// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include "io_uring.h" #include "kbuf.h" #include "alloc_cache.h" #include "net.h" #include "notif.h" #include "rsrc.h" #if defined(CONFIG_NET) struct io_shutdown { struct file *file; int how; }; struct io_accept { struct file *file; struct sockaddr __user *addr; int __user *addr_len; int flags; int iou_flags; u32 file_slot; unsigned long nofile; }; struct io_socket { struct file *file; int domain; int type; int protocol; int flags; u32 file_slot; unsigned long nofile; }; struct io_connect { struct file *file; struct sockaddr __user *addr; int addr_len; bool in_progress; bool seen_econnaborted; }; struct io_bind { struct file *file; int addr_len; }; struct io_listen { struct file *file; int backlog; }; struct io_sr_msg { struct file *file; union { struct compat_msghdr __user *umsg_compat; struct user_msghdr __user *umsg; void __user *buf; }; int len; unsigned done_io; unsigned msg_flags; unsigned nr_multishot_loops; u16 flags; /* initialised and used only by !msg send variants */ u16 buf_group; u16 buf_index; void __user *msg_control; /* used only for send zerocopy */ struct io_kiocb *notif; }; /* * Number of times we'll try and do receives if there's more data. If we * exceed this limit, then add us to the back of the queue and retry from * there. This helps fairness between flooding clients. */ #define MULTISHOT_MAX_RETRY 32 int io_shutdown_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_shutdown *shutdown = io_kiocb_to_cmd(req, struct io_shutdown); if (unlikely(sqe->off || sqe->addr || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)) return -EINVAL; shutdown->how = READ_ONCE(sqe->len); req->flags |= REQ_F_FORCE_ASYNC; return 0; } int io_shutdown(struct io_kiocb *req, unsigned int issue_flags) { struct io_shutdown *shutdown = io_kiocb_to_cmd(req, struct io_shutdown); struct socket *sock; int ret; WARN_ON_ONCE(issue_flags & IO_URING_F_NONBLOCK); sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; ret = __sys_shutdown_sock(sock, shutdown->how); io_req_set_res(req, ret, 0); return IOU_OK; } static bool io_net_retry(struct socket *sock, int flags) { if (!(flags & MSG_WAITALL)) return false; return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET; } static void io_netmsg_iovec_free(struct io_async_msghdr *kmsg) { if (kmsg->free_iov) { kfree(kmsg->free_iov); kmsg->free_iov_nr = 0; kmsg->free_iov = NULL; } } static void io_netmsg_recycle(struct io_kiocb *req, unsigned int issue_flags) { struct io_async_msghdr *hdr = req->async_data; struct iovec *iov; /* can't recycle, ensure we free the iovec if we have one */ if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) { io_netmsg_iovec_free(hdr); return; } /* Let normal cleanup path reap it if we fail adding to the cache */ iov = hdr->free_iov; if (io_alloc_cache_put(&req->ctx->netmsg_cache, hdr)) { if (iov) kasan_mempool_poison_object(iov); req->async_data = NULL; req->flags &= ~REQ_F_ASYNC_DATA; } } static void io_msg_async_data_init(void *obj) { struct io_async_msghdr *hdr = (struct io_async_msghdr *)obj; hdr->free_iov = NULL; hdr->free_iov_nr = 0; } static struct io_async_msghdr *io_msg_alloc_async(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; struct io_async_msghdr *hdr; hdr = io_uring_alloc_async_data(&ctx->netmsg_cache, req, io_msg_async_data_init); if (!hdr) return NULL; /* If the async data was cached, we might have an iov cached inside. */ if (hdr->free_iov) { kasan_mempool_unpoison_object(hdr->free_iov, hdr->free_iov_nr * sizeof(struct iovec)); req->flags |= REQ_F_NEED_CLEANUP; } return hdr; } /* assign new iovec to kmsg, if we need to */ static int io_net_vec_assign(struct io_kiocb *req, struct io_async_msghdr *kmsg, struct iovec *iov) { if (iov) { req->flags |= REQ_F_NEED_CLEANUP; kmsg->free_iov_nr = kmsg->msg.msg_iter.nr_segs; if (kmsg->free_iov) kfree(kmsg->free_iov); kmsg->free_iov = iov; } return 0; } static inline void io_mshot_prep_retry(struct io_kiocb *req, struct io_async_msghdr *kmsg) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); req->flags &= ~REQ_F_BL_EMPTY; sr->done_io = 0; sr->len = 0; /* get from the provided buffer */ req->buf_index = sr->buf_group; } #ifdef CONFIG_COMPAT static int io_compat_msg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg, struct compat_msghdr *msg, int ddir) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct compat_iovec __user *uiov; struct iovec *iov; int ret, nr_segs; if (iomsg->free_iov) { nr_segs = iomsg->free_iov_nr; iov = iomsg->free_iov; } else { iov = &iomsg->fast_iov; nr_segs = 1; } if (copy_from_user(msg, sr->umsg_compat, sizeof(*msg))) return -EFAULT; uiov = compat_ptr(msg->msg_iov); if (req->flags & REQ_F_BUFFER_SELECT) { compat_ssize_t clen; if (msg->msg_iovlen == 0) { sr->len = iov->iov_len = 0; iov->iov_base = NULL; } else if (msg->msg_iovlen > 1) { return -EINVAL; } else { if (!access_ok(uiov, sizeof(*uiov))) return -EFAULT; if (__get_user(clen, &uiov->iov_len)) return -EFAULT; if (clen < 0) return -EINVAL; sr->len = clen; } return 0; } ret = __import_iovec(ddir, (struct iovec __user *)uiov, msg->msg_iovlen, nr_segs, &iov, &iomsg->msg.msg_iter, true); if (unlikely(ret < 0)) return ret; return io_net_vec_assign(req, iomsg, iov); } #endif static int io_msg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg, struct user_msghdr *msg, int ddir) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct user_msghdr __user *umsg = sr->umsg; struct iovec *iov; int ret, nr_segs; if (iomsg->free_iov) { nr_segs = iomsg->free_iov_nr; iov = iomsg->free_iov; } else { iov = &iomsg->fast_iov; nr_segs = 1; } if (!user_access_begin(umsg, sizeof(*umsg))) return -EFAULT; ret = -EFAULT; unsafe_get_user(msg->msg_name, &umsg->msg_name, ua_end); unsafe_get_user(msg->msg_namelen, &umsg->msg_namelen, ua_end); unsafe_get_user(msg->msg_iov, &umsg->msg_iov, ua_end); unsafe_get_user(msg->msg_iovlen, &umsg->msg_iovlen, ua_end); unsafe_get_user(msg->msg_control, &umsg->msg_control, ua_end); unsafe_get_user(msg->msg_controllen, &umsg->msg_controllen, ua_end); msg->msg_flags = 0; if (req->flags & REQ_F_BUFFER_SELECT) { if (msg->msg_iovlen == 0) { sr->len = iov->iov_len = 0; iov->iov_base = NULL; } else if (msg->msg_iovlen > 1) { ret = -EINVAL; goto ua_end; } else { /* we only need the length for provided buffers */ if (!access_ok(&msg->msg_iov[0].iov_len, sizeof(__kernel_size_t))) goto ua_end; unsafe_get_user(iov->iov_len, &msg->msg_iov[0].iov_len, ua_end); sr->len = iov->iov_len; } ret = 0; ua_end: user_access_end(); return ret; } user_access_end(); ret = __import_iovec(ddir, msg->msg_iov, msg->msg_iovlen, nr_segs, &iov, &iomsg->msg.msg_iter, false); if (unlikely(ret < 0)) return ret; return io_net_vec_assign(req, iomsg, iov); } static int io_sendmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct user_msghdr msg; int ret; iomsg->msg.msg_name = &iomsg->addr; iomsg->msg.msg_iter.nr_segs = 0; #ifdef CONFIG_COMPAT if (unlikely(req->ctx->compat)) { struct compat_msghdr cmsg; ret = io_compat_msg_copy_hdr(req, iomsg, &cmsg, ITER_SOURCE); if (unlikely(ret)) return ret; return __get_compat_msghdr(&iomsg->msg, &cmsg, NULL); } #endif ret = io_msg_copy_hdr(req, iomsg, &msg, ITER_SOURCE); if (unlikely(ret)) return ret; ret = __copy_msghdr(&iomsg->msg, &msg, NULL); /* save msg_control as sys_sendmsg() overwrites it */ sr->msg_control = iomsg->msg.msg_control_user; return ret; } void io_sendmsg_recvmsg_cleanup(struct io_kiocb *req) { struct io_async_msghdr *io = req->async_data; io_netmsg_iovec_free(io); } static int io_send_setup(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; void __user *addr; u16 addr_len; int ret; sr->buf = u64_to_user_ptr(READ_ONCE(sqe->addr)); if (READ_ONCE(sqe->__pad3[0])) return -EINVAL; kmsg->msg.msg_name = NULL; kmsg->msg.msg_namelen = 0; kmsg->msg.msg_control = NULL; kmsg->msg.msg_controllen = 0; kmsg->msg.msg_ubuf = NULL; addr = u64_to_user_ptr(READ_ONCE(sqe->addr2)); addr_len = READ_ONCE(sqe->addr_len); if (addr) { ret = move_addr_to_kernel(addr, addr_len, &kmsg->addr); if (unlikely(ret < 0)) return ret; kmsg->msg.msg_name = &kmsg->addr; kmsg->msg.msg_namelen = addr_len; } if (!io_do_buffer_select(req)) { ret = import_ubuf(ITER_SOURCE, sr->buf, sr->len, &kmsg->msg.msg_iter); if (unlikely(ret < 0)) return ret; } return 0; } static int io_sendmsg_setup(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; int ret; sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr)); ret = io_sendmsg_copy_hdr(req, kmsg); if (!ret) req->flags |= REQ_F_NEED_CLEANUP; return ret; } #define SENDMSG_FLAGS (IORING_RECVSEND_POLL_FIRST | IORING_RECVSEND_BUNDLE) int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); sr->done_io = 0; if (req->opcode != IORING_OP_SEND) { if (sqe->addr2 || sqe->file_index) return -EINVAL; } sr->len = READ_ONCE(sqe->len); sr->flags = READ_ONCE(sqe->ioprio); if (sr->flags & ~SENDMSG_FLAGS) return -EINVAL; sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL; if (sr->msg_flags & MSG_DONTWAIT) req->flags |= REQ_F_NOWAIT; if (sr->flags & IORING_RECVSEND_BUNDLE) { if (req->opcode == IORING_OP_SENDMSG) return -EINVAL; if (!(req->flags & REQ_F_BUFFER_SELECT)) return -EINVAL; sr->msg_flags |= MSG_WAITALL; sr->buf_group = req->buf_index; req->buf_list = NULL; } #ifdef CONFIG_COMPAT if (req->ctx->compat) sr->msg_flags |= MSG_CMSG_COMPAT; #endif if (unlikely(!io_msg_alloc_async(req))) return -ENOMEM; if (req->opcode != IORING_OP_SENDMSG) return io_send_setup(req, sqe); return io_sendmsg_setup(req, sqe); } static void io_req_msg_cleanup(struct io_kiocb *req, unsigned int issue_flags) { req->flags &= ~REQ_F_NEED_CLEANUP; io_netmsg_recycle(req, issue_flags); } /* * For bundle completions, we need to figure out how many segments we consumed. * A bundle could be using a single ITER_UBUF if that's all we mapped, or it * could be using an ITER_IOVEC. If the latter, then if we consumed all of * the segments, then it's a trivial questiont o answer. If we have residual * data in the iter, then loop the segments to figure out how much we * transferred. */ static int io_bundle_nbufs(struct io_async_msghdr *kmsg, int ret) { struct iovec *iov; int nbufs; /* no data is always zero segments, and a ubuf is always 1 segment */ if (ret <= 0) return 0; if (iter_is_ubuf(&kmsg->msg.msg_iter)) return 1; iov = kmsg->free_iov; if (!iov) iov = &kmsg->fast_iov; /* if all data was transferred, it's basic pointer math */ if (!iov_iter_count(&kmsg->msg.msg_iter)) return iter_iov(&kmsg->msg.msg_iter) - iov; /* short transfer, count segments */ nbufs = 0; do { int this_len = min_t(int, iov[nbufs].iov_len, ret); nbufs++; ret -= this_len; } while (ret); return nbufs; } static inline bool io_send_finish(struct io_kiocb *req, int *ret, struct io_async_msghdr *kmsg, unsigned issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); bool bundle_finished = *ret <= 0; unsigned int cflags; if (!(sr->flags & IORING_RECVSEND_BUNDLE)) { cflags = io_put_kbuf(req, *ret, issue_flags); goto finish; } cflags = io_put_kbufs(req, *ret, io_bundle_nbufs(kmsg, *ret), issue_flags); if (bundle_finished || req->flags & REQ_F_BL_EMPTY) goto finish; /* * Fill CQE for this receive and see if we should keep trying to * receive from this socket. */ if (io_req_post_cqe(req, *ret, cflags | IORING_CQE_F_MORE)) { io_mshot_prep_retry(req, kmsg); return false; } /* Otherwise stop bundle and use the current result. */ finish: io_req_set_res(req, *ret, cflags); *ret = IOU_OK; return true; } int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; struct socket *sock; unsigned flags; int min_ret = 0; int ret; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; if (!(req->flags & REQ_F_POLLED) && (sr->flags & IORING_RECVSEND_POLL_FIRST)) return -EAGAIN; flags = sr->msg_flags; if (issue_flags & IO_URING_F_NONBLOCK) flags |= MSG_DONTWAIT; if (flags & MSG_WAITALL) min_ret = iov_iter_count(&kmsg->msg.msg_iter); kmsg->msg.msg_control_user = sr->msg_control; ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags); if (ret < min_ret) { if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK)) return -EAGAIN; if (ret > 0 && io_net_retry(sock, flags)) { kmsg->msg.msg_controllen = 0; kmsg->msg.msg_control = NULL; sr->done_io += ret; req->flags |= REQ_F_BL_NO_RECYCLE; return -EAGAIN; } if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } io_req_msg_cleanup(req, issue_flags); if (ret >= 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; io_req_set_res(req, ret, 0); return IOU_OK; } int io_send(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; struct socket *sock; unsigned flags; int min_ret = 0; int ret; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; if (!(req->flags & REQ_F_POLLED) && (sr->flags & IORING_RECVSEND_POLL_FIRST)) return -EAGAIN; flags = sr->msg_flags; if (issue_flags & IO_URING_F_NONBLOCK) flags |= MSG_DONTWAIT; retry_bundle: if (io_do_buffer_select(req)) { struct buf_sel_arg arg = { .iovs = &kmsg->fast_iov, .max_len = min_not_zero(sr->len, INT_MAX), .nr_iovs = 1, }; if (kmsg->free_iov) { arg.nr_iovs = kmsg->free_iov_nr; arg.iovs = kmsg->free_iov; arg.mode = KBUF_MODE_FREE; } if (!(sr->flags & IORING_RECVSEND_BUNDLE)) arg.nr_iovs = 1; else arg.mode |= KBUF_MODE_EXPAND; ret = io_buffers_select(req, &arg, issue_flags); if (unlikely(ret < 0)) return ret; if (arg.iovs != &kmsg->fast_iov && arg.iovs != kmsg->free_iov) { kmsg->free_iov_nr = ret; kmsg->free_iov = arg.iovs; req->flags |= REQ_F_NEED_CLEANUP; } sr->len = arg.out_len; if (ret == 1) { sr->buf = arg.iovs[0].iov_base; ret = import_ubuf(ITER_SOURCE, sr->buf, sr->len, &kmsg->msg.msg_iter); if (unlikely(ret)) return ret; } else { iov_iter_init(&kmsg->msg.msg_iter, ITER_SOURCE, arg.iovs, ret, arg.out_len); } } /* * If MSG_WAITALL is set, or this is a bundle send, then we need * the full amount. If just bundle is set, if we do a short send * then we complete the bundle sequence rather than continue on. */ if (flags & MSG_WAITALL || sr->flags & IORING_RECVSEND_BUNDLE) min_ret = iov_iter_count(&kmsg->msg.msg_iter); flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; kmsg->msg.msg_flags = flags; ret = sock_sendmsg(sock, &kmsg->msg); if (ret < min_ret) { if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK)) return -EAGAIN; if (ret > 0 && io_net_retry(sock, flags)) { sr->len -= ret; sr->buf += ret; sr->done_io += ret; req->flags |= REQ_F_BL_NO_RECYCLE; return -EAGAIN; } if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } if (ret >= 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; if (!io_send_finish(req, &ret, kmsg, issue_flags)) goto retry_bundle; io_req_msg_cleanup(req, issue_flags); return ret; } static int io_recvmsg_mshot_prep(struct io_kiocb *req, struct io_async_msghdr *iomsg, int namelen, size_t controllen) { if ((req->flags & (REQ_F_APOLL_MULTISHOT|REQ_F_BUFFER_SELECT)) == (REQ_F_APOLL_MULTISHOT|REQ_F_BUFFER_SELECT)) { int hdr; if (unlikely(namelen < 0)) return -EOVERFLOW; if (check_add_overflow(sizeof(struct io_uring_recvmsg_out), namelen, &hdr)) return -EOVERFLOW; if (check_add_overflow(hdr, controllen, &hdr)) return -EOVERFLOW; iomsg->namelen = namelen; iomsg->controllen = controllen; return 0; } return 0; } static int io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg) { struct user_msghdr msg; int ret; iomsg->msg.msg_name = &iomsg->addr; iomsg->msg.msg_iter.nr_segs = 0; #ifdef CONFIG_COMPAT if (unlikely(req->ctx->compat)) { struct compat_msghdr cmsg; ret = io_compat_msg_copy_hdr(req, iomsg, &cmsg, ITER_DEST); if (unlikely(ret)) return ret; ret = __get_compat_msghdr(&iomsg->msg, &cmsg, &iomsg->uaddr); if (unlikely(ret)) return ret; return io_recvmsg_mshot_prep(req, iomsg, cmsg.msg_namelen, cmsg.msg_controllen); } #endif ret = io_msg_copy_hdr(req, iomsg, &msg, ITER_DEST); if (unlikely(ret)) return ret; ret = __copy_msghdr(&iomsg->msg, &msg, &iomsg->uaddr); if (unlikely(ret)) return ret; return io_recvmsg_mshot_prep(req, iomsg, msg.msg_namelen, msg.msg_controllen); } static int io_recvmsg_prep_setup(struct io_kiocb *req) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg; int ret; kmsg = io_msg_alloc_async(req); if (unlikely(!kmsg)) return -ENOMEM; if (req->opcode == IORING_OP_RECV) { kmsg->msg.msg_name = NULL; kmsg->msg.msg_namelen = 0; kmsg->msg.msg_control = NULL; kmsg->msg.msg_get_inq = 1; kmsg->msg.msg_controllen = 0; kmsg->msg.msg_iocb = NULL; kmsg->msg.msg_ubuf = NULL; if (!io_do_buffer_select(req)) { ret = import_ubuf(ITER_DEST, sr->buf, sr->len, &kmsg->msg.msg_iter); if (unlikely(ret)) return ret; } return 0; } ret = io_recvmsg_copy_hdr(req, kmsg); if (!ret) req->flags |= REQ_F_NEED_CLEANUP; return ret; } #define RECVMSG_FLAGS (IORING_RECVSEND_POLL_FIRST | IORING_RECV_MULTISHOT | \ IORING_RECVSEND_BUNDLE) int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); sr->done_io = 0; if (unlikely(sqe->file_index || sqe->addr2)) return -EINVAL; sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr)); sr->len = READ_ONCE(sqe->len); sr->flags = READ_ONCE(sqe->ioprio); if (sr->flags & ~RECVMSG_FLAGS) return -EINVAL; sr->msg_flags = READ_ONCE(sqe->msg_flags); if (sr->msg_flags & MSG_DONTWAIT) req->flags |= REQ_F_NOWAIT; if (sr->msg_flags & MSG_ERRQUEUE) req->flags |= REQ_F_CLEAR_POLLIN; if (req->flags & REQ_F_BUFFER_SELECT) { /* * Store the buffer group for this multishot receive separately, * as if we end up doing an io-wq based issue that selects a * buffer, it has to be committed immediately and that will * clear ->buf_list. This means we lose the link to the buffer * list, and the eventual buffer put on completion then cannot * restore it. */ sr->buf_group = req->buf_index; req->buf_list = NULL; } if (sr->flags & IORING_RECV_MULTISHOT) { if (!(req->flags & REQ_F_BUFFER_SELECT)) return -EINVAL; if (sr->msg_flags & MSG_WAITALL) return -EINVAL; if (req->opcode == IORING_OP_RECV && sr->len) return -EINVAL; req->flags |= REQ_F_APOLL_MULTISHOT; } if (sr->flags & IORING_RECVSEND_BUNDLE) { if (req->opcode == IORING_OP_RECVMSG) return -EINVAL; } #ifdef CONFIG_COMPAT if (req->ctx->compat) sr->msg_flags |= MSG_CMSG_COMPAT; #endif sr->nr_multishot_loops = 0; return io_recvmsg_prep_setup(req); } /* * Finishes io_recv and io_recvmsg. * * Returns true if it is actually finished, or false if it should run * again (for multishot). */ static inline bool io_recv_finish(struct io_kiocb *req, int *ret, struct io_async_msghdr *kmsg, bool mshot_finished, unsigned issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); unsigned int cflags = 0; if (kmsg->msg.msg_inq > 0) cflags |= IORING_CQE_F_SOCK_NONEMPTY; if (sr->flags & IORING_RECVSEND_BUNDLE) { cflags |= io_put_kbufs(req, *ret, io_bundle_nbufs(kmsg, *ret), issue_flags); /* bundle with no more immediate buffers, we're done */ if (req->flags & REQ_F_BL_EMPTY) goto finish; } else { cflags |= io_put_kbuf(req, *ret, issue_flags); } /* * Fill CQE for this receive and see if we should keep trying to * receive from this socket. */ if ((req->flags & REQ_F_APOLL_MULTISHOT) && !mshot_finished && io_req_post_cqe(req, *ret, cflags | IORING_CQE_F_MORE)) { int mshot_retry_ret = IOU_ISSUE_SKIP_COMPLETE; io_mshot_prep_retry(req, kmsg); /* Known not-empty or unknown state, retry */ if (cflags & IORING_CQE_F_SOCK_NONEMPTY || kmsg->msg.msg_inq < 0) { if (sr->nr_multishot_loops++ < MULTISHOT_MAX_RETRY) return false; /* mshot retries exceeded, force a requeue */ sr->nr_multishot_loops = 0; mshot_retry_ret = IOU_REQUEUE; } if (issue_flags & IO_URING_F_MULTISHOT) *ret = mshot_retry_ret; else *ret = -EAGAIN; return true; } /* Finish the request / stop multishot. */ finish: io_req_set_res(req, *ret, cflags); if (issue_flags & IO_URING_F_MULTISHOT) *ret = IOU_STOP_MULTISHOT; else *ret = IOU_OK; io_req_msg_cleanup(req, issue_flags); return true; } static int io_recvmsg_prep_multishot(struct io_async_msghdr *kmsg, struct io_sr_msg *sr, void __user **buf, size_t *len) { unsigned long ubuf = (unsigned long) *buf; unsigned long hdr; hdr = sizeof(struct io_uring_recvmsg_out) + kmsg->namelen + kmsg->controllen; if (*len < hdr) return -EFAULT; if (kmsg->controllen) { unsigned long control = ubuf + hdr - kmsg->controllen; kmsg->msg.msg_control_user = (void __user *) control; kmsg->msg.msg_controllen = kmsg->controllen; } sr->buf = *buf; /* stash for later copy */ *buf = (void __user *) (ubuf + hdr); kmsg->payloadlen = *len = *len - hdr; return 0; } struct io_recvmsg_multishot_hdr { struct io_uring_recvmsg_out msg; struct sockaddr_storage addr; }; static int io_recvmsg_multishot(struct socket *sock, struct io_sr_msg *io, struct io_async_msghdr *kmsg, unsigned int flags, bool *finished) { int err; int copy_len; struct io_recvmsg_multishot_hdr hdr; if (kmsg->namelen) kmsg->msg.msg_name = &hdr.addr; kmsg->msg.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); kmsg->msg.msg_namelen = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &kmsg->msg, flags); *finished = err <= 0; if (err < 0) return err; hdr.msg = (struct io_uring_recvmsg_out) { .controllen = kmsg->controllen - kmsg->msg.msg_controllen, .flags = kmsg->msg.msg_flags & ~MSG_CMSG_COMPAT }; hdr.msg.payloadlen = err; if (err > kmsg->payloadlen) err = kmsg->payloadlen; copy_len = sizeof(struct io_uring_recvmsg_out); if (kmsg->msg.msg_namelen > kmsg->namelen) copy_len += kmsg->namelen; else copy_len += kmsg->msg.msg_namelen; /* * "fromlen shall refer to the value before truncation.." * 1003.1g */ hdr.msg.namelen = kmsg->msg.msg_namelen; /* ensure that there is no gap between hdr and sockaddr_storage */ BUILD_BUG_ON(offsetof(struct io_recvmsg_multishot_hdr, addr) != sizeof(struct io_uring_recvmsg_out)); if (copy_to_user(io->buf, &hdr, copy_len)) { *finished = true; return -EFAULT; } return sizeof(struct io_uring_recvmsg_out) + kmsg->namelen + kmsg->controllen + err; } int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; struct socket *sock; unsigned flags; int ret, min_ret = 0; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; bool mshot_finished = true; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; if (!(req->flags & REQ_F_POLLED) && (sr->flags & IORING_RECVSEND_POLL_FIRST)) return -EAGAIN; flags = sr->msg_flags; if (force_nonblock) flags |= MSG_DONTWAIT; retry_multishot: if (io_do_buffer_select(req)) { void __user *buf; size_t len = sr->len; buf = io_buffer_select(req, &len, issue_flags); if (!buf) return -ENOBUFS; if (req->flags & REQ_F_APOLL_MULTISHOT) { ret = io_recvmsg_prep_multishot(kmsg, sr, &buf, &len); if (ret) { io_kbuf_recycle(req, issue_flags); return ret; } } iov_iter_ubuf(&kmsg->msg.msg_iter, ITER_DEST, buf, len); } kmsg->msg.msg_get_inq = 1; kmsg->msg.msg_inq = -1; if (req->flags & REQ_F_APOLL_MULTISHOT) { ret = io_recvmsg_multishot(sock, sr, kmsg, flags, &mshot_finished); } else { /* disable partial retry for recvmsg with cmsg attached */ if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen) min_ret = iov_iter_count(&kmsg->msg.msg_iter); ret = __sys_recvmsg_sock(sock, &kmsg->msg, sr->umsg, kmsg->uaddr, flags); } if (ret < min_ret) { if (ret == -EAGAIN && force_nonblock) { if (issue_flags & IO_URING_F_MULTISHOT) { io_kbuf_recycle(req, issue_flags); return IOU_ISSUE_SKIP_COMPLETE; } return -EAGAIN; } if (ret > 0 && io_net_retry(sock, flags)) { sr->done_io += ret; req->flags |= REQ_F_BL_NO_RECYCLE; return -EAGAIN; } if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) { req_set_fail(req); } if (ret > 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; else io_kbuf_recycle(req, issue_flags); if (!io_recv_finish(req, &ret, kmsg, mshot_finished, issue_flags)) goto retry_multishot; return ret; } static int io_recv_buf_select(struct io_kiocb *req, struct io_async_msghdr *kmsg, size_t *len, unsigned int issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); int ret; /* * If the ring isn't locked, then don't use the peek interface * to grab multiple buffers as we will lock/unlock between * this selection and posting the buffers. */ if (!(issue_flags & IO_URING_F_UNLOCKED) && sr->flags & IORING_RECVSEND_BUNDLE) { struct buf_sel_arg arg = { .iovs = &kmsg->fast_iov, .nr_iovs = 1, .mode = KBUF_MODE_EXPAND, }; if (kmsg->free_iov) { arg.nr_iovs = kmsg->free_iov_nr; arg.iovs = kmsg->free_iov; arg.mode |= KBUF_MODE_FREE; } if (kmsg->msg.msg_inq > 0) arg.max_len = min_not_zero(sr->len, kmsg->msg.msg_inq); ret = io_buffers_peek(req, &arg); if (unlikely(ret < 0)) return ret; /* special case 1 vec, can be a fast path */ if (ret == 1) { sr->buf = arg.iovs[0].iov_base; sr->len = arg.iovs[0].iov_len; goto map_ubuf; } iov_iter_init(&kmsg->msg.msg_iter, ITER_DEST, arg.iovs, ret, arg.out_len); if (arg.iovs != &kmsg->fast_iov && arg.iovs != kmsg->free_iov) { kmsg->free_iov_nr = ret; kmsg->free_iov = arg.iovs; req->flags |= REQ_F_NEED_CLEANUP; } } else { void __user *buf; *len = sr->len; buf = io_buffer_select(req, len, issue_flags); if (!buf) return -ENOBUFS; sr->buf = buf; sr->len = *len; map_ubuf: ret = import_ubuf(ITER_DEST, sr->buf, sr->len, &kmsg->msg.msg_iter); if (unlikely(ret)) return ret; } return 0; } int io_recv(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; struct socket *sock; unsigned flags; int ret, min_ret = 0; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; size_t len = sr->len; bool mshot_finished; if (!(req->flags & REQ_F_POLLED) && (sr->flags & IORING_RECVSEND_POLL_FIRST)) return -EAGAIN; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; flags = sr->msg_flags; if (force_nonblock) flags |= MSG_DONTWAIT; retry_multishot: if (io_do_buffer_select(req)) { ret = io_recv_buf_select(req, kmsg, &len, issue_flags); if (unlikely(ret)) { kmsg->msg.msg_inq = -1; goto out_free; } sr->buf = NULL; } kmsg->msg.msg_flags = 0; kmsg->msg.msg_inq = -1; if (flags & MSG_WAITALL) min_ret = iov_iter_count(&kmsg->msg.msg_iter); ret = sock_recvmsg(sock, &kmsg->msg, flags); if (ret < min_ret) { if (ret == -EAGAIN && force_nonblock) { if (issue_flags & IO_URING_F_MULTISHOT) { io_kbuf_recycle(req, issue_flags); return IOU_ISSUE_SKIP_COMPLETE; } return -EAGAIN; } if (ret > 0 && io_net_retry(sock, flags)) { sr->len -= ret; sr->buf += ret; sr->done_io += ret; req->flags |= REQ_F_BL_NO_RECYCLE; return -EAGAIN; } if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) { out_free: req_set_fail(req); } mshot_finished = ret <= 0; if (ret > 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; else io_kbuf_recycle(req, issue_flags); if (!io_recv_finish(req, &ret, kmsg, mshot_finished, issue_flags)) goto retry_multishot; return ret; } void io_send_zc_cleanup(struct io_kiocb *req) { struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *io = req->async_data; if (req_has_async_data(req)) io_netmsg_iovec_free(io); if (zc->notif) { io_notif_flush(zc->notif); zc->notif = NULL; } } #define IO_ZC_FLAGS_COMMON (IORING_RECVSEND_POLL_FIRST | IORING_RECVSEND_FIXED_BUF) #define IO_ZC_FLAGS_VALID (IO_ZC_FLAGS_COMMON | IORING_SEND_ZC_REPORT_USAGE) int io_send_zc_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_ring_ctx *ctx = req->ctx; struct io_kiocb *notif; zc->done_io = 0; req->flags |= REQ_F_POLL_NO_LAZY; if (unlikely(READ_ONCE(sqe->__pad2[0]) || READ_ONCE(sqe->addr3))) return -EINVAL; /* we don't support IOSQE_CQE_SKIP_SUCCESS just yet */ if (req->flags & REQ_F_CQE_SKIP) return -EINVAL; notif = zc->notif = io_alloc_notif(ctx); if (!notif) return -ENOMEM; notif->cqe.user_data = req->cqe.user_data; notif->cqe.res = 0; notif->cqe.flags = IORING_CQE_F_NOTIF; req->flags |= REQ_F_NEED_CLEANUP; zc->flags = READ_ONCE(sqe->ioprio); if (unlikely(zc->flags & ~IO_ZC_FLAGS_COMMON)) { if (zc->flags & ~IO_ZC_FLAGS_VALID) return -EINVAL; if (zc->flags & IORING_SEND_ZC_REPORT_USAGE) { struct io_notif_data *nd = io_notif_to_data(notif); nd->zc_report = true; nd->zc_used = false; nd->zc_copied = false; } } if (req->opcode != IORING_OP_SEND_ZC) { if (unlikely(sqe->addr2 || sqe->file_index)) return -EINVAL; if (unlikely(zc->flags & IORING_RECVSEND_FIXED_BUF)) return -EINVAL; } zc->len = READ_ONCE(sqe->len); zc->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL | MSG_ZEROCOPY; zc->buf_index = READ_ONCE(sqe->buf_index); if (zc->msg_flags & MSG_DONTWAIT) req->flags |= REQ_F_NOWAIT; #ifdef CONFIG_COMPAT if (req->ctx->compat) zc->msg_flags |= MSG_CMSG_COMPAT; #endif if (unlikely(!io_msg_alloc_async(req))) return -ENOMEM; if (req->opcode != IORING_OP_SENDMSG_ZC) return io_send_setup(req, sqe); return io_sendmsg_setup(req, sqe); } static int io_sg_from_iter_iovec(struct sk_buff *skb, struct iov_iter *from, size_t length) { skb_zcopy_downgrade_managed(skb); return zerocopy_fill_skb_from_iter(skb, from, length); } static int io_sg_from_iter(struct sk_buff *skb, struct iov_iter *from, size_t length) { struct skb_shared_info *shinfo = skb_shinfo(skb); int frag = shinfo->nr_frags; int ret = 0; struct bvec_iter bi; ssize_t copied = 0; unsigned long truesize = 0; if (!frag) shinfo->flags |= SKBFL_MANAGED_FRAG_REFS; else if (unlikely(!skb_zcopy_managed(skb))) return zerocopy_fill_skb_from_iter(skb, from, length); bi.bi_size = min(from->count, length); bi.bi_bvec_done = from->iov_offset; bi.bi_idx = 0; while (bi.bi_size && frag < MAX_SKB_FRAGS) { struct bio_vec v = mp_bvec_iter_bvec(from->bvec, bi); copied += v.bv_len; truesize += PAGE_ALIGN(v.bv_len + v.bv_offset); __skb_fill_page_desc_noacc(shinfo, frag++, v.bv_page, v.bv_offset, v.bv_len); bvec_iter_advance_single(from->bvec, &bi, v.bv_len); } if (bi.bi_size) ret = -EMSGSIZE; shinfo->nr_frags = frag; from->bvec += bi.bi_idx; from->nr_segs -= bi.bi_idx; from->count -= copied; from->iov_offset = bi.bi_bvec_done; skb->data_len += copied; skb->len += copied; skb->truesize += truesize; return ret; } static int io_send_zc_import(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; int ret; if (sr->flags & IORING_RECVSEND_FIXED_BUF) { struct io_ring_ctx *ctx = req->ctx; struct io_rsrc_node *node; ret = -EFAULT; io_ring_submit_lock(ctx, issue_flags); node = io_rsrc_node_lookup(&ctx->buf_table, sr->buf_index); if (node) { io_req_assign_buf_node(sr->notif, node); ret = 0; } io_ring_submit_unlock(ctx, issue_flags); if (unlikely(ret)) return ret; ret = io_import_fixed(ITER_SOURCE, &kmsg->msg.msg_iter, node->buf, (u64)(uintptr_t)sr->buf, sr->len); if (unlikely(ret)) return ret; kmsg->msg.sg_from_iter = io_sg_from_iter; } else { ret = import_ubuf(ITER_SOURCE, sr->buf, sr->len, &kmsg->msg.msg_iter); if (unlikely(ret)) return ret; ret = io_notif_account_mem(sr->notif, sr->len); if (unlikely(ret)) return ret; kmsg->msg.sg_from_iter = io_sg_from_iter_iovec; } return ret; } int io_send_zc(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; struct socket *sock; unsigned msg_flags; int ret, min_ret = 0; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; if (!test_bit(SOCK_SUPPORT_ZC, &sock->flags)) return -EOPNOTSUPP; if (!(req->flags & REQ_F_POLLED) && (zc->flags & IORING_RECVSEND_POLL_FIRST)) return -EAGAIN; if (!zc->done_io) { ret = io_send_zc_import(req, issue_flags); if (unlikely(ret)) return ret; } msg_flags = zc->msg_flags; if (issue_flags & IO_URING_F_NONBLOCK) msg_flags |= MSG_DONTWAIT; if (msg_flags & MSG_WAITALL) min_ret = iov_iter_count(&kmsg->msg.msg_iter); msg_flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; kmsg->msg.msg_flags = msg_flags; kmsg->msg.msg_ubuf = &io_notif_to_data(zc->notif)->uarg; ret = sock_sendmsg(sock, &kmsg->msg); if (unlikely(ret < min_ret)) { if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK)) return -EAGAIN; if (ret > 0 && io_net_retry(sock, kmsg->msg.msg_flags)) { zc->len -= ret; zc->buf += ret; zc->done_io += ret; req->flags |= REQ_F_BL_NO_RECYCLE; return -EAGAIN; } if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } if (ret >= 0) ret += zc->done_io; else if (zc->done_io) ret = zc->done_io; /* * If we're in io-wq we can't rely on tw ordering guarantees, defer * flushing notif to io_send_zc_cleanup() */ if (!(issue_flags & IO_URING_F_UNLOCKED)) { io_notif_flush(zc->notif); io_req_msg_cleanup(req, 0); } io_req_set_res(req, ret, IORING_CQE_F_MORE); return IOU_OK; } int io_sendmsg_zc(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); struct io_async_msghdr *kmsg = req->async_data; struct socket *sock; unsigned flags; int ret, min_ret = 0; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; if (!test_bit(SOCK_SUPPORT_ZC, &sock->flags)) return -EOPNOTSUPP; if (!(req->flags & REQ_F_POLLED) && (sr->flags & IORING_RECVSEND_POLL_FIRST)) return -EAGAIN; flags = sr->msg_flags; if (issue_flags & IO_URING_F_NONBLOCK) flags |= MSG_DONTWAIT; if (flags & MSG_WAITALL) min_ret = iov_iter_count(&kmsg->msg.msg_iter); kmsg->msg.msg_control_user = sr->msg_control; kmsg->msg.msg_ubuf = &io_notif_to_data(sr->notif)->uarg; kmsg->msg.sg_from_iter = io_sg_from_iter_iovec; ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags); if (unlikely(ret < min_ret)) { if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK)) return -EAGAIN; if (ret > 0 && io_net_retry(sock, flags)) { sr->done_io += ret; req->flags |= REQ_F_BL_NO_RECYCLE; return -EAGAIN; } if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } if (ret >= 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; /* * If we're in io-wq we can't rely on tw ordering guarantees, defer * flushing notif to io_send_zc_cleanup() */ if (!(issue_flags & IO_URING_F_UNLOCKED)) { io_notif_flush(sr->notif); io_req_msg_cleanup(req, 0); } io_req_set_res(req, ret, IORING_CQE_F_MORE); return IOU_OK; } void io_sendrecv_fail(struct io_kiocb *req) { struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg); if (sr->done_io) req->cqe.res = sr->done_io; if ((req->flags & REQ_F_NEED_CLEANUP) && (req->opcode == IORING_OP_SEND_ZC || req->opcode == IORING_OP_SENDMSG_ZC)) req->cqe.flags |= IORING_CQE_F_MORE; } #define ACCEPT_FLAGS (IORING_ACCEPT_MULTISHOT | IORING_ACCEPT_DONTWAIT | \ IORING_ACCEPT_POLL_FIRST) int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_accept *accept = io_kiocb_to_cmd(req, struct io_accept); if (sqe->len || sqe->buf_index) return -EINVAL; accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr)); accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2)); accept->flags = READ_ONCE(sqe->accept_flags); accept->nofile = rlimit(RLIMIT_NOFILE); accept->iou_flags = READ_ONCE(sqe->ioprio); if (accept->iou_flags & ~ACCEPT_FLAGS) return -EINVAL; accept->file_slot = READ_ONCE(sqe->file_index); if (accept->file_slot) { if (accept->flags & SOCK_CLOEXEC) return -EINVAL; if (accept->iou_flags & IORING_ACCEPT_MULTISHOT && accept->file_slot != IORING_FILE_INDEX_ALLOC) return -EINVAL; } if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK)) accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK; if (accept->iou_flags & IORING_ACCEPT_MULTISHOT) req->flags |= REQ_F_APOLL_MULTISHOT; if (accept->iou_flags & IORING_ACCEPT_DONTWAIT) req->flags |= REQ_F_NOWAIT; return 0; } int io_accept(struct io_kiocb *req, unsigned int issue_flags) { struct io_accept *accept = io_kiocb_to_cmd(req, struct io_accept); bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; bool fixed = !!accept->file_slot; struct proto_accept_arg arg = { .flags = force_nonblock ? O_NONBLOCK : 0, }; struct file *file; unsigned cflags; int ret, fd; if (!(req->flags & REQ_F_POLLED) && accept->iou_flags & IORING_ACCEPT_POLL_FIRST) return -EAGAIN; retry: if (!fixed) { fd = __get_unused_fd_flags(accept->flags, accept->nofile); if (unlikely(fd < 0)) return fd; } arg.err = 0; arg.is_empty = -1; file = do_accept(req->file, &arg, accept->addr, accept->addr_len, accept->flags); if (IS_ERR(file)) { if (!fixed) put_unused_fd(fd); ret = PTR_ERR(file); if (ret == -EAGAIN && force_nonblock && !(accept->iou_flags & IORING_ACCEPT_DONTWAIT)) { /* * if it's multishot and polled, we don't need to * return EAGAIN to arm the poll infra since it * has already been done */ if (issue_flags & IO_URING_F_MULTISHOT) return IOU_ISSUE_SKIP_COMPLETE; return ret; } if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } else if (!fixed) { fd_install(fd, file); ret = fd; } else { ret = io_fixed_fd_install(req, issue_flags, file, accept->file_slot); } cflags = 0; if (!arg.is_empty) cflags |= IORING_CQE_F_SOCK_NONEMPTY; if (!(req->flags & REQ_F_APOLL_MULTISHOT)) { io_req_set_res(req, ret, cflags); return IOU_OK; } if (ret < 0) return ret; if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) { if (cflags & IORING_CQE_F_SOCK_NONEMPTY || arg.is_empty == -1) goto retry; if (issue_flags & IO_URING_F_MULTISHOT) return IOU_ISSUE_SKIP_COMPLETE; return -EAGAIN; } io_req_set_res(req, ret, cflags); return IOU_STOP_MULTISHOT; } int io_socket_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_socket *sock = io_kiocb_to_cmd(req, struct io_socket); if (sqe->addr || sqe->rw_flags || sqe->buf_index) return -EINVAL; sock->domain = READ_ONCE(sqe->fd); sock->type = READ_ONCE(sqe->off); sock->protocol = READ_ONCE(sqe->len); sock->file_slot = READ_ONCE(sqe->file_index); sock->nofile = rlimit(RLIMIT_NOFILE); sock->flags = sock->type & ~SOCK_TYPE_MASK; if (sock->file_slot && (sock->flags & SOCK_CLOEXEC)) return -EINVAL; if (sock->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; return 0; } int io_socket(struct io_kiocb *req, unsigned int issue_flags) { struct io_socket *sock = io_kiocb_to_cmd(req, struct io_socket); bool fixed = !!sock->file_slot; struct file *file; int ret, fd; if (!fixed) { fd = __get_unused_fd_flags(sock->flags, sock->nofile); if (unlikely(fd < 0)) return fd; } file = __sys_socket_file(sock->domain, sock->type, sock->protocol); if (IS_ERR(file)) { if (!fixed) put_unused_fd(fd); ret = PTR_ERR(file); if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK)) return -EAGAIN; if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } else if (!fixed) { fd_install(fd, file); ret = fd; } else { ret = io_fixed_fd_install(req, issue_flags, file, sock->file_slot); } io_req_set_res(req, ret, 0); return IOU_OK; } int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_connect *conn = io_kiocb_to_cmd(req, struct io_connect); struct io_async_msghdr *io; if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr)); conn->addr_len = READ_ONCE(sqe->addr2); conn->in_progress = conn->seen_econnaborted = false; io = io_msg_alloc_async(req); if (unlikely(!io)) return -ENOMEM; return move_addr_to_kernel(conn->addr, conn->addr_len, &io->addr); } int io_connect(struct io_kiocb *req, unsigned int issue_flags) { struct io_connect *connect = io_kiocb_to_cmd(req, struct io_connect); struct io_async_msghdr *io = req->async_data; unsigned file_flags; int ret; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; file_flags = force_nonblock ? O_NONBLOCK : 0; ret = __sys_connect_file(req->file, &io->addr, connect->addr_len, file_flags); if ((ret == -EAGAIN || ret == -EINPROGRESS || ret == -ECONNABORTED) && force_nonblock) { if (ret == -EINPROGRESS) { connect->in_progress = true; } else if (ret == -ECONNABORTED) { if (connect->seen_econnaborted) goto out; connect->seen_econnaborted = true; } return -EAGAIN; } if (connect->in_progress) { /* * At least bluetooth will return -EBADFD on a re-connect * attempt, and it's (supposedly) also valid to get -EISCONN * which means the previous result is good. For both of these, * grab the sock_error() and use that for the completion. */ if (ret == -EBADFD || ret == -EISCONN) ret = sock_error(sock_from_file(req->file)->sk); } if (ret == -ERESTARTSYS) ret = -EINTR; out: if (ret < 0) req_set_fail(req); io_req_msg_cleanup(req, issue_flags); io_req_set_res(req, ret, 0); return IOU_OK; } int io_bind_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_bind *bind = io_kiocb_to_cmd(req, struct io_bind); struct sockaddr __user *uaddr; struct io_async_msghdr *io; if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; uaddr = u64_to_user_ptr(READ_ONCE(sqe->addr)); bind->addr_len = READ_ONCE(sqe->addr2); io = io_msg_alloc_async(req); if (unlikely(!io)) return -ENOMEM; return move_addr_to_kernel(uaddr, bind->addr_len, &io->addr); } int io_bind(struct io_kiocb *req, unsigned int issue_flags) { struct io_bind *bind = io_kiocb_to_cmd(req, struct io_bind); struct io_async_msghdr *io = req->async_data; struct socket *sock; int ret; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; ret = __sys_bind_socket(sock, &io->addr, bind->addr_len); if (ret < 0) req_set_fail(req); io_req_set_res(req, ret, 0); return 0; } int io_listen_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_listen *listen = io_kiocb_to_cmd(req, struct io_listen); if (sqe->addr || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in || sqe->addr2) return -EINVAL; listen->backlog = READ_ONCE(sqe->len); return 0; } int io_listen(struct io_kiocb *req, unsigned int issue_flags) { struct io_listen *listen = io_kiocb_to_cmd(req, struct io_listen); struct socket *sock; int ret; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; ret = __sys_listen_socket(sock, listen->backlog); if (ret < 0) req_set_fail(req); io_req_set_res(req, ret, 0); return 0; } void io_netmsg_cache_free(const void *entry) { struct io_async_msghdr *kmsg = (struct io_async_msghdr *) entry; if (kmsg->free_iov) { kasan_mempool_unpoison_object(kmsg->free_iov, kmsg->free_iov_nr * sizeof(struct iovec)); io_netmsg_iovec_free(kmsg); } kfree(kmsg); } #endif