput_no_expire() if (likely(!read_seqretry(&mount_lock, seq))) return 0; if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { mnt_add_count(mnt, -1); return 1; } lock_mount_hash(); if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { mnt_add_count(mnt, -1); unlock_mount_hash(); return 1; } unlock_mount_hash(); /* caller will mntput() */ return -1; } /* call under rcu_read_lock */ static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) { int res = __legitimize_mnt(bastard, seq); if (likely(!res)) return true; if (unlikely(res < 0)) { rcu_read_unlock(); mntput(bastard); rcu_read_lock(); } return false; } /** * __lookup_mnt - find first child mount * @mnt: parent mount * @dentry: mountpoint * * If @mnt has a child mount @c mounted @dentry find and return it. * * Note that the child mount @c need not be unique. There are cases * where shadow mounts are created. For example, during mount * propagation when a source mount @mnt whose root got overmounted by a * mount @o after path lookup but before @namespace_sem could be * acquired gets copied and propagated. So @mnt gets copied including * @o. When @mnt is propagated to a destination mount @d that already * has another mount @n mounted at the same mountpoint then the source * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt * on @dentry. * * Return: The first child of @mnt mounted @dentry or NULL. */ struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) { struct hlist_head *head = m_hash(mnt, dentry); struct mount *p; hlist_for_each_entry_rcu(p, head, mnt_hash) if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) return p; return NULL; } /* * lookup_mnt - Return the first child mount mounted at path * * "First" means first mounted chronologically. If you create the * following mounts: * * mount /dev/sda1 /mnt * mount /dev/sda2 /mnt * mount /dev/sda3 /mnt * * Then lookup_mnt() on the base /mnt dentry in the root mount will * return successively the root dentry and vfsmount of /dev/sda1, then * /dev/sda2, then /dev/sda3, then NULL. * * lookup_mnt takes a reference to the found vfsmount. */ struct vfsmount *lookup_mnt(const struct path *path) { struct mount *child_mnt; struct vfsmount *m; unsigned seq; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); child_mnt = __lookup_mnt(path->mnt, path->dentry); m = child_mnt ? &child_mnt->mnt : NULL; } while (!legitimize_mnt(m, seq)); rcu_read_unlock(); return m; } /* * __is_local_mountpoint - Test to see if dentry is a mountpoint in the * current mount namespace. * * The common case is dentries are not mountpoints at all and that * test is handled inline. For the slow case when we are actually * dealing with a mountpoint of some kind, walk through all of the * mounts in the current mount namespace and test to see if the dentry * is a mountpoint. * * The mount_hashtable is not usable in the context because we * need to identify all mounts that may be in the current mount * namespace not just a mount that happens to have some specified * parent mount. */ bool __is_local_mountpoint(struct dentry *dentry) { struct mnt_namespace *ns = current->nsproxy->mnt_ns; struct mount *mnt, *n; bool is_covered = false; down_read(&namespace_sem); rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { is_covered = (mnt->mnt_mountpoint == dentry); if (is_covered) break; } up_read(&namespace_sem); return is_covered; } static struct mountpoint *lookup_mountpoint(struct dentry *dentry) { struct hlist_head *chain = mp_hash(dentry); struct mountpoint *mp; hlist_for_each_entry(mp, chain, m_hash) { if (mp->m_dentry == dentry) { mp->m_count++; return mp; } } return NULL; } static struct mountpoint *get_mountpoint(struct dentry *dentry) { struct mountpoint *mp, *new = NULL; int ret; if (d_mountpoint(dentry)) { /* might be worth a WARN_ON() */ if (d_unlinked(dentry)) return ERR_PTR(-ENOENT); mountpoint: read_seqlock_excl(&mount_lock); mp = lookup_mountpoint(dentry); read_sequnlock_excl(&mount_lock); if (mp) goto done; } if (!new) new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* Exactly one processes may set d_mounted */ ret = d_set_mounted(dentry); /* Someone else set d_mounted? */ if (ret == -EBUSY) goto mountpoint; /* The dentry is not available as a mountpoint? */ mp = ERR_PTR(ret); if (ret) goto done; /* Add the new mountpoint to the hash table */ read_seqlock_excl(&mount_lock); new->m_dentry = dget(dentry); new->m_count = 1; hlist_add_head(&new->m_hash, mp_hash(dentry)); INIT_HLIST_HEAD(&new->m_list); read_sequnlock_excl(&mount_lock); mp = new; new = NULL; done: kfree(new); return mp; } /* * vfsmount lock must be held. Additionally, the caller is responsible * for serializing calls for given disposal list. */ static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) { if (!--mp->m_count) { struct dentry *dentry = mp->m_dentry; BUG_ON(!hlist_empty(&mp->m_list)); spin_lock(&dentry->d_lock); dentry->d_flags &= ~DCACHE_MOUNTED; spin_unlock(&dentry->d_lock); dput_to_list(dentry, list); hlist_del(&mp->m_hash); kfree(mp); } } /* called with namespace_lock and vfsmount lock */ static void put_mountpoint(struct mountpoint *mp) { __put_mountpoint(mp, &ex_mountpoints); } static inline int check_mnt(struct mount *mnt) { return mnt->mnt_ns == current->nsproxy->mnt_ns; } /* * vfsmount lock must be held for write */ static void touch_mnt_namespace(struct mnt_namespace *ns) { if (ns) { ns->event = ++event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static void __touch_mnt_namespace(struct mnt_namespace *ns) { if (ns && ns->event != event) { ns->event = event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static struct mountpoint *unhash_mnt(struct mount *mnt) { struct mountpoint *mp; mnt->mnt_parent = mnt; mnt->mnt_mountpoint = mnt->mnt.mnt_root; list_del_init(&mnt->mnt_child); hlist_del_init_rcu(&mnt->mnt_hash); hlist_del_init(&mnt->mnt_mp_list); mp = mnt->mnt_mp; mnt->mnt_mp = NULL; return mp; } /* * vfsmount lock must be held for write */ static void umount_mnt(struct mount *mnt) { put_mountpoint(unhash_mnt(mnt)); } /* * vfsmount lock must be held for write */ void mnt_set_mountpoint(struct mount *mnt, struct mountpoint *mp, struct mount *child_mnt) { mp->m_count++; mnt_add_count(mnt, 1); /* essentially, that's mntget */ child_mnt->mnt_mountpoint = mp->m_dentry; child_mnt->mnt_parent = mnt; child_mnt->mnt_mp = mp; hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); } /** * mnt_set_mountpoint_beneath - mount a mount beneath another one * * @new_parent: the source mount * @top_mnt: the mount beneath which @new_parent is mounted * @new_mp: the new mountpoint of @top_mnt on @new_parent * * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and * parent @top_mnt->mnt_parent and mount it on top of @new_parent at * @new_mp. And mount @new_parent on the old parent and old * mountpoint of @top_mnt. * * Context: This function expects namespace_lock() and lock_mount_hash() * to have been acquired in that order. */ static void mnt_set_mountpoint_beneath(struct mount *new_parent, struct mount *top_mnt, struct mountpoint *new_mp) { struct mount *old_top_parent = top_mnt->mnt_parent; struct mountpoint *old_top_mp = top_mnt->mnt_mp; mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); mnt_change_mountpoint(new_parent, new_mp, top_mnt); } static void __attach_mnt(struct mount *mnt, struct mount *parent) { hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mnt->mnt_mountpoint)); list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); } /** * attach_mnt - mount a mount, attach to @mount_hashtable and parent's * list of child mounts * @parent: the parent * @mnt: the new mount * @mp: the new mountpoint * @beneath: whether to mount @mnt beneath or on top of @parent * * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt * to @parent's child mount list and to @mount_hashtable. * * If @beneath is true, remove @mnt from its current parent and * mountpoint and mount it on @mp on @parent, and mount @parent on the * old parent and old mountpoint of @mnt. Finally, attach @parent to * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. * * Note, when __attach_mnt() is called @mnt->mnt_parent already points * to the correct parent. * * Context: This function expects namespace_lock() and lock_mount_hash() * to have been acquired in that order. */ static void attach_mnt(struct mount *mnt, struct mount *parent, struct mountpoint *mp, bool beneath) { if (beneath) mnt_set_mountpoint_beneath(mnt, parent, mp); else mnt_set_mountpoint(parent, mp, mnt); /* * Note, @mnt->mnt_parent has to be used. If @mnt was mounted * beneath @parent then @mnt will need to be attached to * @parent's old parent, not @parent. IOW, @mnt->mnt_parent * isn't the same mount as @parent. */ __attach_mnt(mnt, mnt->mnt_parent); } void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) { struct mountpoint *old_mp = mnt->mnt_mp; struct mount *old_parent = mnt->mnt_parent; list_del_init(&mnt->mnt_child); hlist_del_init(&mnt->mnt_mp_list); hlist_del_init_rcu(&mnt->mnt_hash); attach_mnt(mnt, parent, mp, false); put_mountpoint(old_mp); mnt_add_count(old_parent, -1); } static inline struct mount *node_to_mount(struct rb_node *node) { return node ? rb_entry(node, struct mount, mnt_node) : NULL; } static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) { struct rb_node **link = &ns->mounts.rb_node; struct rb_node *parent = NULL; WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB); mnt->mnt_ns = ns; while (*link) { parent = *link; if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node(&mnt->mnt_node, parent, link); rb_insert_color(&mnt->mnt_node, &ns->mounts); mnt->mnt.mnt_flags |= MNT_ONRB; } /* * vfsmount lock must be held for write */ static void commit_tree(struct mount *mnt) { struct mount *parent = mnt->mnt_parent; struct mount *m; LIST_HEAD(head); struct mnt_namespace *n = parent->mnt_ns; BUG_ON(parent == mnt); list_add_tail(&head, &mnt->mnt_list); while (!list_empty(&head)) { m = list_first_entry(&head, typeof(*m), mnt_list); list_del(&m->mnt_list); mnt_add_to_ns(n, m); } n->nr_mounts += n->pending_mounts; n->pending_mounts = 0; __attach_mnt(mnt, parent); touch_mnt_namespace(n); } static struct mount *next_mnt(struct mount *p, struct mount *root) { struct list_head *next = p->mnt_mounts.next; if (next == &p->mnt_mounts) { while (1) { if (p == root) return NULL; next = p->mnt_child.next; if (next != &p->mnt_parent->mnt_mounts) break; p = p->mnt_parent; } } return list_entry(next, struct mount, mnt_child); } static struct mount *skip_mnt_tree(struct mount *p) { struct list_head *prev = p->mnt_mounts.prev; while (prev != &p->mnt_mounts) { p = list_entry(prev, struct mount, mnt_child); prev = p->mnt_mounts.prev; } return p; } /** * vfs_create_mount - Create a mount for a configured superblock * @fc: The configuration context with the superblock attached * * Create a mount to an already configured superblock. If necessary, the * caller should invoke vfs_get_tree() before calling this. * * Note that this does not attach the mount to anything. */ struct vfsmount *vfs_create_mount(struct fs_context *fc) { struct mount *mnt; if (!fc->root) return ERR_PTR(-EINVAL); mnt = alloc_vfsmnt(fc->source ?: "none"); if (!mnt) return ERR_PTR(-ENOMEM); if (fc->sb_flags & SB_KERNMOUNT) mnt->mnt.mnt_flags = MNT_INTERNAL; atomic_inc(&fc->root->d_sb->s_active); mnt->mnt.mnt_sb = fc->root->d_sb; mnt->mnt.mnt_root = dget(fc->root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); unlock_mount_hash(); return &mnt->mnt; } EXPORT_SYMBOL(vfs_create_mount); struct vfsmount *fc_mount(struct fs_context *fc) { int err = vfs_get_tree(fc); if (!err) { up_write(&fc->root->d_sb->s_umount); return vfs_create_mount(fc); } return ERR_PTR(err); } EXPORT_SYMBOL(fc_mount); struct vfsmount *vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) { struct fs_context *fc; struct vfsmount *mnt; int ret = 0; if (!type) return ERR_PTR(-EINVAL); fc = fs_context_for_mount(type, flags); if (IS_ERR(fc)) return ERR_CAST(fc); if (name) ret = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!ret) ret = parse_monolithic_mount_data(fc, data); if (!ret) mnt = fc_mount(fc); else mnt = ERR_PTR(ret); put_fs_context(fc); return mnt; } EXPORT_SYMBOL_GPL(vfs_kern_mount); struct vfsmount * vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, const char *name, void *data) { /* Until it is worked out how to pass the user namespace * through from the parent mount to the submount don't support * unprivileged mounts with submounts. */ if (mountpoint->d_sb->s_user_ns != &init_user_ns) return ERR_PTR(-EPERM); return vfs_kern_mount(type, SB_SUBMOUNT, name, data); } EXPORT_SYMBOL_GPL(vfs_submount); static struct mount *clone_mnt(struct mount *old, struct dentry *root, int flag) { struct super_block *sb = old->mnt.mnt_sb; struct mount *mnt; int err; mnt = alloc_vfsmnt(old->mnt_devname); if (!mnt) return ERR_PTR(-ENOMEM); if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) mnt->mnt_group_id = 0; /* not a peer of original */ else mnt->mnt_group_id = old->mnt_group_id; if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { err = mnt_alloc_group_id(mnt); if (err) goto out_free; } mnt->mnt.mnt_flags = old->mnt.mnt_flags; mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB); atomic_inc(&sb->s_active); mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); mnt->mnt.mnt_sb = sb; mnt->mnt.mnt_root = dget(root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &sb->s_mounts); unlock_mount_hash(); if ((flag & CL_SLAVE) || ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { list_add(&mnt->mnt_slave, &old->mnt_slave_list); mnt->mnt_master = old; CLEAR_MNT_SHARED(mnt); } else if (!(flag & CL_PRIVATE)) { if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) list_add(&mnt->mnt_share, &old->mnt_share); if (IS_MNT_SLAVE(old)) list_add(&mnt->mnt_slave, &old->mnt_slave); mnt->mnt_master = old->mnt_master; } else { CLEAR_MNT_SHARED(mnt); } if (flag & CL_MAKE_SHARED) set_mnt_shared(mnt); /* stick the duplicate mount on the same expiry list * as the original if that was on one */ if (flag & CL_EXPIRE) { if (!list_empty(&old->mnt_expire)) list_add(&mnt->mnt_expire, &old->mnt_expire); } return mnt; out_free: mnt_free_id(mnt); free_vfsmnt(mnt); return ERR_PTR(err); } static void cleanup_mnt(struct mount *mnt) { struct hlist_node *p; struct mount *m; /* * The warning here probably indicates that somebody messed * up a mnt_want/drop_write() pair. If this happens, the * filesystem was probably unable to make r/w->r/o transitions. * The locking used to deal with mnt_count decrement provides barriers, * so mnt_get_writers() below is safe. */ WARN_ON(mnt_get_writers(mnt)); if (unlikely(mnt->mnt_pins.first)) mnt_pin_kill(mnt); hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } fsnotify_vfsmount_delete(&mnt->mnt); dput(mnt->mnt.mnt_root); deactivate_super(mnt->mnt.mnt_sb); mnt_free_id(mnt); call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); } static void __cleanup_mnt(struct rcu_head *head) { cleanup_mnt(container_of(head, struct mount, mnt_rcu)); } static LLIST_HEAD(delayed_mntput_list); static void delayed_mntput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_mntput_list); struct mount *m, *t; llist_for_each_entry_safe(m, t, node, mnt_llist) cleanup_mnt(m); } static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); static void mntput_no_expire(struct mount *mnt) { LIST_HEAD(list); int count; rcu_read_lock(); if (likely(READ_ONCE(mnt->mnt_ns))) { /* * Since we don't do lock_mount_hash() here, * ->mnt_ns can change under us. However, if it's * non-NULL, then there's a reference that won't * be dropped until after an RCU delay done after * turning ->mnt_ns NULL. So if we observe it * non-NULL under rcu_read_lock(), the reference * we are dropping is not the final one. */ mnt_add_count(mnt, -1); rcu_read_unlock(); return; } lock_mount_hash(); /* * make sure that if __legitimize_mnt() has not seen us grab * mount_lock, we'll see their refcount increment here. */ smp_mb(); mnt_add_count(mnt, -1); count = mnt_get_count(mnt); if (count != 0) { WARN_ON(count < 0); rcu_read_unlock(); unlock_mount_hash(); return; } if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { rcu_read_unlock(); unlock_mount_hash(); return; } mnt->mnt.mnt_flags |= MNT_DOOMED; rcu_read_unlock(); list_del(&mnt->mnt_instance); if (unlikely(!list_empty(&mnt->mnt_mounts))) { struct mount *p, *tmp; list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { __put_mountpoint(unhash_mnt(p), &list); hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); } } unlock_mount_hash(); shrink_dentry_list(&list); if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { struct task_struct *task = current; if (likely(!(task->flags & PF_KTHREAD))) { init_task_work(&mnt->mnt_rcu, __cleanup_mnt); if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) return; } if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) schedule_delayed_work(&delayed_mntput_work, 1); return; } cleanup_mnt(mnt); } void mntput(struct vfsmount *mnt) { if (mnt) { struct mount *m = real_mount(mnt); /* avoid cacheline pingpong */ if (unlikely(m->mnt_expiry_mark)) WRITE_ONCE(m->mnt_expiry_mark, 0); mntput_no_expire(m); } } EXPORT_SYMBOL(mntput); struct vfsmount *mntget(struct vfsmount *mnt) { if (mnt) mnt_add_count(real_mount(mnt), 1); return mnt; } EXPORT_SYMBOL(mntget); /* * Make a mount point inaccessible to new lookups. * Because there may still be current users, the caller MUST WAIT * for an RCU grace period before destroying the mount point. */ void mnt_make_shortterm(struct vfsmount *mnt) { if (mnt) real_mount(mnt)->mnt_ns = NULL; } /** * path_is_mountpoint() - Check if path is a mount in the current namespace. * @path: path to check * * d_mountpoint() can only be used reliably to establish if a dentry is * not mounted in any namespace and that common case is handled inline. * d_mountpoint() isn't aware of the possibility there may be multiple * mounts using a given dentry in a different namespace. This function * checks if the passed in path is a mountpoint rather than the dentry * alone. */ bool path_is_mountpoint(const struct path *path) { unsigned seq; bool res; if (!d_mountpoint(path->dentry)) return false; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); res = __path_is_mountpoint(path); } while (read_seqretry(&mount_lock, seq)); rcu_read_unlock(); return res; } EXPORT_SYMBOL(path_is_mountpoint); struct vfsmount *mnt_clone_internal(const struct path *path) { struct mount *p; p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); if (IS_ERR(p)) return ERR_CAST(p); p->mnt.mnt_flags |= MNT_INTERNAL; return &p->mnt; } /* * Returns the mount which either has the specified mnt_id, or has the next * smallest id afer the specified one. */ static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) { struct rb_node *node = ns->mounts.rb_node; struct mount *ret = NULL; while (node) { struct mount *m = node_to_mount(node); if (mnt_id <= m->mnt_id_unique) { ret = node_to_mount(node); if (mnt_id == m->mnt_id_unique) break; node = node->rb_left; } else { node = node->rb_right; } } return ret; } /* * Returns the mount which either has the specified mnt_id, or has the next * greater id before the specified one. */ static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) { struct rb_node *node = ns->mounts.rb_node; struct mount *ret = NULL; while (node) { struct mount *m = node_to_mount(node); if (mnt_id >= m->mnt_id_unique) { ret = node_to_mount(node); if (mnt_id == m->mnt_id_unique) break; node = node->rb_right; } else { node = node->rb_left; } } return ret; } #ifdef CONFIG_PROC_FS /* iterator; we want it to have access to namespace_sem, thus here... */ static void *m_start(struct seq_file *m, loff_t *pos) { struct proc_mounts *p = m->private; down_read(&namespace_sem); return mnt_find_id_at(p->ns, *pos); } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct mount *next = NULL, *mnt = v; struct rb_node *node = rb_next(&mnt->mnt_node); ++*pos; if (node) { next = node_to_mount(node); *pos = next->mnt_id_unique; } return next; } static void m_stop(struct seq_file *m, void *v) { up_read(&namespace_sem); } static int m_show(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *r = v; return p->show(m, &r->mnt); } const struct seq_operations mounts_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = m_show, }; #endif /* CONFIG_PROC_FS */ /** * may_umount_tree - check if a mount tree is busy * @m: root of mount tree * * This is called to check if a tree of mounts has any * open files, pwds, chroots or sub mounts that are * busy. */ int may_umount_tree(struct vfsmount *m) { struct mount *mnt = real_mount(m); int actual_refs = 0; int minimum_refs = 0; struct mount *p; BUG_ON(!m); /* write lock needed for mnt_get_count */ lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { actual_refs += mnt_get_count(p); minimum_refs += 2; } unlock_mount_hash(); if (actual_refs > minimum_refs) return 0; return 1; } EXPORT_SYMBOL(may_umount_tree); /** * may_umount - check if a mount point is busy * @mnt: root of mount * * This is called to check if a mount point has any * open files, pwds, chroots or sub mounts. If the * mount has sub mounts this will return busy * regardless of whether the sub mounts are busy. * * Doesn't take quota and stuff into account. IOW, in some cases it will * give false negatives. The main reason why it's here is that we need * a non-destructive way to look for easily umountable filesystems. */ int may_umount(struct vfsmount *mnt) { int ret = 1; down_read(&namespace_sem); lock_mount_hash(); if (propagate_mount_busy(real_mount(mnt), 2)) ret = 0; unlock_mount_hash(); up_read(&namespace_sem); return ret; } EXPORT_SYMBOL(may_umount); static void namespace_unlock(void) { struct hlist_head head; struct hlist_node *p; struct mount *m; LIST_HEAD(list); hlist_move_list(&unmounted, &head); list_splice_init(&ex_mountpoints, &list); up_write(&namespace_sem); shrink_dentry_list(&list); if (likely(hlist_empty(&head))) return; synchronize_rcu_expedited(); hlist_for_each_entry_safe(m, p, &head, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } } static inline void namespace_lock(void) { down_write(&namespace_sem); } enum umount_tree_flags { UMOUNT_SYNC = 1, UMOUNT_PROPAGATE = 2, UMOUNT_CONNECTED = 4, }; static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) { /* Leaving mounts connected is only valid for lazy umounts */ if (how & UMOUNT_SYNC) return true; /* A mount without a parent has nothing to be connected to */ if (!mnt_has_parent(mnt)) return true; /* Because the reference counting rules change when mounts are * unmounted and connected, umounted mounts may not be * connected to mounted mounts. */ if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) return true; /* Has it been requested that the mount remain connected? */ if (how & UMOUNT_CONNECTED) return false; /* Is the mount locked such that it needs to remain connected? */ if (IS_MNT_LOCKED(mnt)) return false; /* By default disconnect the mount */ return true; } /* * mount_lock must be held * namespace_sem must be held for write */ static void umount_tree(struct mount *mnt, enum umount_tree_flags how) { LIST_HEAD(tmp_list); struct mount *p; if (how & UMOUNT_PROPAGATE) propagate_mount_unlock(mnt); /* Gather the mounts to umount */ for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt.mnt_flags |= MNT_UMOUNT; if (p->mnt.mnt_flags & MNT_ONRB) move_from_ns(p, &tmp_list); else list_move(&p->mnt_list, &tmp_list); } /* Hide the mounts from mnt_mounts */ list_for_each_entry(p, &tmp_list, mnt_list) { list_del_init(&p->mnt_child); } /* Add propogated mounts to the tmp_list */ if (how & UMOUNT_PROPAGATE) propagate_umount(&tmp_list); while (!list_empty(&tmp_list)) { struct mnt_namespace *ns; bool disconnect; p = list_first_entry(&tmp_list, struct mount, mnt_list); list_del_init(&p->mnt_expire); list_del_init(&p->mnt_list); ns = p->mnt_ns; if (ns) { ns->nr_mounts--; __touch_mnt_namespace(ns); } p->mnt_ns = NULL; if (how & UMOUNT_SYNC) p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; disconnect = disconnect_mount(p, how); if (mnt_has_parent(p)) { mnt_add_count(p->mnt_parent, -1); if (!disconnect) { /* Don't forget about p */ list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); } else { umount_mnt(p); } } change_mnt_propagation(p, MS_PRIVATE); if (disconnect) hlist_add_head(&p->mnt_umount, &unmounted); } } static void shrink_submounts(struct mount *mnt); static int do_umount_root(struct super_block *sb) { int ret = 0; down_write(&sb->s_umount); if (!sb_rdonly(sb)) { struct fs_context *fc; fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, SB_RDONLY); if (IS_ERR(fc)) { ret = PTR_ERR(fc); } else { ret = parse_monolithic_mount_data(fc, NULL); if (!ret) ret = reconfigure_super(fc); put_fs_context(fc); } } up_write(&sb->s_umount); return ret; } static int do_umount(struct mount *mnt, int flags) { struct super_block *sb = mnt->mnt.mnt_sb; int retval; retval = security_sb_umount(&mnt->mnt, flags); if (retval) return retval; /* * Allow userspace to request a mountpoint be expired rather than * unmounting unconditionally. Unmount only happens if: * (1) the mark is already set (the mark is cleared by mntput()) * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] */ if (flags & MNT_EXPIRE) { if (&mnt->mnt == current->fs->root.mnt || flags & (MNT_FORCE | MNT_DETACH)) return -EINVAL; /* * probably don't strictly need the lock here if we examined * all race cases, but it's a slowpath. */ lock_mount_hash(); if (mnt_get_count(mnt) != 2) { unlock_mount_hash(); return -EBUSY; } unlock_mount_hash(); if (!xchg(&mnt->mnt_expiry_mark, 1)) return -EAGAIN; } /* * If we may have to abort operations to get out of this * mount, and they will themselves hold resources we must * allow the fs to do things. In the Unix tradition of * 'Gee thats tricky lets do it in userspace' the umount_begin * might fail to complete on the first run through as other tasks * must return, and the like. Thats for the mount program to worry * about for the moment. */ if (flags & MNT_FORCE && sb->s_op->umount_begin) { sb->s_op->umount_begin(sb); } /* * No sense to grab the lock for this test, but test itself looks * somewhat bogus. Suggestions for better replacement? * Ho-hum... In principle, we might treat that as umount + switch * to rootfs. GC would eventually take care of the old vfsmount. * Actually it makes sense, especially if rootfs would contain a * /reboot - static binary that would close all descriptors and * call reboot(9). Then init(8) could umount root and exec /reboot. */ if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { /* * Special case for "unmounting" root ... * we just try to remount it readonly. */ if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) return -EPERM; return do_umount_root(sb); } namespace_lock(); lock_mount_hash(); /* Recheck MNT_LOCKED with the locks held */ retval = -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) goto out; event++; if (flags & MNT_DETACH) { if (mnt->mnt.mnt_flags & MNT_ONRB || !list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE); retval = 0; } else { shrink_submounts(mnt); retval = -EBUSY; if (!propagate_mount_busy(mnt, 2)) { if (mnt->mnt.mnt_flags & MNT_ONRB || !list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); retval = 0; } } out: unlock_mount_hash(); namespace_unlock(); return retval; } /* * __detach_mounts - lazily unmount all mounts on the specified dentry * * During unlink, rmdir, and d_drop it is possible to loose the path * to an existing mountpoint, and wind up leaking the mount. * detach_mounts allows lazily unmounting those mounts instead of * leaking them. * * The caller may hold dentry->d_inode->i_mutex. */ void __detach_mounts(struct dentry *dentry) { struct mountpoint *mp; struct mount *mnt; namespace_lock(); lock_mount_hash(); mp = lookup_mountpoint(dentry); if (!mp) goto out_unlock; event++; while (!hlist_empty(&mp->m_list)) { mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); if (mnt->mnt.mnt_flags & MNT_UMOUNT) { umount_mnt(mnt); hlist_add_head(&mnt->mnt_umount, &unmounted); } else umount_tree(mnt, UMOUNT_CONNECTED); } put_mountpoint(mp); out_unlock: unlock_mount_hash(); namespace_unlock(); } /* * Is the caller allowed to modify his namespace? */ bool may_mount(void) { return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); } /** * path_mounted - check whether path is mounted * @path: path to check * * Determine whether @path refers to the root of a mount. * * Return: true if @path is the root of a mount, false if not. */ static inline bool path_mounted(const struct path *path) { return path->mnt->mnt_root == path->dentry; } static void warn_mandlock(void) { pr_warn_once("=======================================================\n" "WARNING: The mand mount option has been deprecated and\n" " and is ignored by this kernel. Remove the mand\n" " option from the mount to silence this warning.\n" "=======================================================\n"); } static int can_umount(const struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); if (!may_mount()) return -EPERM; if (!path_mounted(path)) return -EINVAL; if (!check_mnt(mnt)) return -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ return -EINVAL; if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) return -EPERM; return 0; } // caller is responsible for flags being sane int path_umount(struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); int ret; ret = can_umount(path, flags); if (!ret) ret = do_umount(mnt, flags); /* we mustn't call path_put() as that would clear mnt_expiry_mark */ dput(path->dentry); mntput_no_expire(mnt); return ret; } static int ksys_umount(char __user *name, int flags) { int lookup_flags = LOOKUP_MOUNTPOINT; struct path path; int ret; // basic validity checks done first if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) return -EINVAL; if (!(flags & UMOUNT_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); if (ret) return ret; return path_umount(&path, flags); } SYSCALL_DEFINE2(umount, char __user *, name, int, flags) { return ksys_umount(name, flags); } #ifdef __ARCH_WANT_SYS_OLDUMOUNT /* * The 2.0 compatible umount. No flags. */ SYSCALL_DEFINE1(oldumount, char __user *, name) { return ksys_umount(name, 0); } #endif static bool is_mnt_ns_file(struct dentry *dentry) { /* Is this a proxy for a mount namespace? */ return dentry->d_op == &ns_dentry_operations && dentry->d_fsdata == &mntns_operations; } static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) { return container_of(ns, struct mnt_namespace, ns); } struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) { return &mnt->ns; } static bool mnt_ns_loop(struct dentry *dentry) { /* Could bind mounting the mount namespace inode cause a * mount namespace loop? */ struct mnt_namespace *mnt_ns; if (!is_mnt_ns_file(dentry)) return false; mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; } struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, int flag) { struct mount *res, *p, *q, *r, *parent; if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) return ERR_PTR(-EINVAL); if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) return ERR_PTR(-EINVAL); res = q = clone_mnt(mnt, dentry, flag); if (IS_ERR(q)) return q; q->mnt_mountpoint = mnt->mnt_mountpoint; p = mnt; list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { struct mount *s; if (!is_subdir(r->mnt_mountpoint, dentry)) continue; for (s = r; s; s = next_mnt(s, r)) { if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(s)) { if (s->mnt.mnt_flags & MNT_LOCKED) { /* Both unbindable and locked. */ q = ERR_PTR(-EPERM); goto out; } else { s = skip_mnt_tree(s); continue; } } if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(s->mnt.mnt_root)) { s = skip_mnt_tree(s); continue; } while (p != s->mnt_parent) { p = p->mnt_parent; q = q->mnt_parent; } p = s; parent = q; q = clone_mnt(p, p->mnt.mnt_root, flag); if (IS_ERR(q)) goto out; lock_mount_hash(); list_add_tail(&q->mnt_list, &res->mnt_list); attach_mnt(q, parent, p->mnt_mp, false); unlock_mount_hash(); } } return res; out: if (res) { lock_mount_hash(); umount_tree(res, UMOUNT_SYNC); unlock_mount_hash(); } return q; } /* Caller should check returned pointer for errors */ struct vfsmount *collect_mounts(const struct path *path) { struct mount *tree; namespace_lock(); if (!check_mnt(real_mount(path->mnt))) tree = ERR_PTR(-EINVAL); else tree = copy_tree(real_mount(path->mnt), path->dentry, CL_COPY_ALL | CL_PRIVATE); namespace_unlock(); if (IS_ERR(tree)) return ERR_CAST(tree); return &tree->mnt; } static void free_mnt_ns(struct mnt_namespace *); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); void dissolve_on_fput(struct vfsmount *mnt) { struct mnt_namespace *ns; namespace_lock(); lock_mount_hash(); ns = real_mount(mnt)->mnt_ns; if (ns) { if (is_anon_ns(ns)) umount_tree(real_mount(mnt), UMOUNT_CONNECTED); else ns = NULL; } unlock_mount_hash(); namespace_unlock(); if (ns) free_mnt_ns(ns); } void drop_collected_mounts(struct vfsmount *mnt) { namespace_lock(); lock_mount_hash(); umount_tree(real_mount(mnt), 0); unlock_mount_hash(); namespace_unlock(); } static bool has_locked_children(struct mount *mnt, struct dentry *dentry) { struct mount *child; list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { if (!is_subdir(child->mnt_mountpoint, dentry)) continue; if (child->mnt.mnt_flags & MNT_LOCKED) return true; } return false; } /** * clone_private_mount - create a private clone of a path * @path: path to clone * * This creates a new vfsmount, which will be the clone of @path. The new mount * will not be attached anywhere in the namespace and will be private (i.e. * changes to the originating mount won't be propagated into this). * * Release with mntput(). */ struct vfsmount *clone_private_mount(const struct path *path) { struct mount *old_mnt = real_mount(path->mnt); struct mount *new_mnt; down_read(&namespace_sem); if (IS_MNT_UNBINDABLE(old_mnt)) goto invalid; if (!check_mnt(old_mnt)) goto invalid; if (has_locked_children(old_mnt, path->dentry)) goto invalid; new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); up_read(&namespace_sem); if (IS_ERR(new_mnt)) return ERR_CAST(new_mnt); /* Longterm mount to be removed by kern_unmount*() */ new_mnt->mnt_ns = MNT_NS_INTERNAL; return &new_mnt->mnt; invalid: up_read(&namespace_sem); return ERR_PTR(-EINVAL); } EXPORT_SYMBOL_GPL(clone_private_mount); int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, struct vfsmount *root) { struct mount *mnt; int res = f(root, arg); if (res) return res; list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { res = f(&mnt->mnt, arg); if (res) return res; } return 0; } static void lock_mnt_tree(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { int flags = p->mnt.mnt_flags; /* Don't allow unprivileged users to change mount flags */ flags |= MNT_LOCK_ATIME; if (flags & MNT_READONLY) flags |= MNT_LOCK_READONLY; if (flags & MNT_NODEV) flags |= MNT_LOCK_NODEV; if (flags & MNT_NOSUID) flags |= MNT_LOCK_NOSUID; if (flags & MNT_NOEXEC) flags |= MNT_LOCK_NOEXEC; /* Don't allow unprivileged users to reveal what is under a mount */ if (list_empty(&p->mnt_expire)) flags |= MNT_LOCKED; p->mnt.mnt_flags = flags; } } static void cleanup_group_ids(struct mount *mnt, struct mount *end) { struct mount *p; for (p = mnt; p != end; p = next_mnt(p, mnt)) { if (p->mnt_group_id && !IS_MNT_SHARED(p)) mnt_release_group_id(p); } } static int invent_group_ids(struct mount *mnt, bool recurse) { struct mount *p; for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { int err = mnt_alloc_group_id(p); if (err) { cleanup_group_ids(mnt, p); return err; } } } return 0; } int count_mounts(struct mnt_namespace *ns, struct mount *mnt) { unsigned int max = READ_ONCE(sysctl_mount_max); unsigned int mounts = 0; struct mount *p; if (ns->nr_mounts >= max) return -ENOSPC; max -= ns->nr_mounts; if (ns->pending_mounts >= max) return -ENOSPC; max -= ns->pending_mounts; for (p = mnt; p; p = next_mnt(p, mnt)) mounts++; if (mounts > max) return -ENOSPC; ns->pending_mounts += mounts; return 0; } enum mnt_tree_flags_t { MNT_TREE_MOVE = BIT(0), MNT_TREE_BENEATH = BIT(1), }; /** * attach_recursive_mnt - attach a source mount tree * @source_mnt: mount tree to be attached * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath * @dest_mp: the mountpoint @source_mnt will be mounted at * @flags: modify how @source_mnt is supposed to be attached * * NOTE: in the table below explains the semantics when a source mount * of a given type is attached to a destination mount of a given type. * --------------------------------------------------------------------------- * | BIND MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (++) | shared (+) | shared(+++)| invalid | * | | | | | | * |non-shared| shared (+) | private | slave (*) | invalid | * *************************************************************************** * A bind operation clones the source mount and mounts the clone on the * destination mount. * * (++) the cloned mount is propagated to all the mounts in the propagation * tree of the destination mount and the cloned mount is added to * the peer group of the source mount. * (+) the cloned mount is created under the destination mount and is marked * as shared. The cloned mount is added to the peer group of the source * mount. * (+++) the mount is propagated to all the mounts in the propagation tree * of the destination mount and the cloned mount is made slave * of the same master as that of the source mount. The cloned mount * is marked as 'shared and slave'. * (*) the cloned mount is made a slave of the same master as that of the * source mount. * * --------------------------------------------------------------------------- * | MOVE MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (+) | shared (+) | shared(+++) | invalid | * | | | | | | * |non-shared| shared (+*) | private | slave (*) | unbindable | * *************************************************************************** * * (+) the mount is moved to the destination. And is then propagated to * all the mounts in the propagation tree of the destination mount. * (+*) the mount is moved to the destination. * (+++) the mount is moved to the destination and is then propagated to * all the mounts belonging to the destination mount's propagation tree. * the mount is marked as 'shared and slave'. * (*) the mount continues to be a slave at the new location. * * if the source mount is a tree, the operations explained above is * applied to each mount in the tree. * Must be called without spinlocks held, since this function can sleep * in allocations. * * Context: The function expects namespace_lock() to be held. * Return: If @source_mnt was successfully attached 0 is returned. * Otherwise a negative error code is returned. */ static int attach_recursive_mnt(struct mount *source_mnt, struct mount *top_mnt, struct mountpoint *dest_mp, enum mnt_tree_flags_t flags) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; HLIST_HEAD(tree_list); struct mnt_namespace *ns = top_mnt->mnt_ns; struct mountpoint *smp; struct mount *child, *dest_mnt, *p; struct hlist_node *n; int err = 0; bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; /* * Preallocate a mountpoint in case the new mounts need to be * mounted beneath mounts on the same mountpoint. */ smp = get_mountpoint(source_mnt->mnt.mnt_root); if (IS_ERR(smp)) return PTR_ERR(smp); /* Is there space to add these mounts to the mount namespace? */ if (!moving) { err = count_mounts(ns, source_mnt); if (err) goto out; } if (beneath) dest_mnt = top_mnt->mnt_parent; else dest_mnt = top_mnt; if (IS_MNT_SHARED(dest_mnt)) { err = invent_group_ids(source_mnt, true); if (err) goto out; err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); } lock_mount_hash(); if (err) goto out_cleanup_ids; if (IS_MNT_SHARED(dest_mnt)) { for (p = source_mnt; p; p = next_mnt(p, source_mnt)) set_mnt_shared(p); } if (moving) { if (beneath) dest_mp = smp; unhash_mnt(source_mnt); attach_mnt(source_mnt, top_mnt, dest_mp, beneath); touch_mnt_namespace(source_mnt->mnt_ns); } else { if (source_mnt->mnt_ns) { LIST_HEAD(head); /* move from anon - the caller will destroy */ for (p = source_mnt; p; p = next_mnt(p, source_mnt)) move_from_ns(p, &head); list_del_init(&head); } if (beneath) mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); else mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); commit_tree(source_mnt); } hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { struct mount *q; hlist_del_init(&child->mnt_hash); q = __lookup_mnt(&child->mnt_parent->mnt, child->mnt_mountpoint); if (q) mnt_change_mountpoint(child, smp, q); /* Notice when we are propagating across user namespaces */ if (child->mnt_parent->mnt_ns->user_ns != user_ns) lock_mnt_tree(child); child->mnt.mnt_flags &= ~MNT_LOCKED; commit_tree(child); } put_mountpoint(smp); unlock_mount_hash(); return 0; out_cleanup_ids: while (!hlist_empty(&tree_list)) { child = hlist_entry(tree_list.first, struct mount, mnt_hash); child->mnt_parent->mnt_ns->pending_mounts = 0; umount_tree(child, UMOUNT_SYNC); } unlock_mount_hash(); cleanup_group_ids(source_mnt, NULL); out: ns->pending_mounts = 0; read_seqlock_excl(&mount_lock); put_mountpoint(smp); read_sequnlock_excl(&mount_lock); return err; } /** * do_lock_mount - lock mount and mountpoint * @path: target path * @beneath: whether the intention is to mount beneath @path * * Follow the mount stack on @path until the top mount @mnt is found. If * the initial @path->{mnt,dentry} is a mountpoint lookup the first * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} * until nothing is stacked on top of it anymore. * * Acquire the inode_lock() on the top mount's ->mnt_root to protect * against concurrent removal of the new mountpoint from another mount * namespace. * * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint * @mp on @mnt->mnt_parent must be acquired. This protects against a * concurrent unlink of @mp->mnt_dentry from another mount namespace * where @mnt doesn't have a child mount mounted @mp. A concurrent * removal of @mnt->mnt_root doesn't matter as nothing will be mounted * on top of it for @beneath. * * In addition, @beneath needs to make sure that @mnt hasn't been * unmounted or moved from its current mountpoint in between dropping * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt * being unmounted would be detected later by e.g., calling * check_mnt(mnt) in the function it's called from. For the @beneath * case however, it's useful to detect it directly in do_lock_mount(). * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. * * Return: Either the target mountpoint on the top mount or the top * mount's mountpoint. */ static struct mountpoint *do_lock_mount(struct path *path, bool beneath) { struct vfsmount *mnt = path->mnt; struct dentry *dentry; struct mountpoint *mp = ERR_PTR(-ENOENT); for (;;) { struct mount *m; if (beneath) { m = real_mount(mnt); read_seqlock_excl(&mount_lock); dentry = dget(m->mnt_mountpoint); read_sequnlock_excl(&mount_lock); } else { dentry = path->dentry; } inode_lock(dentry->d_inode); if (unlikely(cant_mount(dentry))) { inode_unlock(dentry->d_inode); goto out; } namespace_lock(); if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { namespace_unlock(); inode_unlock(dentry->d_inode); goto out; } mnt = lookup_mnt(path); if (likely(!mnt)) break; namespace_unlock(); inode_unlock(dentry->d_inode); if (beneath) dput(dentry); path_put(path); path->mnt = mnt; path->dentry = dget(mnt->mnt_root); } mp = get_mountpoint(dentry); if (IS_ERR(mp)) { namespace_unlock(); inode_unlock(dentry->d_inode); } out: if (beneath) dput(dentry); return mp; } static inline struct mountpoint *lock_mount(struct path *path) { return do_lock_mount(path, false); } static void unlock_mount(struct mountpoint *where) { struct dentry *dentry = where->m_dentry; read_seqlock_excl(&mount_lock); put_mountpoint(where); read_sequnlock_excl(&mount_lock); namespace_unlock(); inode_unlock(dentry->d_inode); } static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) { if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) return -EINVAL; if (d_is_dir(mp->m_dentry) != d_is_dir(mnt->mnt.mnt_root)) return -ENOTDIR; return attach_recursive_mnt(mnt, p, mp, 0); } /* * Sanity check the flags to change_mnt_propagation. */ static int flags_to_propagation_type(int ms_flags) { int type = ms_flags & ~(MS_REC | MS_SILENT); /* Fail if any non-propagation flags are set */ if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return 0; /* Only one propagation flag should be set */ if (!is_power_of_2(type)) return 0; return type; } /* * recursively change the type of the mountpoint. */ static int do_change_type(struct path *path, int ms_flags) { struct mount *m; struct mount *mnt = real_mount(path->mnt); int recurse = ms_flags & MS_REC; int type; int err = 0; if (!path_mounted(path)) return -EINVAL; type = flags_to_propagation_type(ms_flags); if (!type) return -EINVAL; namespace_lock(); if (type == MS_SHARED) { err = invent_group_ids(mnt, recurse); if (err) goto out_unlock; } lock_mount_hash(); for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) change_mnt_propagation(m, type); unlock_mount_hash(); out_unlock: namespace_unlock(); return err; } static struct mount *__do_loopback(struct path *old_path, int recurse) { struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); if (IS_MNT_UNBINDABLE(old)) return mnt; if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) return mnt; if (!recurse && has_locked_children(old, old_path->dentry)) return mnt; if (recurse) mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); else mnt = clone_mnt(old, old_path->dentry, 0); if (!IS_ERR(mnt)) mnt->mnt.mnt_flags &= ~MNT_LOCKED; return mnt; } /* * do loopback mount. */ static int do_loopback(struct path *path, const char *old_name, int recurse) { struct path old_path; struct mount *mnt = NULL, *parent; struct mountpoint *mp; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); if (err) return err; err = -EINVAL; if (mnt_ns_loop(old_path.dentry)) goto out; mp = lock_mount(path); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto out; } parent = real_mount(path->mnt); if (!check_mnt(parent)) goto out2; mnt = __do_loopback(&old_path, recurse); if (IS_ERR(mnt)) { err = PTR_ERR(mnt); goto out2; } err = graft_tree(mnt, parent, mp); if (err) { lock_mount_hash(); umount_tree(mnt, UMOUNT_SYNC); unlock_mount_hash(); } out2: unlock_mount(mp); out: path_put(&old_path); return err; } static struct file *open_detached_copy(struct path *path, bool recursive) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); struct mount *mnt, *p; struct file *file; if (IS_ERR(ns)) return ERR_CAST(ns); namespace_lock(); mnt = __do_loopback(path, recursive); if (IS_ERR(mnt)) { namespace_unlock(); free_mnt_ns(ns); return ERR_CAST(mnt); } lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { mnt_add_to_ns(ns, p); ns->nr_mounts++; } ns->root = mnt; mntget(&mnt->mnt); unlock_mount_hash(); namespace_unlock(); mntput(path->mnt); path->mnt = &mnt->mnt; file = dentry_open(path, O_PATH, current_cred()); if (IS_ERR(file)) dissolve_on_fput(path->mnt); else file->f_mode |= FMODE_NEED_UNMOUNT; return file; } SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) { struct file *file; struct path path; int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; bool detached = flags & OPEN_TREE_CLONE; int error; int fd; BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC)) return -EINVAL; if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) return -EINVAL; if (flags & AT_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (detached && !may_mount()) return -EPERM; fd = get_unused_fd_flags(flags & O_CLOEXEC); if (fd < 0) return fd; error = user_path_at(dfd, filename, lookup_flags, &path); if (unlikely(error)) { file = ERR_PTR(error); } else { if (detached) file = open_detached_copy(&path, flags & AT_RECURSIVE); else file = dentry_open(&path, O_PATH, current_cred()); path_put(&path); } if (IS_ERR(file)) { put_unused_fd(fd); return PTR_ERR(file); } fd_install(fd, file); return fd; } /* * Don't allow locked mount flags to be cleared. * * No locks need to be held here while testing the various MNT_LOCK * flags because those flags can never be cleared once they are set. */ static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) { unsigned int fl = mnt->mnt.mnt_flags; if ((fl & MNT_LOCK_READONLY) && !(mnt_flags & MNT_READONLY)) return false; if ((fl & MNT_LOCK_NODEV) && !(mnt_flags & MNT_NODEV)) return false; if ((fl & MNT_LOCK_NOSUID) && !(mnt_flags & MNT_NOSUID)) return false; if ((fl & MNT_LOCK_NOEXEC) && !(mnt_flags & MNT_NOEXEC)) return false; if ((fl & MNT_LOCK_ATIME) && ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) return false; return true; } static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) { bool readonly_request = (mnt_flags & MNT_READONLY); if (readonly_request == __mnt_is_readonly(&mnt->mnt)) return 0; if (readonly_request) return mnt_make_readonly(mnt); mnt->mnt.mnt_flags &= ~MNT_READONLY; return 0; } static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) { mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); } static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) { struct super_block *sb = mnt->mnt_sb; if (!__mnt_is_readonly(mnt) && (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { char *buf = (char *)__get_free_page(GFP_KERNEL); char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", sb->s_type->name, is_mounted(mnt) ? "remounted" : "mounted", mntpath, &sb->s_time_max, (unsigned long long)sb->s_time_max); free_page((unsigned long)buf); sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; } } /* * Handle reconfiguration of the mountpoint only without alteration of the * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND * to mount(2). */ static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) { struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); int ret; if (!check_mnt(mnt)) return -EINVAL; if (!path_mounted(path)) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; /* * We're only checking whether the superblock is read-only not * changing it, so only take down_read(&sb->s_umount). */ down_read(&sb->s_umount); lock_mount_hash(); ret = change_mount_ro_state(mnt, mnt_flags); if (ret == 0) set_mount_attributes(mnt, mnt_flags); unlock_mount_hash(); up_read(&sb->s_umount); mnt_warn_timestamp_expiry(path, &mnt->mnt); return ret; } /* * change filesystem flags. dir should be a physical root of filesystem. * If you've mounted a non-root directory somewhere and want to do remount * on it - tough luck. */ static int do_remount(struct path *path, int ms_flags, int sb_flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); struct fs_context *fc; if (!check_mnt(mnt)) return -EINVAL; if (!path_mounted(path)) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); if (IS_ERR(fc)) return PTR_ERR(fc); /* * Indicate to the filesystem that the remount request is coming * from the legacy mount system call. */ fc->oldapi = true; err = parse_monolithic_mount_data(fc, data); if (!err) { down_write(&sb->s_umount); err = -EPERM; if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { err = reconfigure_super(fc); if (!err) { lock_mount_hash(); set_mount_attributes(mnt, mnt_flags); unlock_mount_hash(); } } up_write(&sb->s_umount); } mnt_warn_timestamp_expiry(path, &mnt->mnt); put_fs_context(fc); return err; } static inline int tree_contains_unbindable(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { if (IS_MNT_UNBINDABLE(p)) return 1; } return 0; } /* * Check that there aren't references to earlier/same mount namespaces in the * specified subtree. Such references can act as pins for mount namespaces * that aren't checked by the mount-cycle checking code, thereby allowing * cycles to be made. */ static bool check_for_nsfs_mounts(struct mount *subtree) { struct mount *p; bool ret = false; lock_mount_hash(); for (p = subtree; p; p = next_mnt(p, subtree)) if (mnt_ns_loop(p->mnt.mnt_root)) goto out; ret = true; out: unlock_mount_hash(); return ret; } static int do_set_group(struct path *from_path, struct path *to_path) { struct mount *from, *to; int err; from = real_mount(from_path->mnt); to = real_mount(to_path->mnt); namespace_lock(); err = -EINVAL; /* To and From must be mounted */ if (!is_mounted(&from->mnt)) goto out; if (!is_mounted(&to->mnt)) goto out; err = -EPERM; /* We should be allowed to modify mount namespaces of both mounts */ if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) goto out; if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) goto out; err = -EINVAL; /* To and From paths should be mount roots */ if (!path_mounted(from_path)) goto out; if (!path_mounted(to_path)) goto out; /* Setting sharing groups is only allowed across same superblock */ if (from->mnt.mnt_sb != to->mnt.mnt_sb) goto out; /* From mount root should be wider than To mount root */ if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) goto out; /* From mount should not have locked children in place of To's root */ if (has_locked_children(from, to->mnt.mnt_root)) goto out; /* Setting sharing groups is only allowed on private mounts */ if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) goto out; /* From should not be private */ if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) goto out; if (IS_MNT_SLAVE(from)) { struct mount *m = from->mnt_master; list_add(&to->mnt_slave, &m->mnt_slave_list); to->mnt_master = m; } if (IS_MNT_SHARED(from)) { to->mnt_group_id = from->mnt_group_id; list_add(&to->mnt_share, &from->mnt_share); lock_mount_hash(); set_mnt_shared(to); unlock_mount_hash(); } err = 0; out: namespace_unlock(); return err; } /** * path_overmounted - check if path is overmounted * @path: path to check * * Check if path is overmounted, i.e., if there's a mount on top of * @path->mnt with @path->dentry as mountpoint. * * Context: This function expects namespace_lock() to be held. * Return: If path is overmounted true is returned, false if not. */ static inline bool path_overmounted(const struct path *path) { rcu_read_lock(); if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { rcu_read_unlock(); return true; } rcu_read_unlock(); return false; } /** * can_move_mount_beneath - check that we can mount beneath the top mount * @from: mount to mount beneath * @to: mount under which to mount * @mp: mountpoint of @to * * - Make sure that @to->dentry is actually the root of a mount under * which we can mount another mount. * - Make sure that nothing can be mounted beneath the caller's current * root or the rootfs of the namespace. * - Make sure that the caller can unmount the topmost mount ensuring * that the caller could reveal the underlying mountpoint. * - Ensure that nothing has been mounted on top of @from before we * grabbed @namespace_sem to avoid creating pointless shadow mounts. * - Prevent mounting beneath a mount if the propagation relationship * between the source mount, parent mount, and top mount would lead to * nonsensical mount trees. * * Context: This function expects namespace_lock() to be held. * Return: On success 0, and on error a negative error code is returned. */ static int can_move_mount_beneath(const struct path *from, const struct path *to, const struct mountpoint *mp) { struct mount *mnt_from = real_mount(from->mnt), *mnt_to = real_mount(to->mnt), *parent_mnt_to = mnt_to->mnt_parent; if (!mnt_has_parent(mnt_to)) return -EINVAL; if (!path_mounted(to)) return -EINVAL; if (IS_MNT_LOCKED(mnt_to)) return -EINVAL; /* Avoid creating shadow mounts during mount propagation. */ if (path_overmounted(from)) return -EINVAL; /* * Mounting beneath the rootfs only makes sense when the * semantics of pivot_root(".", ".") are used. */ if (&mnt_to->mnt == current->fs->root.mnt) return -EINVAL; if (parent_mnt_to == current->nsproxy->mnt_ns->root) return -EINVAL; for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) if (p == mnt_to) return -EINVAL; /* * If the parent mount propagates to the child mount this would * mean mounting @mnt_from on @mnt_to->mnt_parent and then * propagating a copy @c of @mnt_from on top of @mnt_to. This * defeats the whole purpose of mounting beneath another mount. */ if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) return -EINVAL; /* * If @mnt_to->mnt_parent propagates to @mnt_from this would * mean propagating a copy @c of @mnt_from on top of @mnt_from. * Afterwards @mnt_from would be mounted on top of * @mnt_to->mnt_parent and @mnt_to would be unmounted from * @mnt->mnt_parent and remounted on @mnt_from. But since @c is * already mounted on @mnt_from, @mnt_to would ultimately be * remounted on top of @c. Afterwards, @mnt_from would be * covered by a copy @c of @mnt_from and @c would be covered by * @mnt_from itself. This defeats the whole purpose of mounting * @mnt_from beneath @mnt_to. */ if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) return -EINVAL; return 0; } static int do_move_mount(struct path *old_path, struct path *new_path, bool beneath) { struct mnt_namespace *ns; struct mount *p; struct mount *old; struct mount *parent; struct mountpoint *mp, *old_mp; int err; bool attached; enum mnt_tree_flags_t flags = 0; mp = do_lock_mount(new_path, beneath); if (IS_ERR(mp)) return PTR_ERR(mp); old = real_mount(old_path->mnt); p = real_mount(new_path->mnt); parent = old->mnt_parent; attached = mnt_has_parent(old); if (attached) flags |= MNT_TREE_MOVE; old_mp = old->mnt_mp; ns = old->mnt_ns; err = -EINVAL; /* The mountpoint must be in our namespace. */ if (!check_mnt(p)) goto out; /* The thing moved must be mounted... */ if (!is_mounted(&old->mnt)) goto out; /* ... and either ours or the root of anon namespace */ if (!(attached ? check_mnt(old) : is_anon_ns(ns))) goto out; if (old->mnt.mnt_flags & MNT_LOCKED) goto out; if (!path_mounted(old_path)) goto out; if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry)) goto out; /* * Don't move a mount residing in a shared parent. */ if (attached && IS_MNT_SHARED(parent)) goto out; if (beneath) { err = can_move_mount_beneath(old_path, new_path, mp); if (err) goto out; err = -EINVAL; p = p->mnt_parent; flags |= MNT_TREE_BENEATH; } /* * Don't move a mount tree containing unbindable mounts to a destination * mount which is shared. */ if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) goto out; err = -ELOOP; if (!check_for_nsfs_mounts(old)) goto out; for (; mnt_has_parent(p); p = p->mnt_parent) if (p == old) goto out; err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); if (err) goto out; /* if the mount is moved, it should no longer be expire * automatically */ list_del_init(&old->mnt_expire); if (attached) put_mountpoint(old_mp); out: unlock_mount(mp); if (!err) { if (attached) mntput_no_expire(parent); else free_mnt_ns(ns); } return err; } static int do_move_mount_old(struct path *path, const char *old_name) { struct path old_path; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); if (err) return err; err = do_move_mount(&old_path, path, false); path_put(&old_path); return err; } /* * add a mount into a namespace's mount tree */ static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, const struct path *path, int mnt_flags) { struct mount *parent = real_mount(path->mnt); mnt_flags &= ~MNT_INTERNAL_FLAGS; if (unlikely(!check_mnt(parent))) { /* that's acceptable only for automounts done in private ns */ if (!(mnt_flags & MNT_SHRINKABLE)) return -EINVAL; /* ... and for those we'd better have mountpoint still alive */ if (!parent->mnt_ns) return -EINVAL; } /* Refuse the same filesystem on the same mount point */ if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) return -EBUSY; if (d_is_symlink(newmnt->mnt.mnt_root)) return -EINVAL; newmnt->mnt.mnt_flags = mnt_flags; return graft_tree(newmnt, parent, mp); } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); /* * Create a new mount using a superblock configuration and request it * be added to the namespace tree. */ static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, unsigned int mnt_flags) { struct vfsmount *mnt; struct mountpoint *mp; struct super_block *sb = fc->root->d_sb; int error; error = security_sb_kern_mount(sb); if (!error && mount_too_revealing(sb, &mnt_flags)) error = -EPERM; if (unlikely(error)) { fc_drop_locked(fc); return error; } up_write(&sb->s_umount); mnt = vfs_create_mount(fc); if (IS_ERR(mnt)) return PTR_ERR(mnt); mnt_warn_timestamp_expiry(mountpoint, mnt); mp = lock_mount(mountpoint); if (IS_ERR(mp)) { mntput(mnt); return PTR_ERR(mp); } error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); unlock_mount(mp); if (error < 0) mntput(mnt); return error; } /* * create a new mount for userspace and request it to be added into the * namespace's tree */ static int do_new_mount(struct path *path, const char *fstype, int sb_flags, int mnt_flags, const char *name, void *data) { struct file_system_type *type; struct fs_context *fc; const char *subtype = NULL; int err = 0; if (!fstype) return -EINVAL; type = get_fs_type(fstype); if (!type) return -ENODEV; if (type->fs_flags & FS_HAS_SUBTYPE) { subtype = strchr(fstype, '.'); if (subtype) { subtype++; if (!*subtype) { put_filesystem(type); return -EINVAL; } } } fc = fs_context_for_mount(type, sb_flags); put_filesystem(type); if (IS_ERR(fc)) return PTR_ERR(fc); /* * Indicate to the filesystem that the mount request is coming * from the legacy mount system call. */ fc->oldapi = true; if (subtype) err = vfs_parse_fs_string(fc, "subtype", subtype, strlen(subtype)); if (!err && name) err = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!err) err = parse_monolithic_mount_data(fc, data); if (!err && !mount_capable(fc)) err = -EPERM; if (!err) err = vfs_get_tree(fc); if (!err) err = do_new_mount_fc(fc, path, mnt_flags); put_fs_context(fc); return err; } int finish_automount(struct vfsmount *m, const struct path *path) { struct dentry *dentry = path->dentry; struct mountpoint *mp; struct mount *mnt; int err; if (!m) return 0; if (IS_ERR(m)) return PTR_ERR(m); mnt = real_mount(m); /* The new mount record should have at least 2 refs to prevent it being * expired before we get a chance to add it */ BUG_ON(mnt_get_count(mnt) < 2); if (m->mnt_sb == path->mnt->mnt_sb && m->mnt_root == dentry) { err = -ELOOP; goto discard; } /* * we don't want to use lock_mount() - in this case finding something * that overmounts our mountpoint to be means "quitely drop what we've * got", not "try to mount it on top". */ inode_lock(dentry->d_inode); namespace_lock(); if (unlikely(cant_mount(dentry))) { err = -ENOENT; goto discard_locked; } if (path_overmounted(path)) { err = 0; goto discard_locked; } mp = get_mountpoint(dentry); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto discard_locked; } err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); unlock_mount(mp); if (unlikely(err)) goto discard; mntput(m); return 0; discard_locked: namespace_unlock(); inode_unlock(dentry->d_inode); discard: /* remove m from any expiration list it may be on */ if (!list_empty(&mnt->mnt_expire)) { namespace_lock(); list_del_init(&mnt->mnt_expire); namespace_unlock(); } mntput(m); mntput(m); return err; } /** * mnt_set_expiry - Put a mount on an expiration list * @mnt: The mount to list. * @expiry_list: The list to add the mount to. */ void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) { namespace_lock(); list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); namespace_unlock(); } EXPORT_SYMBOL(mnt_set_expiry); /* * process a list of expirable mountpoints with the intent of discarding any * mountpoints that aren't in use and haven't been touched since last we came * here */ void mark_mounts_for_expiry(struct list_head *mounts) { struct mount *mnt, *next; LIST_HEAD(graveyard); if (list_empty(mounts)) return; namespace_lock(); lock_mount_hash(); /* extract from the expiration list every vfsmount that matches the * following criteria: * - only referenced by its parent vfsmount * - still marked for expiry (marked on the last call here; marks are * cleared by mntput()) */ list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { if (!xchg(&mnt->mnt_expiry_mark, 1) || propagate_mount_busy(mnt, 1)) continue; list_move(&mnt->mnt_expire, &graveyard); } while (!list_empty(&graveyard)) { mnt = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(mnt->mnt_ns); umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); } unlock_mount_hash(); namespace_unlock(); } EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); /* * Ripoff of 'select_parent()' * * search the list of submounts for a given mountpoint, and move any * shrinkable submounts to the 'graveyard' list. */ static int select_submounts(struct mount *parent, struct list_head *graveyard) { struct mount *this_parent = parent; struct list_head *next; int found = 0; repeat: next = this_parent->mnt_mounts.next; resume: while (next != &this_parent->mnt_mounts) { struct list_head *tmp = next; struct mount *mnt = list_entry(tmp, struct mount, mnt_child); next = tmp->next; if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) continue; /* * Descend a level if the d_mounts list is non-empty. */ if (!list_empty(&mnt->mnt_mounts)) { this_parent = mnt; goto repeat; } if (!propagate_mount_busy(mnt, 1)) { list_move_tail(&mnt->mnt_expire, graveyard); found++; } } /* * All done at this level ... ascend and resume the search */ if (this_parent != parent) { next = this_parent->mnt_child.next; this_parent = this_parent->mnt_parent; goto resume; } return found; } /* * process a list of expirable mountpoints with the intent of discarding any * submounts of a specific parent mountpoint * * mount_lock must be held for write */ static void shrink_submounts(struct mount *mnt) { LIST_HEAD(graveyard); struct mount *m; /* extract submounts of 'mountpoint' from the expiration list */ while (select_submounts(mnt, &graveyard)) { while (!list_empty(&graveyard)) { m = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(m->mnt_ns); umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); } } } static void *copy_mount_options(const void __user * data) { char *copy; unsigned left, offset; if (!data) return NULL; copy = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!copy) return ERR_PTR(-ENOMEM); left = copy_from_user(copy, data, PAGE_SIZE); /* * Not all architectures have an exact copy_from_user(). Resort to * byte at a time. */ offset = PAGE_SIZE - left; while (left) { char c; if (get_user(c, (const char __user *)data + offset)) break; copy[offset] = c; left--; offset++; } if (left == PAGE_SIZE) { kfree(copy); return ERR_PTR(-EFAULT); } return copy; } static char *copy_mount_string(const void __user *data) { return data ? strndup_user(data, PATH_MAX) : NULL; } /* * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to * be given to the mount() call (ie: read-only, no-dev, no-suid etc). * * data is a (void *) that can point to any structure up to * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent * information (or be NULL). * * Pre-0.97 versions of mount() didn't have a flags word. * When the flags word was introduced its top half was required * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. * Therefore, if this magic number is present, it carries no information * and must be discarded. */ int path_mount(const char *dev_name, struct path *path, const char *type_page, unsigned long flags, void *data_page) { unsigned int mnt_flags = 0, sb_flags; int ret; /* Discard magic */ if ((flags & MS_MGC_MSK) == MS_MGC_VAL) flags &= ~MS_MGC_MSK; /* Basic sanity checks */ if (data_page) ((char *)data_page)[PAGE_SIZE - 1] = 0; if (flags & MS_NOUSER) return -EINVAL; ret = security_sb_mount(dev_name, path, type_page, flags, data_page); if (ret) return ret; if (!may_mount()) return -EPERM; if (flags & SB_MANDLOCK) warn_mandlock(); /* Default to relatime unless overriden */ if (!(flags & MS_NOATIME)) mnt_flags |= MNT_RELATIME; /* Separate the per-mountpoint flags */ if (flags & MS_NOSUID) mnt_flags |= MNT_NOSUID; if (flags & MS_NODEV) mnt_flags |= MNT_NODEV; if (flags & MS_NOEXEC) mnt_flags |= MNT_NOEXEC; if (flags & MS_NOATIME) mnt_flags |= MNT_NOATIME; if (flags & MS_NODIRATIME) mnt_flags |= MNT_NODIRATIME; if (flags & MS_STRICTATIME) mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); if (flags & MS_RDONLY) mnt_flags |= MNT_READONLY; if (flags & MS_NOSYMFOLLOW) mnt_flags |= MNT_NOSYMFOLLOW; /* The default atime for remount is preservation */ if ((flags & MS_REMOUNT) && ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | MS_STRICTATIME)) == 0)) { mnt_flags &= ~MNT_ATIME_MASK; mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; } sb_flags = flags & (SB_RDONLY | SB_SYNCHRONOUS | SB_MANDLOCK | SB_DIRSYNC | SB_SILENT | SB_POSIXACL | SB_LAZYTIME | SB_I_VERSION); if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) return do_reconfigure_mnt(path, mnt_flags); if (flags & MS_REMOUNT) return do_remount(path, flags, sb_flags, mnt_flags, data_page); if (flags & MS_BIND) return do_loopback(path, dev_name, flags & MS_REC); if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return do_change_type(path, flags); if (flags & MS_MOVE) return do_move_mount_old(path, dev_name); return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, data_page); } long do_mount(const char *dev_name, const char __user *dir_name, const char *type_page, unsigned long flags, void *data_page) { struct path path; int ret; ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); if (ret) return ret; ret = path_mount(dev_name, &path, type_page, flags, data_page); path_put(&path); return ret; } static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); } static void dec_mnt_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); } static void free_mnt_ns(struct mnt_namespace *ns) { if (!is_anon_ns(ns)) ns_free_inum(&ns->ns); dec_mnt_namespaces(ns->ucounts); mnt_ns_tree_remove(ns); } /* * Assign a sequence number so we can detect when we attempt to bind * mount a reference to an older mount namespace into the current * mount namespace, preventing reference counting loops. A 64bit * number incrementing at 10Ghz will take 12,427 years to wrap which * is effectively never, so we can ignore the possibility. */ static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) { struct mnt_namespace *new_ns; struct ucounts *ucounts; int ret; ucounts = inc_mnt_namespaces(user_ns); if (!ucounts) return ERR_PTR(-ENOSPC); new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); if (!new_ns) { dec_mnt_namespaces(ucounts); return ERR_PTR(-ENOMEM); } if (!anon) { ret = ns_alloc_inum(&new_ns->ns); if (ret) { kfree(new_ns); dec_mnt_namespaces(ucounts); return ERR_PTR(ret); } } new_ns->ns.ops = &mntns_operations; if (!anon) new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); refcount_set(&new_ns->ns.count, 1); refcount_set(&new_ns->passive, 1); new_ns->mounts = RB_ROOT; RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); init_waitqueue_head(&new_ns->poll); new_ns->user_ns = get_user_ns(user_ns); new_ns->ucounts = ucounts; return new_ns; } __latent_entropy struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, struct user_namespace *user_ns, struct fs_struct *new_fs) { struct mnt_namespace *new_ns; struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; struct mount *p, *q; struct mount *old; struct mount *new; int copy_flags; BUG_ON(!ns); if (likely(!(flags & CLONE_NEWNS))) { get_mnt_ns(ns); return ns; } old = ns->root; new_ns = alloc_mnt_ns(user_ns, false); if (IS_ERR(new_ns)) return new_ns; namespace_lock(); /* First pass: copy the tree topology */ copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; if (user_ns != ns->user_ns) copy_flags |= CL_SHARED_TO_SLAVE; new = copy_tree(old, old->mnt.mnt_root, copy_flags); if (IS_ERR(new)) { namespace_unlock(); free_mnt_ns(new_ns); return ERR_CAST(new); } if (user_ns != ns->user_ns) { lock_mount_hash(); lock_mnt_tree(new); unlock_mount_hash(); } new_ns->root = new; /* * Second pass: switch the tsk->fs->* elements and mark new vfsmounts * as belonging to new namespace. We have already acquired a private * fs_struct, so tsk->fs->lock is not needed. */ p = old; q = new; while (p) { mnt_add_to_ns(new_ns, q); new_ns->nr_mounts++; if (new_fs) { if (&p->mnt == new_fs->root.mnt) { new_fs->root.mnt = mntget(&q->mnt); rootmnt = &p->mnt; } if (&p->mnt == new_fs->pwd.mnt) { new_fs->pwd.mnt = mntget(&q->mnt); pwdmnt = &p->mnt; } } p = next_mnt(p, old); q = next_mnt(q, new); if (!q) break; // an mntns binding we'd skipped? while (p->mnt.mnt_root != q->mnt.mnt_root) p = next_mnt(skip_mnt_tree(p), old); } mnt_ns_tree_add(new_ns); namespace_unlock(); if (rootmnt) mntput(rootmnt); if (pwdmnt) mntput(pwdmnt); return new_ns; } struct dentry *mount_subtree(struct vfsmount *m, const char *name) { struct mount *mnt = real_mount(m); struct mnt_namespace *ns; struct super_block *s; struct path path; int err; ns = alloc_mnt_ns(&init_user_ns, true); if (IS_ERR(ns)) { mntput(m); return ERR_CAST(ns); } ns->root = mnt; ns->nr_mounts++; mnt_add_to_ns(ns, mnt); err = vfs_path_lookup(m->mnt_root, m, name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); put_mnt_ns(ns); if (err) return ERR_PTR(err); /* trade a vfsmount reference for active sb one */ s = path.mnt->mnt_sb; atomic_inc(&s->s_active); mntput(path.mnt); /* lock the sucker */ down_write(&s->s_umount); /* ... and return the root of (sub)tree on it */ return path.dentry; } EXPORT_SYMBOL(mount_subtree); SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, char __user *, type, unsigned long, flags, void __user *, data) { int ret; char *kernel_type; char *kernel_dev; void *options; kernel_type = copy_mount_string(type); ret = PTR_ERR(kernel_type); if (IS_ERR(kernel_type)) goto out_type; kernel_dev = copy_mount_string(dev_name); ret = PTR_ERR(kernel_dev); if (IS_ERR(kernel_dev)) goto out_dev; options = copy_mount_options(data); ret = PTR_ERR(options); if (IS_ERR(options)) goto out_data; ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); kfree(options); out_data: kfree(kernel_dev); out_dev: kfree(kernel_type); out_type: return ret; } #define FSMOUNT_VALID_FLAGS \ (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ MOUNT_ATTR_NOSYMFOLLOW) #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) #define MOUNT_SETATTR_PROPAGATION_FLAGS \ (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) { unsigned int mnt_flags = 0; if (attr_flags & MOUNT_ATTR_RDONLY) mnt_flags |= MNT_READONLY; if (attr_flags & MOUNT_ATTR_NOSUID) mnt_flags |= MNT_NOSUID; if (attr_flags & MOUNT_ATTR_NODEV) mnt_flags |= MNT_NODEV; if (attr_flags & MOUNT_ATTR_NOEXEC) mnt_flags |= MNT_NOEXEC; if (attr_flags & MOUNT_ATTR_NODIRATIME) mnt_flags |= MNT_NODIRATIME; if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) mnt_flags |= MNT_NOSYMFOLLOW; return mnt_flags; } /* * Create a kernel mount representation for a new, prepared superblock * (specified by fs_fd) and attach to an open_tree-like file descriptor. */ SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, unsigned int, attr_flags) { struct mnt_namespace *ns; struct fs_context *fc; struct file *file; struct path newmount; struct mount *mnt; struct fd f; unsigned int mnt_flags = 0; long ret; if (!may_mount()) return -EPERM; if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) return -EINVAL; if (attr_flags & ~FSMOUNT_VALID_FLAGS) return -EINVAL; mnt_flags = attr_flags_to_mnt_flags(attr_flags); switch (attr_flags & MOUNT_ATTR__ATIME) { case MOUNT_ATTR_STRICTATIME: break; case MOUNT_ATTR_NOATIME: mnt_flags |= MNT_NOATIME; break; case MOUNT_ATTR_RELATIME: mnt_flags |= MNT_RELATIME; break; default: return -EINVAL; } f = fdget(fs_fd); if (!f.file) return -EBADF; ret = -EINVAL; if (f.file->f_op != &fscontext_fops) goto err_fsfd; fc = f.file->private_data; ret = mutex_lock_interruptible(&fc->uapi_mutex); if (ret < 0) goto err_fsfd; /* There must be a valid superblock or we can't mount it */ ret = -EINVAL; if (!fc->root) goto err_unlock; ret = -EPERM; if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { pr_warn("VFS: Mount too revealing\n"); goto err_unlock; } ret = -EBUSY; if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) goto err_unlock; if (fc->sb_flags & SB_MANDLOCK) warn_mandlock(); newmount.mnt = vfs_create_mount(fc); if (IS_ERR(newmount.mnt)) { ret = PTR_ERR(newmount.mnt); goto err_unlock; } newmount.dentry = dget(fc->root); newmount.mnt->mnt_flags = mnt_flags; /* We've done the mount bit - now move the file context into more or * less the same state as if we'd done an fspick(). We don't want to * do any memory allocation or anything like that at this point as we * don't want to have to handle any errors incurred. */ vfs_clean_context(fc); ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); if (IS_ERR(ns)) { ret = PTR_ERR(ns); goto err_path; } mnt = real_mount(newmount.mnt); ns->root = mnt; ns->nr_mounts = 1; mnt_add_to_ns(ns, mnt); mntget(newmount.mnt); /* Attach to an apparent O_PATH fd with a note that we need to unmount * it, not just simply put it. */ file = dentry_open(&newmount, O_PATH, fc->cred); if (IS_ERR(file)) { dissolve_on_fput(newmount.mnt); ret = PTR_ERR(file); goto err_path; } file->f_mode |= FMODE_NEED_UNMOUNT; ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); if (ret >= 0) fd_install(ret, file); else fput(file); err_path: path_put(&newmount); err_unlock: mutex_unlock(&fc->uapi_mutex); err_fsfd: fdput(f); return ret; } /* * Move a mount from one place to another. In combination with * fsopen()/fsmount() this is used to install a new mount and in combination * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy * a mount subtree. * * Note the flags value is a combination of MOVE_MOUNT_* flags. */ SYSCALL_DEFINE5(move_mount, int, from_dfd, const char __user *, from_pathname, int, to_dfd, const char __user *, to_pathname, unsigned int, flags) { struct path from_path, to_path; unsigned int lflags; int ret = 0; if (!may_mount()) return -EPERM; if (flags & ~MOVE_MOUNT__MASK) return -EINVAL; if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) return -EINVAL; /* If someone gives a pathname, they aren't permitted to move * from an fd that requires unmount as we can't get at the flag * to clear it afterwards. */ lflags = 0; if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); if (ret < 0) return ret; lflags = 0; if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); if (ret < 0) goto out_from; ret = security_move_mount(&from_path, &to_path); if (ret < 0) goto out_to; if (flags & MOVE_MOUNT_SET_GROUP) ret = do_set_group(&from_path, &to_path); else ret = do_move_mount(&from_path, &to_path, (flags & MOVE_MOUNT_BENEATH)); out_to: path_put(&to_path); out_from: path_put(&from_path); return ret; } /* * Return true if path is reachable from root * * namespace_sem or mount_lock is held */ bool is_path_reachable(struct mount *mnt, struct dentry *dentry, const struct path *root) { while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { dentry = mnt->mnt_mountpoint; mnt = mnt->mnt_parent; } return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); } bool path_is_under(const struct path *path1, const struct path *path2) { bool res; read_seqlock_excl(&mount_lock); res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); read_sequnlock_excl(&mount_lock); return res; } EXPORT_SYMBOL(path_is_under); /* * pivot_root Semantics: * Moves the root file system of the current process to the directory put_old, * makes new_root as the new root file system of the current process, and sets * root/cwd of all processes which had them on the current root to new_root. * * Restrictions: * The new_root and put_old must be directories, and must not be on the * same file system as the current process root. The put_old must be * underneath new_root, i.e. adding a non-zero number of /.. to the string * pointed to by put_old must yield the same directory as new_root. No other * file system may be mounted on put_old. After all, new_root is a mountpoint. * * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives * in this situation. * * Notes: * - we don't move root/cwd if they are not at the root (reason: if something * cared enough to change them, it's probably wrong to force them elsewhere) * - it's okay to pick a root that isn't the root of a file system, e.g. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root * first. */ SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, const char __user *, put_old) { struct path new, old, root; struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; struct mountpoint *old_mp, *root_mp; int error; if (!may_mount()) return -EPERM; error = user_path_at(AT_FDCWD, new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); if (error) goto out0; error = user_path_at(AT_FDCWD, put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); if (error) goto out1; error = security_sb_pivotroot(&old, &new); if (error) goto out2; get_fs_root(current->fs, &root); old_mp = lock_mount(&old); error = PTR_ERR(old_mp); if (IS_ERR(old_mp)) goto out3; error = -EINVAL; new_mnt = real_mount(new.mnt); root_mnt = real_mount(root.mnt); old_mnt = real_mount(old.mnt); ex_parent = new_mnt->mnt_parent; root_parent = root_mnt->mnt_parent; if (IS_MNT_SHARED(old_mnt) || IS_MNT_SHARED(ex_parent) || IS_MNT_SHARED(root_parent)) goto out4; if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) goto out4; if (new_mnt->mnt.mnt_flags & MNT_LOCKED) goto out4; error = -ENOENT; if (d_unlinked(new.dentry)) goto out4; error = -EBUSY; if (new_mnt == root_mnt || old_mnt == root_mnt) goto out4; /* loop, on the same file system */ error = -EINVAL; if (!path_mounted(&root)) goto out4; /* not a mountpoint */ if (!mnt_has_parent(root_mnt)) goto out4; /* not attached */ if (!path_mounted(&new)) goto out4; /* not a mountpoint */ if (!mnt_has_parent(new_mnt)) goto out4; /* not attached */ /* make sure we can reach put_old from new_root */ if (!is_path_reachable(old_mnt, old.dentry, &new)) goto out4; /* make certain new is below the root */ if (!is_path_reachable(new_mnt, new.dentry, &root)) goto out4; lock_mount_hash(); umount_mnt(new_mnt); root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { new_mnt->mnt.mnt_flags |= MNT_LOCKED; root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; } /* mount old root on put_old */ attach_mnt(root_mnt, old_mnt, old_mp, false); /* mount new_root on / */ attach_mnt(new_mnt, root_parent, root_mp, false); mnt_add_count(root_parent, -1); touch_mnt_namespace(current->nsproxy->mnt_ns); /* A moved mount should not expire automatically */ list_del_init(&new_mnt->mnt_expire); put_mountpoint(root_mp); unlock_mount_hash(); chroot_fs_refs(&root, &new); error = 0; out4: unlock_mount(old_mp); if (!error) mntput_no_expire(ex_parent); out3: path_put(&root); out2: path_put(&old); out1: path_put(&new); out0: return error; } static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) { unsigned int flags = mnt->mnt.mnt_flags; /* flags to clear */ flags &= ~kattr->attr_clr; /* flags to raise */ flags |= kattr->attr_set; return flags; } static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) { struct vfsmount *m = &mnt->mnt; struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; if (!kattr->mnt_idmap) return 0; /* * Creating an idmapped mount with the filesystem wide idmapping * doesn't make sense so block that. We don't allow mushy semantics. */ if (kattr->mnt_userns == m->mnt_sb->s_user_ns) return -EINVAL; /* * Once a mount has been idmapped we don't allow it to change its * mapping. It makes things simpler and callers can just create * another bind-mount they can idmap if they want to. */ if (is_idmapped_mnt(m)) return -EPERM; /* The underlying filesystem doesn't support idmapped mounts yet. */ if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) return -EINVAL; /* We're not controlling the superblock. */ if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) return -EPERM; /* Mount has already been visible in the filesystem hierarchy. */ if (!is_anon_ns(mnt->mnt_ns)) return -EINVAL; return 0; } /** * mnt_allow_writers() - check whether the attribute change allows writers * @kattr: the new mount attributes * @mnt: the mount to which @kattr will be applied * * Check whether thew new mount attributes in @kattr allow concurrent writers. * * Return: true if writers need to be held, false if not */ static inline bool mnt_allow_writers(const struct mount_kattr *kattr, const struct mount *mnt) { return (!(kattr->attr_set & MNT_READONLY) || (mnt->mnt.mnt_flags & MNT_READONLY)) && !kattr->mnt_idmap; } static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) { struct mount *m; int err; for (m = mnt; m; m = next_mnt(m, mnt)) { if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { err = -EPERM; break; } err = can_idmap_mount(kattr, m); if (err) break; if (!mnt_allow_writers(kattr, m)) { err = mnt_hold_writers(m); if (err) break; } if (!kattr->recurse) return 0; } if (err) { struct mount *p; /* * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all * mounts and needs to take care to include the first mount. */ for (p = mnt; p; p = next_mnt(p, mnt)) { /* If we had to hold writers unblock them. */ if (p->mnt.mnt_flags & MNT_WRITE_HOLD) mnt_unhold_writers(p); /* * We're done once the first mount we changed got * MNT_WRITE_HOLD unset. */ if (p == m) break; } } return err; } static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) { if (!kattr->mnt_idmap) return; /* * Pairs with smp_load_acquire() in mnt_idmap(). * * Since we only allow a mount to change the idmapping once and * verified this in can_idmap_mount() we know that the mount has * @nop_mnt_idmap attached to it. So there's no need to drop any * references. */ smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); } static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) { struct mount *m; for (m = mnt; m; m = next_mnt(m, mnt)) { unsigned int flags; do_idmap_mount(kattr, m); flags = recalc_flags(kattr, m); WRITE_ONCE(m->mnt.mnt_flags, flags); /* If we had to hold writers unblock them. */ if (m->mnt.mnt_flags & MNT_WRITE_HOLD) mnt_unhold_writers(m); if (kattr->propagation) change_mnt_propagation(m, kattr->propagation); if (!kattr->recurse) break; } touch_mnt_namespace(mnt->mnt_ns); } static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) { struct mount *mnt = real_mount(path->mnt); int err = 0; if (!path_mounted(path)) return -EINVAL; if (kattr->mnt_userns) { struct mnt_idmap *mnt_idmap; mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); if (IS_ERR(mnt_idmap)) return PTR_ERR(mnt_idmap); kattr->mnt_idmap = mnt_idmap; } if (kattr->propagation) { /* * Only take namespace_lock() if we're actually changing * propagation. */ namespace_lock(); if (kattr->propagation == MS_SHARED) { err = invent_group_ids(mnt, kattr->recurse); if (err) { namespace_unlock(); return err; } } } err = -EINVAL; lock_mount_hash(); /* Ensure that this isn't anything purely vfs internal. */ if (!is_mounted(&mnt->mnt)) goto out; /* * If this is an attached mount make sure it's located in the callers * mount namespace. If it's not don't let the caller interact with it. * * If this mount doesn't have a parent it's most often simply a * detached mount with an anonymous mount namespace. IOW, something * that's simply not attached yet. But there are apparently also users * that do change mount properties on the rootfs itself. That obviously * neither has a parent nor is it a detached mount so we cannot * unconditionally check for detached mounts. */ if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) goto out; /* * First, we get the mount tree in a shape where we can change mount * properties without failure. If we succeeded to do so we commit all * changes and if we failed we clean up. */ err = mount_setattr_prepare(kattr, mnt); if (!err) mount_setattr_commit(kattr, mnt); out: unlock_mount_hash(); if (kattr->propagation) { if (err) cleanup_group_ids(mnt, NULL); namespace_unlock(); } return err; } static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, struct mount_kattr *kattr, unsigned int flags) { int err = 0; struct ns_common *ns; struct user_namespace *mnt_userns; struct fd f; if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) return 0; /* * We currently do not support clearing an idmapped mount. If this ever * is a use-case we can revisit this but for now let's keep it simple * and not allow it. */ if (attr->attr_clr & MOUNT_ATTR_IDMAP) return -EINVAL; if (attr->userns_fd > INT_MAX) return -EINVAL; f = fdget(attr->userns_fd); if (!f.file) return -EBADF; if (!proc_ns_file(f.file)) { err = -EINVAL; goto out_fput; } ns = get_proc_ns(file_inode(f.file)); if (ns->ops->type != CLONE_NEWUSER) { err = -EINVAL; goto out_fput; } /* * The initial idmapping cannot be used to create an idmapped * mount. We use the initial idmapping as an indicator of a mount * that is not idmapped. It can simply be passed into helpers that * are aware of idmapped mounts as a convenient shortcut. A user * can just create a dedicated identity mapping to achieve the same * result. */ mnt_userns = container_of(ns, struct user_namespace, ns); if (mnt_userns == &init_user_ns) { err = -EPERM; goto out_fput; } /* We're not controlling the target namespace. */ if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { err = -EPERM; goto out_fput; } kattr->mnt_userns = get_user_ns(mnt_userns); out_fput: fdput(f); return err; } static int build_mount_kattr(const struct mount_attr *attr, size_t usize, struct mount_kattr *kattr, unsigned int flags) { unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; if (flags & AT_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; *kattr = (struct mount_kattr) { .lookup_flags = lookup_flags, .recurse = !!(flags & AT_RECURSIVE), }; if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) return -EINVAL; if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) return -EINVAL; kattr->propagation = attr->propagation; if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) return -EINVAL; kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); /* * Since the MOUNT_ATTR_ values are an enum, not a bitmap, * users wanting to transition to a different atime setting cannot * simply specify the atime setting in @attr_set, but must also * specify MOUNT_ATTR__ATIME in the @attr_clr field. * So ensure that MOUNT_ATTR__ATIME can't be partially set in * @attr_clr and that @attr_set can't have any atime bits set if * MOUNT_ATTR__ATIME isn't set in @attr_clr. */ if (attr->attr_clr & MOUNT_ATTR__ATIME) { if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) return -EINVAL; /* * Clear all previous time settings as they are mutually * exclusive. */ kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; switch (attr->attr_set & MOUNT_ATTR__ATIME) { case MOUNT_ATTR_RELATIME: kattr->attr_set |= MNT_RELATIME; break; case MOUNT_ATTR_NOATIME: kattr->attr_set |= MNT_NOATIME; break; case MOUNT_ATTR_STRICTATIME: break; default: return -EINVAL; } } else { if (attr->attr_set & MOUNT_ATTR__ATIME) return -EINVAL; } return build_mount_idmapped(attr, usize, kattr, flags); } static void finish_mount_kattr(struct mount_kattr *kattr) { put_user_ns(kattr->mnt_userns); kattr->mnt_userns = NULL; if (kattr->mnt_idmap) mnt_idmap_put(kattr->mnt_idmap); } SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, unsigned int, flags, struct mount_attr __user *, uattr, size_t, usize) { int err; struct path target; struct mount_attr attr; struct mount_kattr kattr; BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); if (flags & ~(AT_EMPTY_PATH | AT_RECURSIVE | AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT)) return -EINVAL; if (unlikely(usize > PAGE_SIZE)) return -E2BIG; if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) return -EINVAL; if (!may_mount()) return -EPERM; err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); if (err) return err; /* Don't bother walking through the mounts if this is a nop. */ if (attr.attr_set == 0 && attr.attr_clr == 0 && attr.propagation == 0) return 0; err = build_mount_kattr(&attr, usize, &kattr, flags); if (err) return err; err = user_path_at(dfd, path, kattr.lookup_flags, &target); if (!err) { err = do_mount_setattr(&target, &kattr); path_put(&target); } finish_mount_kattr(&kattr); return err; } int show_path(struct seq_file *m, struct dentry *root) { if (root->d_sb->s_op->show_path) return root->d_sb->s_op->show_path(m, root); seq_dentry(m, root, " \t\n\\"); return 0; } static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) { struct mount *mnt = mnt_find_id_at(ns, id); if (!mnt || mnt->mnt_id_unique != id) return NULL; return &mnt->mnt; } struct kstatmount { struct statmount __user *buf; size_t bufsize; struct vfsmount *mnt; u64 mask; struct path root; struct statmount sm; struct seq_file seq; }; static u64 mnt_to_attr_flags(struct vfsmount *mnt) { unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); u64 attr_flags = 0; if (mnt_flags & MNT_READONLY) attr_flags |= MOUNT_ATTR_RDONLY; if (mnt_flags & MNT_NOSUID) attr_flags |= MOUNT_ATTR_NOSUID; if (mnt_flags & MNT_NODEV) attr_flags |= MOUNT_ATTR_NODEV; if (mnt_flags & MNT_NOEXEC) attr_flags |= MOUNT_ATTR_NOEXEC; if (mnt_flags & MNT_NODIRATIME) attr_flags |= MOUNT_ATTR_NODIRATIME; if (mnt_flags & MNT_NOSYMFOLLOW) attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; if (mnt_flags & MNT_NOATIME) attr_flags |= MOUNT_ATTR_NOATIME; else if (mnt_flags & MNT_RELATIME) attr_flags |= MOUNT_ATTR_RELATIME; else attr_flags |= MOUNT_ATTR_STRICTATIME; if (is_idmapped_mnt(mnt)) attr_flags |= MOUNT_ATTR_IDMAP; return attr_flags; } static u64 mnt_to_propagation_flags(struct mount *m) { u64 propagation = 0; if (IS_MNT_SHARED(m)) propagation |= MS_SHARED; if (IS_MNT_SLAVE(m)) propagation |= MS_SLAVE; if (IS_MNT_UNBINDABLE(m)) propagation |= MS_UNBINDABLE; if (!propagation) propagation |= MS_PRIVATE; return propagation; } static void statmount_sb_basic(struct kstatmount *s) { struct super_block *sb = s->mnt->mnt_sb; s->sm.mask |= STATMOUNT_SB_BASIC; s->sm.sb_dev_major = MAJOR(sb->s_dev); s->sm.sb_dev_minor = MINOR(sb->s_dev); s->sm.sb_magic = sb->s_magic; s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); } static void statmount_mnt_basic(struct kstatmount *s) { struct mount *m = real_mount(s->mnt); s->sm.mask |= STATMOUNT_MNT_BASIC; s->sm.mnt_id = m->mnt_id_unique; s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; s->sm.mnt_id_old = m->mnt_id; s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); s->sm.mnt_propagation = mnt_to_propagation_flags(m); s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; } static void statmount_propagate_from(struct kstatmount *s) { struct mount *m = real_mount(s->mnt); s->sm.mask |= STATMOUNT_PROPAGATE_FROM; if (IS_MNT_SLAVE(m)) s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); } static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) { int ret; size_t start = seq->count; ret = show_path(seq, s->mnt->mnt_root); if (ret) return ret; if (unlikely(seq_has_overflowed(seq))) return -EAGAIN; /* * Unescape the result. It would be better if supplied string was not * escaped in the first place, but that's a pretty invasive change. */ seq->buf[seq->count] = '\0'; seq->count = start; seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); return 0; } static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) { struct vfsmount *mnt = s->mnt; struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; int err; err = seq_path_root(seq, &mnt_path, &s->root, ""); return err == SEQ_SKIP ? 0 : err; } static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) { struct super_block *sb = s->mnt->mnt_sb; seq_puts(seq, sb->s_type->name); return 0; } static void statmount_mnt_ns_id(struct kstatmount *s) { struct mnt_namespace *ns = current->nsproxy->mnt_ns; s->sm.mask |= STATMOUNT_MNT_NS_ID; s->sm.mnt_ns_id = ns->seq; } static int statmount_string(struct kstatmount *s, u64 flag) { int ret; size_t kbufsize; struct seq_file *seq = &s->seq; struct statmount *sm = &s->sm; switch (flag) { case STATMOUNT_FS_TYPE: sm->fs_type = seq->count; ret = statmount_fs_type(s, seq); break; case STATMOUNT_MNT_ROOT: sm->mnt_root = seq->count; ret = statmount_mnt_root(s, seq); break; case STATMOUNT_MNT_POINT: sm->mnt_point = seq->count; ret = statmount_mnt_point(s, seq); break; default: WARN_ON_ONCE(true); return -EINVAL; } if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) return -EOVERFLOW; if (kbufsize >= s->bufsize) return -EOVERFLOW; /* signal a retry */ if (unlikely(seq_has_overflowed(seq))) return -EAGAIN; if (ret) return ret; seq->buf[seq->count++] = '\0'; sm->mask |= flag; return 0; } static int copy_statmount_to_user(struct kstatmount *s) { struct statmount *sm = &s->sm; struct seq_file *seq = &s->seq; char __user *str = ((char __user *)s->buf) + sizeof(*sm); size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); if (seq->count && copy_to_user(str, seq->buf, seq->count)) return -EFAULT; /* Return the number of bytes copied to the buffer */ sm->size = copysize + seq->count; if (copy_to_user(s->buf, sm, copysize)) return -EFAULT; return 0; } static int do_statmount(struct kstatmount *s) { struct mount *m = real_mount(s->mnt); struct mnt_namespace *ns = m->mnt_ns; int err; /* * Don't trigger audit denials. We just want to determine what * mounts to show users. */ if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) && !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; err = security_sb_statfs(s->mnt->mnt_root); if (err) return err; if (s->mask & STATMOUNT_SB_BASIC) statmount_sb_basic(s); if (s->mask & STATMOUNT_MNT_BASIC) statmount_mnt_basic(s); if (s->mask & STATMOUNT_PROPAGATE_FROM) statmount_propagate_from(s); if (s->mask & STATMOUNT_FS_TYPE) err = statmount_string(s, STATMOUNT_FS_TYPE); if (!err && s->mask & STATMOUNT_MNT_ROOT) err = statmount_string(s, STATMOUNT_MNT_ROOT); if (!err && s->mask & STATMOUNT_MNT_POINT) err = statmount_string(s, STATMOUNT_MNT_POINT); if (!err && s->mask & STATMOUNT_MNT_NS_ID) statmount_mnt_ns_id(s); if (err) return err; return 0; } static inline bool retry_statmount(const long ret, size_t *seq_size) { if (likely(ret != -EAGAIN)) return false; if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) return false; if (unlikely(*seq_size > MAX_RW_COUNT)) return false; return true; } static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, struct statmount __user *buf, size_t bufsize, size_t seq_size) { if (!access_ok(buf, bufsize)) return -EFAULT; memset(ks, 0, sizeof(*ks)); ks->mask = kreq->param; ks->buf = buf; ks->bufsize = bufsize; ks->seq.size = seq_size; ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); if (!ks->seq.buf) return -ENOMEM; return 0; } static int copy_mnt_id_req(const struct mnt_id_req __user *req, struct mnt_id_req *kreq) { int ret; size_t usize; BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER0); ret = get_user(usize, &req->size); if (ret) return -EFAULT; if (unlikely(usize > PAGE_SIZE)) return -E2BIG; if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) return -EINVAL; memset(kreq, 0, sizeof(*kreq)); ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); if (ret) return ret; if (kreq->spare != 0) return -EINVAL; return 0; } SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, struct statmount __user *, buf, size_t, bufsize, unsigned int, flags) { struct vfsmount *mnt; struct mnt_id_req kreq; struct kstatmount ks; /* We currently support retrieval of 3 strings. */ size_t seq_size = 3 * PATH_MAX; int ret; if (flags) return -EINVAL; ret = copy_mnt_id_req(req, &kreq); if (ret) return ret; retry: ret = prepare_kstatmount(&ks, &kreq, buf, bufsize, seq_size); if (ret) return ret; down_read(&namespace_sem); mnt = lookup_mnt_in_ns(kreq.mnt_id, current->nsproxy->mnt_ns); if (!mnt) { up_read(&namespace_sem); kvfree(ks.seq.buf); return -ENOENT; } ks.mnt = mnt; get_fs_root(current->fs, &ks.root); ret = do_statmount(&ks); path_put(&ks.root); up_read(&namespace_sem); if (!ret) ret = copy_statmount_to_user(&ks); kvfree(ks.seq.buf); if (retry_statmount(ret, &seq_size)) goto retry; return ret; } static struct mount *listmnt_next(struct mount *curr, bool reverse) { struct rb_node *node; if (reverse) node = rb_prev(&curr->mnt_node); else node = rb_next(&curr->mnt_node); return node_to_mount(node); } static ssize_t do_listmount(u64 mnt_parent_id, u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, bool reverse) { struct path root __free(path_put) = {}; struct mnt_namespace *ns = current->nsproxy->mnt_ns; struct path orig; struct mount *r, *first; ssize_t ret; rwsem_assert_held(&namespace_sem); get_fs_root(current->fs, &root); if (mnt_parent_id == LSMT_ROOT) { orig = root; } else { orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); if (!orig.mnt) return -ENOENT; orig.dentry = orig.mnt->mnt_root; } /* * Don't trigger audit denials. We just want to determine what * mounts to show users. */ if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; ret = security_sb_statfs(orig.dentry); if (ret) return ret; if (!last_mnt_id) { if (reverse) first = node_to_mount(rb_last(&ns->mounts)); else first = node_to_mount(rb_first(&ns->mounts)); } else { if (reverse) first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); else first = mnt_find_id_at(ns, last_mnt_id + 1); } for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { if (r->mnt_id_unique == mnt_parent_id) continue; if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) continue; *mnt_ids = r->mnt_id_unique; mnt_ids++; nr_mnt_ids--; ret++; } return ret; } SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) { u64 *kmnt_ids __free(kvfree) = NULL; const size_t maxcount = 1000000; struct mnt_id_req kreq; ssize_t ret; if (flags & ~LISTMOUNT_REVERSE) return -EINVAL; /* * If the mount namespace really has more than 1 million mounts the * caller must iterate over the mount namespace (and reconsider their * system design...). */ if (unlikely(nr_mnt_ids > maxcount)) return -EOVERFLOW; if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) return -EFAULT; ret = copy_mnt_id_req(req, &kreq); if (ret) return ret; kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), GFP_KERNEL_ACCOUNT); if (!kmnt_ids) return -ENOMEM; scoped_guard(rwsem_read, &namespace_sem) ret = do_listmount(kreq.mnt_id, kreq.param, kmnt_ids, nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) return -EFAULT; return ret; } static void __init init_mount_tree(void) { struct vfsmount *mnt; struct mount *m; struct mnt_namespace *ns; struct path root; mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); if (IS_ERR(mnt)) panic("Can't create rootfs"); ns = alloc_mnt_ns(&init_user_ns, false); if (IS_ERR(ns)) panic("Can't allocate initial namespace"); m = real_mount(mnt); ns->root = m; ns->nr_mounts = 1; mnt_add_to_ns(ns, m); init_task.nsproxy->mnt_ns = ns; get_mnt_ns(ns); root.mnt = mnt; root.dentry = mnt->mnt_root; mnt->mnt_flags |= MNT_LOCKED; set_fs_pwd(current->fs, &root); set_fs_root(current->fs, &root); mnt_ns_tree_add(ns); } void __init mnt_init(void) { int err; mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); mount_hashtable = alloc_large_system_hash("Mount-cache", sizeof(struct hlist_head), mhash_entries, 19, HASH_ZERO, &m_hash_shift, &m_hash_mask, 0, 0); mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", sizeof(struct hlist_head), mphash_entries, 19, HASH_ZERO, &mp_hash_shift, &mp_hash_mask, 0, 0); if (!mount_hashtable || !mountpoint_hashtable) panic("Failed to allocate mount hash table\n"); kernfs_init(); err = sysfs_init(); if (err) printk(KERN_WARNING "%s: sysfs_init error: %d\n", __func__, err); fs_kobj = kobject_create_and_add("fs", NULL); if (!fs_kobj) printk(KERN_WARNING "%s: kobj create error\n", __func__); shmem_init(); init_rootfs(); init_mount_tree(); } void put_mnt_ns(struct mnt_namespace *ns) { if (!refcount_dec_and_test(&ns->ns.count)) return; drop_collected_mounts(&ns->root->mnt); free_mnt_ns(ns); } struct vfsmount *kern_mount(struct file_system_type *type) { struct vfsmount *mnt; mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); if (!IS_ERR(mnt)) { /* * it is a longterm mount, don't release mnt until * we unmount before file sys is unregistered */ real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; } return mnt; } EXPORT_SYMBOL_GPL(kern_mount); void kern_unmount(struct vfsmount *mnt) { /* release long term mount so mount point can be released */ if (!IS_ERR(mnt)) { mnt_make_shortterm(mnt); synchronize_rcu(); /* yecchhh... */ mntput(mnt); } } EXPORT_SYMBOL(kern_unmount); void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) { unsigned int i; for (i = 0; i < num; i++) mnt_make_shortterm(mnt[i]); synchronize_rcu_expedited(); for (i = 0; i < num; i++) mntput(mnt[i]); } EXPORT_SYMBOL(kern_unmount_array); bool our_mnt(struct vfsmount *mnt) { return check_mnt(real_mount(mnt)); } bool current_chrooted(void) { /* Does the current process have a non-standard root */ struct path ns_root; struct path fs_root; bool chrooted; /* Find the namespace root */ ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; ns_root.dentry = ns_root.mnt->mnt_root; path_get(&ns_root); while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) ; get_fs_root(current->fs, &fs_root); chrooted = !path_equal(&fs_root, &ns_root); path_put(&fs_root); path_put(&ns_root); return chrooted; } static bool mnt_already_visible(struct mnt_namespace *ns, const struct super_block *sb, int *new_mnt_flags) { int new_flags = *new_mnt_flags; struct mount *mnt, *n; bool visible = false; down_read(&namespace_sem); rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { struct mount *child; int mnt_flags; if (mnt->mnt.mnt_sb->s_type != sb->s_type) continue; /* This mount is not fully visible if it's root directory * is not the root directory of the filesystem. */ if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) continue; /* A local view of the mount flags */ mnt_flags = mnt->mnt.mnt_flags; /* Don't miss readonly hidden in the superblock flags */ if (sb_rdonly(mnt->mnt.mnt_sb)) mnt_flags |= MNT_LOCK_READONLY; /* Verify the mount flags are equal to or more permissive * than the proposed new mount. */ if ((mnt_flags & MNT_LOCK_READONLY) && !(new_flags & MNT_READONLY)) continue; if ((mnt_flags & MNT_LOCK_ATIME) && ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) continue; /* This mount is not fully visible if there are any * locked child mounts that cover anything except for * empty directories. */ list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { struct inode *inode = child->mnt_mountpoint->d_inode; /* Only worry about locked mounts */ if (!(child->mnt.mnt_flags & MNT_LOCKED)) continue; /* Is the directory permanetly empty? */ if (!is_empty_dir_inode(inode)) goto next; } /* Preserve the locked attributes */ *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ MNT_LOCK_ATIME); visible = true; goto found; next: ; } found: up_read(&namespace_sem); return visible; } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) { const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; struct mnt_namespace *ns = current->nsproxy->mnt_ns; unsigned long s_iflags; if (ns->user_ns == &init_user_ns) return false; /* Can this filesystem be too revealing? */ s_iflags = sb->s_iflags; if (!(s_iflags & SB_I_USERNS_VISIBLE)) return false; if ((s_iflags & required_iflags) != required_iflags) { WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", required_iflags); return true; } return !mnt_already_visible(ns, sb, new_mnt_flags); } bool mnt_may_suid(struct vfsmount *mnt) { /* * Foreign mounts (accessed via fchdir or through /proc * symlinks) are always treated as if they are nosuid. This * prevents namespaces from trusting potentially unsafe * suid/sgid bits, file caps, or security labels that originate * in other namespaces. */ return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && current_in_userns(mnt->mnt_sb->s_user_ns); } static struct ns_common *mntns_get(struct task_struct *task) { struct ns_common *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = &nsproxy->mnt_ns->ns; get_mnt_ns(to_mnt_ns(ns)); } task_unlock(task); return ns; } static void mntns_put(struct ns_common *ns) { put_mnt_ns(to_mnt_ns(ns)); } static int mntns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct fs_struct *fs = nsset->fs; struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; struct user_namespace *user_ns = nsset->cred->user_ns; struct path root; int err; if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(user_ns, CAP_SYS_CHROOT) || !ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; if (is_anon_ns(mnt_ns)) return -EINVAL; if (fs->users != 1) return -EINVAL; get_mnt_ns(mnt_ns); old_mnt_ns = nsproxy->mnt_ns; nsproxy->mnt_ns = mnt_ns; /* Find the root */ err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, "/", LOOKUP_DOWN, &root); if (err) { /* revert to old namespace */ nsproxy->mnt_ns = old_mnt_ns; put_mnt_ns(mnt_ns); return err; } put_mnt_ns(old_mnt_ns); /* Update the pwd and root */ set_fs_pwd(fs, &root); set_fs_root(fs, &root); path_put(&root); return 0; } static struct user_namespace *mntns_owner(struct ns_common *ns) { return to_mnt_ns(ns)->user_ns; } const struct proc_ns_operations mntns_operations = { .name = "mnt", .type = CLONE_NEWNS, .get = mntns_get, .put = mntns_put, .install = mntns_install, .owner = mntns_owner, }; #ifdef CONFIG_SYSCTL static struct ctl_table fs_namespace_sysctls[] = { { .procname = "mount-max", .data = &sysctl_mount_max, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, }, }; static int __init init_fs_namespace_sysctls(void) { register_sysctl_init("fs", fs_namespace_sysctls); return 0; } fs_initcall(init_fs_namespace_sysctls); #endif /* CONFIG_SYSCTL */