// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2013 Red Hat Inc. * * Authors: Jérôme Glisse */ /* * Refer to include/linux/hmm.h for information about heterogeneous memory * management or HMM for short. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT) #if IS_ENABLED(CONFIG_HMM_MIRROR) static const struct mmu_notifier_ops hmm_mmu_notifier_ops; /** * hmm_get_or_create - register HMM against an mm (HMM internal) * * @mm: mm struct to attach to * Returns: returns an HMM object, either by referencing the existing * (per-process) object, or by creating a new one. * * This is not intended to be used directly by device drivers. If mm already * has an HMM struct then it get a reference on it and returns it. Otherwise * it allocates an HMM struct, initializes it, associate it with the mm and * returns it. */ static struct hmm *hmm_get_or_create(struct mm_struct *mm) { struct hmm *hmm; lockdep_assert_held_exclusive(&mm->mmap_sem); /* Abuse the page_table_lock to also protect mm->hmm. */ spin_lock(&mm->page_table_lock); hmm = mm->hmm; if (mm->hmm && kref_get_unless_zero(&mm->hmm->kref)) goto out_unlock; spin_unlock(&mm->page_table_lock); hmm = kmalloc(sizeof(*hmm), GFP_KERNEL); if (!hmm) return NULL; init_waitqueue_head(&hmm->wq); INIT_LIST_HEAD(&hmm->mirrors); init_rwsem(&hmm->mirrors_sem); hmm->mmu_notifier.ops = NULL; INIT_LIST_HEAD(&hmm->ranges); mutex_init(&hmm->lock); kref_init(&hmm->kref); hmm->notifiers = 0; hmm->dead = false; hmm->mm = mm; hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops; if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) { kfree(hmm); return NULL; } mmgrab(hmm->mm); /* * We hold the exclusive mmap_sem here so we know that mm->hmm is * still NULL or 0 kref, and is safe to update. */ spin_lock(&mm->page_table_lock); mm->hmm = hmm; out_unlock: spin_unlock(&mm->page_table_lock); return hmm; } static void hmm_free_rcu(struct rcu_head *rcu) { struct hmm *hmm = container_of(rcu, struct hmm, rcu); mmdrop(hmm->mm); kfree(hmm); } static void hmm_free(struct kref *kref) { struct hmm *hmm = container_of(kref, struct hmm, kref); spin_lock(&hmm->mm->page_table_lock); if (hmm->mm->hmm == hmm) hmm->mm->hmm = NULL; spin_unlock(&hmm->mm->page_table_lock); mmu_notifier_unregister_no_release(&hmm->mmu_notifier, hmm->mm); mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu); } static inline void hmm_put(struct hmm *hmm) { kref_put(&hmm->kref, hmm_free); } static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier); struct hmm_mirror *mirror; struct hmm_range *range; /* Bail out if hmm is in the process of being freed */ if (!kref_get_unless_zero(&hmm->kref)) return; /* Report this HMM as dying. */ hmm->dead = true; /* Wake-up everyone waiting on any range. */ mutex_lock(&hmm->lock); list_for_each_entry(range, &hmm->ranges, list) range->valid = false; wake_up_all(&hmm->wq); mutex_unlock(&hmm->lock); down_write(&hmm->mirrors_sem); mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror, list); while (mirror) { list_del_init(&mirror->list); if (mirror->ops->release) { /* * Drop mirrors_sem so the release callback can wait * on any pending work that might itself trigger a * mmu_notifier callback and thus would deadlock with * us. */ up_write(&hmm->mirrors_sem); mirror->ops->release(mirror); down_write(&hmm->mirrors_sem); } mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror, list); } up_write(&hmm->mirrors_sem); hmm_put(hmm); } static int hmm_invalidate_range_start(struct mmu_notifier *mn, const struct mmu_notifier_range *nrange) { struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier); struct hmm_mirror *mirror; struct hmm_update update; struct hmm_range *range; int ret = 0; if (!kref_get_unless_zero(&hmm->kref)) return 0; update.start = nrange->start; update.end = nrange->end; update.event = HMM_UPDATE_INVALIDATE; update.blockable = mmu_notifier_range_blockable(nrange); if (mmu_notifier_range_blockable(nrange)) mutex_lock(&hmm->lock); else if (!mutex_trylock(&hmm->lock)) { ret = -EAGAIN; goto out; } hmm->notifiers++; list_for_each_entry(range, &hmm->ranges, list) { if (update.end < range->start || update.start >= range->end) continue; range->valid = false; } mutex_unlock(&hmm->lock); if (mmu_notifier_range_blockable(nrange)) down_read(&hmm->mirrors_sem); else if (!down_read_trylock(&hmm->mirrors_sem)) { ret = -EAGAIN; goto out; } list_for_each_entry(mirror, &hmm->mirrors, list) { int ret; ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update); if (!update.blockable && ret == -EAGAIN) break; } up_read(&hmm->mirrors_sem); out: hmm_put(hmm); return ret; } static void hmm_invalidate_range_end(struct mmu_notifier *mn, const struct mmu_notifier_range *nrange) { struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier); if (!kref_get_unless_zero(&hmm->kref)) return; mutex_lock(&hmm->lock); hmm->notifiers--; if (!hmm->notifiers) { struct hmm_range *range; list_for_each_entry(range, &hmm->ranges, list) { if (range->valid) continue; range->valid = true; } wake_up_all(&hmm->wq); } mutex_unlock(&hmm->lock); hmm_put(hmm); } static const struct mmu_notifier_ops hmm_mmu_notifier_ops = { .release = hmm_release, .invalidate_range_start = hmm_invalidate_range_start, .invalidate_range_end = hmm_invalidate_range_end, }; /* * hmm_mirror_register() - register a mirror against an mm * * @mirror: new mirror struct to register * @mm: mm to register against * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments * * To start mirroring a process address space, the device driver must register * an HMM mirror struct. * * THE mm->mmap_sem MUST BE HELD IN WRITE MODE ! */ int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm) { /* Sanity check */ if (!mm || !mirror || !mirror->ops) return -EINVAL; mirror->hmm = hmm_get_or_create(mm); if (!mirror->hmm) return -ENOMEM; down_write(&mirror->hmm->mirrors_sem); list_add(&mirror->list, &mirror->hmm->mirrors); up_write(&mirror->hmm->mirrors_sem); return 0; } EXPORT_SYMBOL(hmm_mirror_register); /* * hmm_mirror_unregister() - unregister a mirror * * @mirror: mirror struct to unregister * * Stop mirroring a process address space, and cleanup. */ void hmm_mirror_unregister(struct hmm_mirror *mirror) { struct hmm *hmm = READ_ONCE(mirror->hmm); if (hmm == NULL) return; down_write(&hmm->mirrors_sem); list_del_init(&mirror->list); /* To protect us against double unregister ... */ mirror->hmm = NULL; up_write(&hmm->mirrors_sem); hmm_put(hmm); } EXPORT_SYMBOL(hmm_mirror_unregister); struct hmm_vma_walk { struct hmm_range *range; struct dev_pagemap *pgmap; unsigned long last; bool fault; bool block; }; static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr, bool write_fault, uint64_t *pfn) { unsigned int flags = FAULT_FLAG_REMOTE; struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; vm_fault_t ret; flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY; flags |= write_fault ? FAULT_FLAG_WRITE : 0; ret = handle_mm_fault(vma, addr, flags); if (ret & VM_FAULT_RETRY) return -EAGAIN; if (ret & VM_FAULT_ERROR) { *pfn = range->values[HMM_PFN_ERROR]; return -EFAULT; } return -EBUSY; } static int hmm_pfns_bad(unsigned long addr, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; uint64_t *pfns = range->pfns; unsigned long i; i = (addr - range->start) >> PAGE_SHIFT; for (; addr < end; addr += PAGE_SIZE, i++) pfns[i] = range->values[HMM_PFN_ERROR]; return 0; } /* * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s) * @start: range virtual start address (inclusive) * @end: range virtual end address (exclusive) * @fault: should we fault or not ? * @write_fault: write fault ? * @walk: mm_walk structure * Return: 0 on success, -EBUSY after page fault, or page fault error * * This function will be called whenever pmd_none() or pte_none() returns true, * or whenever there is no page directory covering the virtual address range. */ static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end, bool fault, bool write_fault, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; uint64_t *pfns = range->pfns; unsigned long i, page_size; hmm_vma_walk->last = addr; page_size = hmm_range_page_size(range); i = (addr - range->start) >> range->page_shift; for (; addr < end; addr += page_size, i++) { pfns[i] = range->values[HMM_PFN_NONE]; if (fault || write_fault) { int ret; ret = hmm_vma_do_fault(walk, addr, write_fault, &pfns[i]); if (ret != -EBUSY) return ret; } } return (fault || write_fault) ? -EBUSY : 0; } static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, uint64_t pfns, uint64_t cpu_flags, bool *fault, bool *write_fault) { struct hmm_range *range = hmm_vma_walk->range; if (!hmm_vma_walk->fault) return; /* * So we not only consider the individual per page request we also * consider the default flags requested for the range. The API can * be use in 2 fashions. The first one where the HMM user coalesce * multiple page fault into one request and set flags per pfns for * of those faults. The second one where the HMM user want to pre- * fault a range with specific flags. For the latter one it is a * waste to have the user pre-fill the pfn arrays with a default * flags value. */ pfns = (pfns & range->pfn_flags_mask) | range->default_flags; /* We aren't ask to do anything ... */ if (!(pfns & range->flags[HMM_PFN_VALID])) return; /* If this is device memory than only fault if explicitly requested */ if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) { /* Do we fault on device memory ? */ if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) { *write_fault = pfns & range->flags[HMM_PFN_WRITE]; *fault = true; } return; } /* If CPU page table is not valid then we need to fault */ *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]); /* Need to write fault ? */ if ((pfns & range->flags[HMM_PFN_WRITE]) && !(cpu_flags & range->flags[HMM_PFN_WRITE])) { *write_fault = true; *fault = true; } } static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, const uint64_t *pfns, unsigned long npages, uint64_t cpu_flags, bool *fault, bool *write_fault) { unsigned long i; if (!hmm_vma_walk->fault) { *fault = *write_fault = false; return; } *fault = *write_fault = false; for (i = 0; i < npages; ++i) { hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags, fault, write_fault); if ((*write_fault)) return; } } static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; bool fault, write_fault; unsigned long i, npages; uint64_t *pfns; i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault, &write_fault); return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); } static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd) { if (pmd_protnone(pmd)) return 0; return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud) { if (!pud_present(pud)) return 0; return pud_write(pud) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, unsigned long end, uint64_t *pfns, pmd_t pmd) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; unsigned long pfn, npages, i; bool fault, write_fault; uint64_t cpu_flags; npages = (end - addr) >> PAGE_SHIFT; cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, &fault, &write_fault); if (pmd_protnone(pmd) || fault || write_fault) return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); pfn = pmd_pfn(pmd) + pte_index(addr); for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { if (pmd_devmap(pmd)) { hmm_vma_walk->pgmap = get_dev_pagemap(pfn, hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) return -EBUSY; } pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; } if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } hmm_vma_walk->last = end; return 0; #else /* If THP is not enabled then we should never reach that code ! */ return -EINVAL; #endif } static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte) { if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) return 0; return pte_write(pte) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, unsigned long end, pmd_t *pmdp, pte_t *ptep, uint64_t *pfn) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; bool fault, write_fault; uint64_t cpu_flags; pte_t pte = *ptep; uint64_t orig_pfn = *pfn; *pfn = range->values[HMM_PFN_NONE]; fault = write_fault = false; if (pte_none(pte)) { hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault, &write_fault); if (fault || write_fault) goto fault; return 0; } if (!pte_present(pte)) { swp_entry_t entry = pte_to_swp_entry(pte); if (!non_swap_entry(entry)) { if (fault || write_fault) goto fault; return 0; } /* * This is a special swap entry, ignore migration, use * device and report anything else as error. */ if (is_device_private_entry(entry)) { cpu_flags = range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_DEVICE_PRIVATE]; cpu_flags |= is_write_device_private_entry(entry) ? range->flags[HMM_PFN_WRITE] : 0; hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) goto fault; *pfn = hmm_device_entry_from_pfn(range, swp_offset(entry)); *pfn |= cpu_flags; return 0; } if (is_migration_entry(entry)) { if (fault || write_fault) { pte_unmap(ptep); hmm_vma_walk->last = addr; migration_entry_wait(vma->vm_mm, pmdp, addr); return -EBUSY; } return 0; } /* Report error for everything else */ *pfn = range->values[HMM_PFN_ERROR]; return -EFAULT; } else { cpu_flags = pte_to_hmm_pfn_flags(range, pte); hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); } if (fault || write_fault) goto fault; if (pte_devmap(pte)) { hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte), hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) return -EBUSY; } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) { *pfn = range->values[HMM_PFN_SPECIAL]; return -EFAULT; } *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags; return 0; fault: if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } pte_unmap(ptep); /* Fault any virtual address we were asked to fault */ return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); } static int hmm_vma_walk_pmd(pmd_t *pmdp, unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; uint64_t *pfns = range->pfns; unsigned long addr = start, i; pte_t *ptep; pmd_t pmd; again: pmd = READ_ONCE(*pmdp); if (pmd_none(pmd)) return hmm_vma_walk_hole(start, end, walk); if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB)) return hmm_pfns_bad(start, end, walk); if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { bool fault, write_fault; unsigned long npages; uint64_t *pfns; i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault, &write_fault); if (fault || write_fault) { hmm_vma_walk->last = addr; pmd_migration_entry_wait(vma->vm_mm, pmdp); return -EBUSY; } return 0; } else if (!pmd_present(pmd)) return hmm_pfns_bad(start, end, walk); if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { /* * No need to take pmd_lock here, even if some other threads * is splitting the huge pmd we will get that event through * mmu_notifier callback. * * So just read pmd value and check again its a transparent * huge or device mapping one and compute corresponding pfn * values. */ pmd = pmd_read_atomic(pmdp); barrier(); if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) goto again; i = (addr - range->start) >> PAGE_SHIFT; return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd); } /* * We have handled all the valid case above ie either none, migration, * huge or transparent huge. At this point either it is a valid pmd * entry pointing to pte directory or it is a bad pmd that will not * recover. */ if (pmd_bad(pmd)) return hmm_pfns_bad(start, end, walk); ptep = pte_offset_map(pmdp, addr); i = (addr - range->start) >> PAGE_SHIFT; for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { int r; r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]); if (r) { /* hmm_vma_handle_pte() did unmap pte directory */ hmm_vma_walk->last = addr; return r; } } if (hmm_vma_walk->pgmap) { /* * We do put_dev_pagemap() here and not in hmm_vma_handle_pte() * so that we can leverage get_dev_pagemap() optimization which * will not re-take a reference on a pgmap if we already have * one. */ put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } pte_unmap(ptep - 1); hmm_vma_walk->last = addr; return 0; } static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; unsigned long addr = start, next; pmd_t *pmdp; pud_t pud; int ret; again: pud = READ_ONCE(*pudp); if (pud_none(pud)) return hmm_vma_walk_hole(start, end, walk); if (pud_huge(pud) && pud_devmap(pud)) { unsigned long i, npages, pfn; uint64_t *pfns, cpu_flags; bool fault, write_fault; if (!pud_present(pud)) return hmm_vma_walk_hole(start, end, walk); i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; cpu_flags = pud_to_hmm_pfn_flags(range, pud); hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, &fault, &write_fault); if (fault || write_fault) return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); for (i = 0; i < npages; ++i, ++pfn) { hmm_vma_walk->pgmap = get_dev_pagemap(pfn, hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) return -EBUSY; pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; } if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } hmm_vma_walk->last = end; return 0; } split_huge_pud(walk->vma, pudp, addr); if (pud_none(*pudp)) goto again; pmdp = pmd_offset(pudp, addr); do { next = pmd_addr_end(addr, end); ret = hmm_vma_walk_pmd(pmdp, addr, next, walk); if (ret) return ret; } while (pmdp++, addr = next, addr != end); return 0; } static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, unsigned long start, unsigned long end, struct mm_walk *walk) { #ifdef CONFIG_HUGETLB_PAGE unsigned long addr = start, i, pfn, mask, size, pfn_inc; struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; struct hstate *h = hstate_vma(vma); uint64_t orig_pfn, cpu_flags; bool fault, write_fault; spinlock_t *ptl; pte_t entry; int ret = 0; size = 1UL << huge_page_shift(h); mask = size - 1; if (range->page_shift != PAGE_SHIFT) { /* Make sure we are looking at full page. */ if (start & mask) return -EINVAL; if (end < (start + size)) return -EINVAL; pfn_inc = size >> PAGE_SHIFT; } else { pfn_inc = 1; size = PAGE_SIZE; } ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); entry = huge_ptep_get(pte); i = (start - range->start) >> range->page_shift; orig_pfn = range->pfns[i]; range->pfns[i] = range->values[HMM_PFN_NONE]; cpu_flags = pte_to_hmm_pfn_flags(range, entry); fault = write_fault = false; hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) { ret = -ENOENT; goto unlock; } pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift); for (; addr < end; addr += size, i++, pfn += pfn_inc) range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; hmm_vma_walk->last = end; unlock: spin_unlock(ptl); if (ret == -ENOENT) return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); return ret; #else /* CONFIG_HUGETLB_PAGE */ return -EINVAL; #endif } static void hmm_pfns_clear(struct hmm_range *range, uint64_t *pfns, unsigned long addr, unsigned long end) { for (; addr < end; addr += PAGE_SIZE, pfns++) *pfns = range->values[HMM_PFN_NONE]; } /* * hmm_range_register() - start tracking change to CPU page table over a range * @range: range * @mm: the mm struct for the range of virtual address * @start: start virtual address (inclusive) * @end: end virtual address (exclusive) * @page_shift: expect page shift for the range * Returns 0 on success, -EFAULT if the address space is no longer valid * * Track updates to the CPU page table see include/linux/hmm.h */ int hmm_range_register(struct hmm_range *range, struct hmm_mirror *mirror, unsigned long start, unsigned long end, unsigned page_shift) { unsigned long mask = ((1UL << page_shift) - 1UL); struct hmm *hmm = mirror->hmm; range->valid = false; range->hmm = NULL; if ((start & mask) || (end & mask)) return -EINVAL; if (start >= end) return -EINVAL; range->page_shift = page_shift; range->start = start; range->end = end; /* Check if hmm_mm_destroy() was call. */ if (hmm->mm == NULL || hmm->dead) return -EFAULT; /* Initialize range to track CPU page table updates. */ mutex_lock(&hmm->lock); range->hmm = hmm; kref_get(&hmm->kref); list_add_rcu(&range->list, &hmm->ranges); /* * If there are any concurrent notifiers we have to wait for them for * the range to be valid (see hmm_range_wait_until_valid()). */ if (!hmm->notifiers) range->valid = true; mutex_unlock(&hmm->lock); return 0; } EXPORT_SYMBOL(hmm_range_register); /* * hmm_range_unregister() - stop tracking change to CPU page table over a range * @range: range * * Range struct is used to track updates to the CPU page table after a call to * hmm_range_register(). See include/linux/hmm.h for how to use it. */ void hmm_range_unregister(struct hmm_range *range) { struct hmm *hmm = range->hmm; /* Sanity check this really should not happen. */ if (hmm == NULL || range->end <= range->start) return; mutex_lock(&hmm->lock); list_del_rcu(&range->list); mutex_unlock(&hmm->lock); /* Drop reference taken by hmm_range_register() */ range->valid = false; hmm_put(hmm); range->hmm = NULL; } EXPORT_SYMBOL(hmm_range_unregister); /* * hmm_range_snapshot() - snapshot CPU page table for a range * @range: range * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid * permission (for instance asking for write and range is read only), * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid * vma or it is illegal to access that range), number of valid pages * in range->pfns[] (from range start address). * * This snapshots the CPU page table for a range of virtual addresses. Snapshot * validity is tracked by range struct. See in include/linux/hmm.h for example * on how to use. */ long hmm_range_snapshot(struct hmm_range *range) { const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; unsigned long start = range->start, end; struct hmm_vma_walk hmm_vma_walk; struct hmm *hmm = range->hmm; struct vm_area_struct *vma; struct mm_walk mm_walk; /* Check if hmm_mm_destroy() was call. */ if (hmm->mm == NULL || hmm->dead) return -EFAULT; do { /* If range is no longer valid force retry. */ if (!range->valid) return -EAGAIN; vma = find_vma(hmm->mm, start); if (vma == NULL || (vma->vm_flags & device_vma)) return -EFAULT; if (is_vm_hugetlb_page(vma)) { if (huge_page_shift(hstate_vma(vma)) != range->page_shift && range->page_shift != PAGE_SHIFT) return -EINVAL; } else { if (range->page_shift != PAGE_SHIFT) return -EINVAL; } if (!(vma->vm_flags & VM_READ)) { /* * If vma do not allow read access, then assume that it * does not allow write access, either. HMM does not * support architecture that allow write without read. */ hmm_pfns_clear(range, range->pfns, range->start, range->end); return -EPERM; } range->vma = vma; hmm_vma_walk.pgmap = NULL; hmm_vma_walk.last = start; hmm_vma_walk.fault = false; hmm_vma_walk.range = range; mm_walk.private = &hmm_vma_walk; end = min(range->end, vma->vm_end); mm_walk.vma = vma; mm_walk.mm = vma->vm_mm; mm_walk.pte_entry = NULL; mm_walk.test_walk = NULL; mm_walk.hugetlb_entry = NULL; mm_walk.pud_entry = hmm_vma_walk_pud; mm_walk.pmd_entry = hmm_vma_walk_pmd; mm_walk.pte_hole = hmm_vma_walk_hole; mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry; walk_page_range(start, end, &mm_walk); start = end; } while (start < range->end); return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; } EXPORT_SYMBOL(hmm_range_snapshot); /* * hmm_range_fault() - try to fault some address in a virtual address range * @range: range being faulted * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) * Return: number of valid pages in range->pfns[] (from range start * address). This may be zero. If the return value is negative, * then one of the following values may be returned: * * -EINVAL invalid arguments or mm or virtual address are in an * invalid vma (for instance device file vma). * -ENOMEM: Out of memory. * -EPERM: Invalid permission (for instance asking for write and * range is read only). * -EAGAIN: If you need to retry and mmap_sem was drop. This can only * happens if block argument is false. * -EBUSY: If the the range is being invalidated and you should wait * for invalidation to finish. * -EFAULT: Invalid (ie either no valid vma or it is illegal to access * that range), number of valid pages in range->pfns[] (from * range start address). * * This is similar to a regular CPU page fault except that it will not trigger * any memory migration if the memory being faulted is not accessible by CPUs * and caller does not ask for migration. * * On error, for one virtual address in the range, the function will mark the * corresponding HMM pfn entry with an error flag. */ long hmm_range_fault(struct hmm_range *range, bool block) { const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; unsigned long start = range->start, end; struct hmm_vma_walk hmm_vma_walk; struct hmm *hmm = range->hmm; struct vm_area_struct *vma; struct mm_walk mm_walk; int ret; /* Check if hmm_mm_destroy() was call. */ if (hmm->mm == NULL || hmm->dead) return -EFAULT; do { /* If range is no longer valid force retry. */ if (!range->valid) { up_read(&hmm->mm->mmap_sem); return -EAGAIN; } vma = find_vma(hmm->mm, start); if (vma == NULL || (vma->vm_flags & device_vma)) return -EFAULT; if (is_vm_hugetlb_page(vma)) { if (huge_page_shift(hstate_vma(vma)) != range->page_shift && range->page_shift != PAGE_SHIFT) return -EINVAL; } else { if (range->page_shift != PAGE_SHIFT) return -EINVAL; } if (!(vma->vm_flags & VM_READ)) { /* * If vma do not allow read access, then assume that it * does not allow write access, either. HMM does not * support architecture that allow write without read. */ hmm_pfns_clear(range, range->pfns, range->start, range->end); return -EPERM; } range->vma = vma; hmm_vma_walk.pgmap = NULL; hmm_vma_walk.last = start; hmm_vma_walk.fault = true; hmm_vma_walk.block = block; hmm_vma_walk.range = range; mm_walk.private = &hmm_vma_walk; end = min(range->end, vma->vm_end); mm_walk.vma = vma; mm_walk.mm = vma->vm_mm; mm_walk.pte_entry = NULL; mm_walk.test_walk = NULL; mm_walk.hugetlb_entry = NULL; mm_walk.pud_entry = hmm_vma_walk_pud; mm_walk.pmd_entry = hmm_vma_walk_pmd; mm_walk.pte_hole = hmm_vma_walk_hole; mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry; do { ret = walk_page_range(start, end, &mm_walk); start = hmm_vma_walk.last; /* Keep trying while the range is valid. */ } while (ret == -EBUSY && range->valid); if (ret) { unsigned long i; i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last, range->end); return ret; } start = end; } while (start < range->end); return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; } EXPORT_SYMBOL(hmm_range_fault); /** * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one. * @range: range being faulted * @device: device against to dma map page to * @daddrs: dma address of mapped pages * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been * drop and you need to try again, some other error value otherwise * * Note same usage pattern as hmm_range_fault(). */ long hmm_range_dma_map(struct hmm_range *range, struct device *device, dma_addr_t *daddrs, bool block) { unsigned long i, npages, mapped; long ret; ret = hmm_range_fault(range, block); if (ret <= 0) return ret ? ret : -EBUSY; npages = (range->end - range->start) >> PAGE_SHIFT; for (i = 0, mapped = 0; i < npages; ++i) { enum dma_data_direction dir = DMA_TO_DEVICE; struct page *page; /* * FIXME need to update DMA API to provide invalid DMA address * value instead of a function to test dma address value. This * would remove lot of dumb code duplicated accross many arch. * * For now setting it to 0 here is good enough as the pfns[] * value is what is use to check what is valid and what isn't. */ daddrs[i] = 0; page = hmm_device_entry_to_page(range, range->pfns[i]); if (page == NULL) continue; /* Check if range is being invalidated */ if (!range->valid) { ret = -EBUSY; goto unmap; } /* If it is read and write than map bi-directional. */ if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) dir = DMA_BIDIRECTIONAL; daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir); if (dma_mapping_error(device, daddrs[i])) { ret = -EFAULT; goto unmap; } mapped++; } return mapped; unmap: for (npages = i, i = 0; (i < npages) && mapped; ++i) { enum dma_data_direction dir = DMA_TO_DEVICE; struct page *page; page = hmm_device_entry_to_page(range, range->pfns[i]); if (page == NULL) continue; if (dma_mapping_error(device, daddrs[i])) continue; /* If it is read and write than map bi-directional. */ if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) dir = DMA_BIDIRECTIONAL; dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir); mapped--; } return ret; } EXPORT_SYMBOL(hmm_range_dma_map); /** * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map() * @range: range being unmapped * @vma: the vma against which the range (optional) * @device: device against which dma map was done * @daddrs: dma address of mapped pages * @dirty: dirty page if it had the write flag set * Return: number of page unmapped on success, -EINVAL otherwise * * Note that caller MUST abide by mmu notifier or use HMM mirror and abide * to the sync_cpu_device_pagetables() callback so that it is safe here to * call set_page_dirty(). Caller must also take appropriate locks to avoid * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress. */ long hmm_range_dma_unmap(struct hmm_range *range, struct vm_area_struct *vma, struct device *device, dma_addr_t *daddrs, bool dirty) { unsigned long i, npages; long cpages = 0; /* Sanity check. */ if (range->end <= range->start) return -EINVAL; if (!daddrs) return -EINVAL; if (!range->pfns) return -EINVAL; npages = (range->end - range->start) >> PAGE_SHIFT; for (i = 0; i < npages; ++i) { enum dma_data_direction dir = DMA_TO_DEVICE; struct page *page; page = hmm_device_entry_to_page(range, range->pfns[i]); if (page == NULL) continue; /* If it is read and write than map bi-directional. */ if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) { dir = DMA_BIDIRECTIONAL; /* * See comments in function description on why it is * safe here to call set_page_dirty() */ if (dirty) set_page_dirty(page); } /* Unmap and clear pfns/dma address */ dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir); range->pfns[i] = range->values[HMM_PFN_NONE]; /* FIXME see comments in hmm_vma_dma_map() */ daddrs[i] = 0; cpages++; } return cpages; } EXPORT_SYMBOL(hmm_range_dma_unmap); #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */ #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma, unsigned long addr) { struct page *page; page = alloc_page_vma(GFP_HIGHUSER, vma, addr); if (!page) return NULL; lock_page(page); return page; } EXPORT_SYMBOL(hmm_vma_alloc_locked_page); static void hmm_devmem_ref_release(struct percpu_ref *ref) { struct hmm_devmem *devmem; devmem = container_of(ref, struct hmm_devmem, ref); complete(&devmem->completion); } static void hmm_devmem_ref_exit(void *data) { struct percpu_ref *ref = data; struct hmm_devmem *devmem; devmem = container_of(ref, struct hmm_devmem, ref); wait_for_completion(&devmem->completion); percpu_ref_exit(ref); } static void hmm_devmem_ref_kill(struct percpu_ref *ref) { percpu_ref_kill(ref); } static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma, unsigned long addr, const struct page *page, unsigned int flags, pmd_t *pmdp) { struct hmm_devmem *devmem = page->pgmap->data; return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp); } static void hmm_devmem_free(struct page *page, void *data) { struct hmm_devmem *devmem = data; page->mapping = NULL; devmem->ops->free(devmem, page); } /* * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory * * @ops: memory event device driver callback (see struct hmm_devmem_ops) * @device: device struct to bind the resource too * @size: size in bytes of the device memory to add * Return: pointer to new hmm_devmem struct ERR_PTR otherwise * * This function first finds an empty range of physical address big enough to * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which * in turn allocates struct pages. It does not do anything beyond that; all * events affecting the memory will go through the various callbacks provided * by hmm_devmem_ops struct. * * Device driver should call this function during device initialization and * is then responsible of memory management. HMM only provides helpers. */ struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops, struct device *device, unsigned long size) { struct hmm_devmem *devmem; resource_size_t addr; void *result; int ret; dev_pagemap_get_ops(); devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL); if (!devmem) return ERR_PTR(-ENOMEM); init_completion(&devmem->completion); devmem->pfn_first = -1UL; devmem->pfn_last = -1UL; devmem->resource = NULL; devmem->device = device; devmem->ops = ops; ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 0, GFP_KERNEL); if (ret) return ERR_PTR(ret); ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref); if (ret) return ERR_PTR(ret); size = ALIGN(size, PA_SECTION_SIZE); addr = min((unsigned long)iomem_resource.end, (1UL << MAX_PHYSMEM_BITS) - 1); addr = addr - size + 1UL; /* * FIXME add a new helper to quickly walk resource tree and find free * range * * FIXME what about ioport_resource resource ? */ for (; addr > size && addr >= iomem_resource.start; addr -= size) { ret = region_intersects(addr, size, 0, IORES_DESC_NONE); if (ret != REGION_DISJOINT) continue; devmem->resource = devm_request_mem_region(device, addr, size, dev_name(device)); if (!devmem->resource) return ERR_PTR(-ENOMEM); break; } if (!devmem->resource) return ERR_PTR(-ERANGE); devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; devmem->pfn_last = devmem->pfn_first + (resource_size(devmem->resource) >> PAGE_SHIFT); devmem->page_fault = hmm_devmem_fault; devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; devmem->pagemap.res = *devmem->resource; devmem->pagemap.page_free = hmm_devmem_free; devmem->pagemap.altmap_valid = false; devmem->pagemap.ref = &devmem->ref; devmem->pagemap.data = devmem; devmem->pagemap.kill = hmm_devmem_ref_kill; result = devm_memremap_pages(devmem->device, &devmem->pagemap); if (IS_ERR(result)) return result; return devmem; } EXPORT_SYMBOL_GPL(hmm_devmem_add); struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops, struct device *device, struct resource *res) { struct hmm_devmem *devmem; void *result; int ret; if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY) return ERR_PTR(-EINVAL); dev_pagemap_get_ops(); devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL); if (!devmem) return ERR_PTR(-ENOMEM); init_completion(&devmem->completion); devmem->pfn_first = -1UL; devmem->pfn_last = -1UL; devmem->resource = res; devmem->device = device; devmem->ops = ops; ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 0, GFP_KERNEL); if (ret) return ERR_PTR(ret); ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref); if (ret) return ERR_PTR(ret); devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; devmem->pfn_last = devmem->pfn_first + (resource_size(devmem->resource) >> PAGE_SHIFT); devmem->page_fault = hmm_devmem_fault; devmem->pagemap.type = MEMORY_DEVICE_PUBLIC; devmem->pagemap.res = *devmem->resource; devmem->pagemap.page_free = hmm_devmem_free; devmem->pagemap.altmap_valid = false; devmem->pagemap.ref = &devmem->ref; devmem->pagemap.data = devmem; devmem->pagemap.kill = hmm_devmem_ref_kill; result = devm_memremap_pages(devmem->device, &devmem->pagemap); if (IS_ERR(result)) return result; return devmem; } EXPORT_SYMBOL_GPL(hmm_devmem_add_resource); /* * A device driver that wants to handle multiple devices memory through a * single fake device can use hmm_device to do so. This is purely a helper * and it is not needed to make use of any HMM functionality. */ #define HMM_DEVICE_MAX 256 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX); static DEFINE_SPINLOCK(hmm_device_lock); static struct class *hmm_device_class; static dev_t hmm_device_devt; static void hmm_device_release(struct device *device) { struct hmm_device *hmm_device; hmm_device = container_of(device, struct hmm_device, device); spin_lock(&hmm_device_lock); clear_bit(hmm_device->minor, hmm_device_mask); spin_unlock(&hmm_device_lock); kfree(hmm_device); } struct hmm_device *hmm_device_new(void *drvdata) { struct hmm_device *hmm_device; hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL); if (!hmm_device) return ERR_PTR(-ENOMEM); spin_lock(&hmm_device_lock); hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX); if (hmm_device->minor >= HMM_DEVICE_MAX) { spin_unlock(&hmm_device_lock); kfree(hmm_device); return ERR_PTR(-EBUSY); } set_bit(hmm_device->minor, hmm_device_mask); spin_unlock(&hmm_device_lock); dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor); hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt), hmm_device->minor); hmm_device->device.release = hmm_device_release; dev_set_drvdata(&hmm_device->device, drvdata); hmm_device->device.class = hmm_device_class; device_initialize(&hmm_device->device); return hmm_device; } EXPORT_SYMBOL(hmm_device_new); void hmm_device_put(struct hmm_device *hmm_device) { put_device(&hmm_device->device); } EXPORT_SYMBOL(hmm_device_put); static int __init hmm_init(void) { int ret; ret = alloc_chrdev_region(&hmm_device_devt, 0, HMM_DEVICE_MAX, "hmm_device"); if (ret) return ret; hmm_device_class = class_create(THIS_MODULE, "hmm_device"); if (IS_ERR(hmm_device_class)) { unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX); return PTR_ERR(hmm_device_class); } return 0; } device_initcall(hmm_init); #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */