// SPDX-License-Identifier: GPL-2.0 /* * MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler, * for the blk-mq scheduling framework * * Copyright (C) 2016 Jens Axboe */ #include #include #include #include #include #include #include #include #include #include #include #include "elevator.h" #include "blk.h" #include "blk-mq.h" #include "blk-mq-debugfs.h" #include "blk-mq-sched.h" /* * See Documentation/block/deadline-iosched.rst */ static const int read_expire = HZ / 2; /* max time before a read is submitted. */ static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */ /* * Time after which to dispatch lower priority requests even if higher * priority requests are pending. */ static const int prio_aging_expire = 10 * HZ; static const int writes_starved = 2; /* max times reads can starve a write */ static const int fifo_batch = 16; /* # of sequential requests treated as one by the above parameters. For throughput. */ enum dd_data_dir { DD_READ = READ, DD_WRITE = WRITE, }; enum { DD_DIR_COUNT = 2 }; enum dd_prio { DD_RT_PRIO = 0, DD_BE_PRIO = 1, DD_IDLE_PRIO = 2, DD_PRIO_MAX = 2, }; enum { DD_PRIO_COUNT = 3 }; /* * I/O statistics per I/O priority. It is fine if these counters overflow. * What matters is that these counters are at least as wide as * log2(max_outstanding_requests). */ struct io_stats_per_prio { uint32_t inserted; uint32_t merged; uint32_t dispatched; atomic_t completed; }; /* * Deadline scheduler data per I/O priority (enum dd_prio). Requests are * present on both sort_list[] and fifo_list[]. */ struct dd_per_prio { struct list_head dispatch; struct rb_root sort_list[DD_DIR_COUNT]; struct list_head fifo_list[DD_DIR_COUNT]; /* Next request in FIFO order. Read, write or both are NULL. */ struct request *next_rq[DD_DIR_COUNT]; struct io_stats_per_prio stats; }; struct deadline_data { /* * run time data */ struct dd_per_prio per_prio[DD_PRIO_COUNT]; /* Data direction of latest dispatched request. */ enum dd_data_dir last_dir; unsigned int batching; /* number of sequential requests made */ unsigned int starved; /* times reads have starved writes */ /* * settings that change how the i/o scheduler behaves */ int fifo_expire[DD_DIR_COUNT]; int fifo_batch; int writes_starved; int front_merges; u32 async_depth; int prio_aging_expire; spinlock_t lock; spinlock_t zone_lock; }; /* Maps an I/O priority class to a deadline scheduler priority. */ static const enum dd_prio ioprio_class_to_prio[] = { [IOPRIO_CLASS_NONE] = DD_BE_PRIO, [IOPRIO_CLASS_RT] = DD_RT_PRIO, [IOPRIO_CLASS_BE] = DD_BE_PRIO, [IOPRIO_CLASS_IDLE] = DD_IDLE_PRIO, }; static inline struct rb_root * deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq) { return &per_prio->sort_list[rq_data_dir(rq)]; } /* * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a * request. */ static u8 dd_rq_ioclass(struct request *rq) { return IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); } /* * get the request before `rq' in sector-sorted order */ static inline struct request * deadline_earlier_request(struct request *rq) { struct rb_node *node = rb_prev(&rq->rb_node); if (node) return rb_entry_rq(node); return NULL; } /* * get the request after `rq' in sector-sorted order */ static inline struct request * deadline_latter_request(struct request *rq) { struct rb_node *node = rb_next(&rq->rb_node); if (node) return rb_entry_rq(node); return NULL; } static void deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq) { struct rb_root *root = deadline_rb_root(per_prio, rq); elv_rb_add(root, rq); } static inline void deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq) { const enum dd_data_dir data_dir = rq_data_dir(rq); if (per_prio->next_rq[data_dir] == rq) per_prio->next_rq[data_dir] = deadline_latter_request(rq); elv_rb_del(deadline_rb_root(per_prio, rq), rq); } /* * remove rq from rbtree and fifo. */ static void deadline_remove_request(struct request_queue *q, struct dd_per_prio *per_prio, struct request *rq) { list_del_init(&rq->queuelist); /* * We might not be on the rbtree, if we are doing an insert merge */ if (!RB_EMPTY_NODE(&rq->rb_node)) deadline_del_rq_rb(per_prio, rq); elv_rqhash_del(q, rq); if (q->last_merge == rq) q->last_merge = NULL; } static void dd_request_merged(struct request_queue *q, struct request *req, enum elv_merge type) { struct deadline_data *dd = q->elevator->elevator_data; const u8 ioprio_class = dd_rq_ioclass(req); const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; struct dd_per_prio *per_prio = &dd->per_prio[prio]; /* * if the merge was a front merge, we need to reposition request */ if (type == ELEVATOR_FRONT_MERGE) { elv_rb_del(deadline_rb_root(per_prio, req), req); deadline_add_rq_rb(per_prio, req); } } /* * Callback function that is invoked after @next has been merged into @req. */ static void dd_merged_requests(struct request_queue *q, struct request *req, struct request *next) { struct deadline_data *dd = q->elevator->elevator_data; const u8 ioprio_class = dd_rq_ioclass(next); const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; lockdep_assert_held(&dd->lock); dd->per_prio[prio].stats.merged++; /* * if next expires before rq, assign its expire time to rq * and move into next position (next will be deleted) in fifo */ if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) { if (time_before((unsigned long)next->fifo_time, (unsigned long)req->fifo_time)) { list_move(&req->queuelist, &next->queuelist); req->fifo_time = next->fifo_time; } } /* * kill knowledge of next, this one is a goner */ deadline_remove_request(q, &dd->per_prio[prio], next); } /* * move an entry to dispatch queue */ static void deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio, struct request *rq) { const enum dd_data_dir data_dir = rq_data_dir(rq); per_prio->next_rq[data_dir] = deadline_latter_request(rq); /* * take it off the sort and fifo list */ deadline_remove_request(rq->q, per_prio, rq); } /* Number of requests queued for a given priority level. */ static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio) { const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats; lockdep_assert_held(&dd->lock); return stats->inserted - atomic_read(&stats->completed); } /* * deadline_check_fifo returns true if and only if there are expired requests * in the FIFO list. Requires !list_empty(&dd->fifo_list[data_dir]). */ static inline bool deadline_check_fifo(struct dd_per_prio *per_prio, enum dd_data_dir data_dir) { struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next); return time_is_before_eq_jiffies((unsigned long)rq->fifo_time); } /* * Check if rq has a sequential request preceding it. */ static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq) { struct request *prev = deadline_earlier_request(rq); if (!prev) return false; return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq); } /* * Skip all write requests that are sequential from @rq, even if we cross * a zone boundary. */ static struct request *deadline_skip_seq_writes(struct deadline_data *dd, struct request *rq) { sector_t pos = blk_rq_pos(rq); do { pos += blk_rq_sectors(rq); rq = deadline_latter_request(rq); } while (rq && blk_rq_pos(rq) == pos); return rq; } /* * For the specified data direction, return the next request to * dispatch using arrival ordered lists. */ static struct request * deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio, enum dd_data_dir data_dir) { struct request *rq; unsigned long flags; if (list_empty(&per_prio->fifo_list[data_dir])) return NULL; rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next); if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q)) return rq; /* * Look for a write request that can be dispatched, that is one with * an unlocked target zone. For some HDDs, breaking a sequential * write stream can lead to lower throughput, so make sure to preserve * sequential write streams, even if that stream crosses into the next * zones and these zones are unlocked. */ spin_lock_irqsave(&dd->zone_lock, flags); list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) { if (blk_req_can_dispatch_to_zone(rq) && (blk_queue_nonrot(rq->q) || !deadline_is_seq_write(dd, rq))) goto out; } rq = NULL; out: spin_unlock_irqrestore(&dd->zone_lock, flags); return rq; } /* * For the specified data direction, return the next request to * dispatch using sector position sorted lists. */ static struct request * deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio, enum dd_data_dir data_dir) { struct request *rq; unsigned long flags; rq = per_prio->next_rq[data_dir]; if (!rq) return NULL; if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q)) return rq; /* * Look for a write request that can be dispatched, that is one with * an unlocked target zone. For some HDDs, breaking a sequential * write stream can lead to lower throughput, so make sure to preserve * sequential write streams, even if that stream crosses into the next * zones and these zones are unlocked. */ spin_lock_irqsave(&dd->zone_lock, flags); while (rq) { if (blk_req_can_dispatch_to_zone(rq)) break; if (blk_queue_nonrot(rq->q)) rq = deadline_latter_request(rq); else rq = deadline_skip_seq_writes(dd, rq); } spin_unlock_irqrestore(&dd->zone_lock, flags); return rq; } /* * Returns true if and only if @rq started after @latest_start where * @latest_start is in jiffies. */ static bool started_after(struct deadline_data *dd, struct request *rq, unsigned long latest_start) { unsigned long start_time = (unsigned long)rq->fifo_time; start_time -= dd->fifo_expire[rq_data_dir(rq)]; return time_after(start_time, latest_start); } /* * deadline_dispatch_requests selects the best request according to * read/write expire, fifo_batch, etc and with a start time <= @latest_start. */ static struct request *__dd_dispatch_request(struct deadline_data *dd, struct dd_per_prio *per_prio, unsigned long latest_start) { struct request *rq, *next_rq; enum dd_data_dir data_dir; enum dd_prio prio; u8 ioprio_class; lockdep_assert_held(&dd->lock); if (!list_empty(&per_prio->dispatch)) { rq = list_first_entry(&per_prio->dispatch, struct request, queuelist); if (started_after(dd, rq, latest_start)) return NULL; list_del_init(&rq->queuelist); goto done; } /* * batches are currently reads XOR writes */ rq = deadline_next_request(dd, per_prio, dd->last_dir); if (rq && dd->batching < dd->fifo_batch) /* we have a next request and are still entitled to batch */ goto dispatch_request; /* * at this point we are not running a batch. select the appropriate * data direction (read / write) */ if (!list_empty(&per_prio->fifo_list[DD_READ])) { BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ])); if (deadline_fifo_request(dd, per_prio, DD_WRITE) && (dd->starved++ >= dd->writes_starved)) goto dispatch_writes; data_dir = DD_READ; goto dispatch_find_request; } /* * there are either no reads or writes have been starved */ if (!list_empty(&per_prio->fifo_list[DD_WRITE])) { dispatch_writes: BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE])); dd->starved = 0; data_dir = DD_WRITE; goto dispatch_find_request; } return NULL; dispatch_find_request: /* * we are not running a batch, find best request for selected data_dir */ next_rq = deadline_next_request(dd, per_prio, data_dir); if (deadline_check_fifo(per_prio, data_dir) || !next_rq) { /* * A deadline has expired, the last request was in the other * direction, or we have run out of higher-sectored requests. * Start again from the request with the earliest expiry time. */ rq = deadline_fifo_request(dd, per_prio, data_dir); } else { /* * The last req was the same dir and we have a next request in * sort order. No expired requests so continue on from here. */ rq = next_rq; } /* * For a zoned block device, if we only have writes queued and none of * them can be dispatched, rq will be NULL. */ if (!rq) return NULL; dd->last_dir = data_dir; dd->batching = 0; dispatch_request: if (started_after(dd, rq, latest_start)) return NULL; /* * rq is the selected appropriate request. */ dd->batching++; deadline_move_request(dd, per_prio, rq); done: ioprio_class = dd_rq_ioclass(rq); prio = ioprio_class_to_prio[ioprio_class]; dd->per_prio[prio].stats.dispatched++; /* * If the request needs its target zone locked, do it. */ blk_req_zone_write_lock(rq); rq->rq_flags |= RQF_STARTED; return rq; } /* * Check whether there are any requests with priority other than DD_RT_PRIO * that were inserted more than prio_aging_expire jiffies ago. */ static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd, unsigned long now) { struct request *rq; enum dd_prio prio; int prio_cnt; lockdep_assert_held(&dd->lock); prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) + !!dd_queued(dd, DD_IDLE_PRIO); if (prio_cnt < 2) return NULL; for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) { rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now - dd->prio_aging_expire); if (rq) return rq; } return NULL; } /* * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests(). * * One confusing aspect here is that we get called for a specific * hardware queue, but we may return a request that is for a * different hardware queue. This is because mq-deadline has shared * state for all hardware queues, in terms of sorting, FIFOs, etc. */ static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx) { struct deadline_data *dd = hctx->queue->elevator->elevator_data; const unsigned long now = jiffies; struct request *rq; enum dd_prio prio; spin_lock(&dd->lock); rq = dd_dispatch_prio_aged_requests(dd, now); if (rq) goto unlock; /* * Next, dispatch requests in priority order. Ignore lower priority * requests if any higher priority requests are pending. */ for (prio = 0; prio <= DD_PRIO_MAX; prio++) { rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now); if (rq || dd_queued(dd, prio)) break; } unlock: spin_unlock(&dd->lock); return rq; } /* * Called by __blk_mq_alloc_request(). The shallow_depth value set by this * function is used by __blk_mq_get_tag(). */ static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data) { struct deadline_data *dd = data->q->elevator->elevator_data; /* Do not throttle synchronous reads. */ if (op_is_sync(opf) && !op_is_write(opf)) return; /* * Throttle asynchronous requests and writes such that these requests * do not block the allocation of synchronous requests. */ data->shallow_depth = dd->async_depth; } /* Called by blk_mq_update_nr_requests(). */ static void dd_depth_updated(struct blk_mq_hw_ctx *hctx) { struct request_queue *q = hctx->queue; struct deadline_data *dd = q->elevator->elevator_data; struct blk_mq_tags *tags = hctx->sched_tags; dd->async_depth = max(1UL, 3 * q->nr_requests / 4); sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth); } /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */ static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { dd_depth_updated(hctx); return 0; } static void dd_exit_sched(struct elevator_queue *e) { struct deadline_data *dd = e->elevator_data; enum dd_prio prio; for (prio = 0; prio <= DD_PRIO_MAX; prio++) { struct dd_per_prio *per_prio = &dd->per_prio[prio]; const struct io_stats_per_prio *stats = &per_prio->stats; uint32_t queued; WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ])); WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE])); spin_lock(&dd->lock); queued = dd_queued(dd, prio); spin_unlock(&dd->lock); WARN_ONCE(queued != 0, "statistics for priority %d: i %u m %u d %u c %u\n", prio, stats->inserted, stats->merged, stats->dispatched, atomic_read(&stats->completed)); } kfree(dd); } /* * initialize elevator private data (deadline_data). */ static int dd_init_sched(struct request_queue *q, struct elevator_type *e) { struct deadline_data *dd; struct elevator_queue *eq; enum dd_prio prio; int ret = -ENOMEM; eq = elevator_alloc(q, e); if (!eq) return ret; dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node); if (!dd) goto put_eq; eq->elevator_data = dd; for (prio = 0; prio <= DD_PRIO_MAX; prio++) { struct dd_per_prio *per_prio = &dd->per_prio[prio]; INIT_LIST_HEAD(&per_prio->dispatch); INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]); INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]); per_prio->sort_list[DD_READ] = RB_ROOT; per_prio->sort_list[DD_WRITE] = RB_ROOT; } dd->fifo_expire[DD_READ] = read_expire; dd->fifo_expire[DD_WRITE] = write_expire; dd->writes_starved = writes_starved; dd->front_merges = 1; dd->last_dir = DD_WRITE; dd->fifo_batch = fifo_batch; dd->prio_aging_expire = prio_aging_expire; spin_lock_init(&dd->lock); spin_lock_init(&dd->zone_lock); /* We dispatch from request queue wide instead of hw queue */ blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q); q->elevator = eq; return 0; put_eq: kobject_put(&eq->kobj); return ret; } /* * Try to merge @bio into an existing request. If @bio has been merged into * an existing request, store the pointer to that request into *@rq. */ static int dd_request_merge(struct request_queue *q, struct request **rq, struct bio *bio) { struct deadline_data *dd = q->elevator->elevator_data; const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio); const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; struct dd_per_prio *per_prio = &dd->per_prio[prio]; sector_t sector = bio_end_sector(bio); struct request *__rq; if (!dd->front_merges) return ELEVATOR_NO_MERGE; __rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector); if (__rq) { BUG_ON(sector != blk_rq_pos(__rq)); if (elv_bio_merge_ok(__rq, bio)) { *rq = __rq; if (blk_discard_mergable(__rq)) return ELEVATOR_DISCARD_MERGE; return ELEVATOR_FRONT_MERGE; } } return ELEVATOR_NO_MERGE; } /* * Attempt to merge a bio into an existing request. This function is called * before @bio is associated with a request. */ static bool dd_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs) { struct deadline_data *dd = q->elevator->elevator_data; struct request *free = NULL; bool ret; spin_lock(&dd->lock); ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free); spin_unlock(&dd->lock); if (free) blk_mq_free_request(free); return ret; } /* * add rq to rbtree and fifo */ static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, blk_insert_t flags, struct list_head *free) { struct request_queue *q = hctx->queue; struct deadline_data *dd = q->elevator->elevator_data; const enum dd_data_dir data_dir = rq_data_dir(rq); u16 ioprio = req_get_ioprio(rq); u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio); struct dd_per_prio *per_prio; enum dd_prio prio; lockdep_assert_held(&dd->lock); /* * This may be a requeue of a write request that has locked its * target zone. If it is the case, this releases the zone lock. */ blk_req_zone_write_unlock(rq); prio = ioprio_class_to_prio[ioprio_class]; per_prio = &dd->per_prio[prio]; if (!rq->elv.priv[0]) { per_prio->stats.inserted++; rq->elv.priv[0] = (void *)(uintptr_t)1; } if (blk_mq_sched_try_insert_merge(q, rq, free)) return; trace_block_rq_insert(rq); if (flags & BLK_MQ_INSERT_AT_HEAD) { list_add(&rq->queuelist, &per_prio->dispatch); rq->fifo_time = jiffies; } else { deadline_add_rq_rb(per_prio, rq); if (rq_mergeable(rq)) { elv_rqhash_add(q, rq); if (!q->last_merge) q->last_merge = rq; } /* * set expire time and add to fifo list */ rq->fifo_time = jiffies + dd->fifo_expire[data_dir]; list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]); } } /* * Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list(). */ static void dd_insert_requests(struct blk_mq_hw_ctx *hctx, struct list_head *list, blk_insert_t flags) { struct request_queue *q = hctx->queue; struct deadline_data *dd = q->elevator->elevator_data; LIST_HEAD(free); spin_lock(&dd->lock); while (!list_empty(list)) { struct request *rq; rq = list_first_entry(list, struct request, queuelist); list_del_init(&rq->queuelist); dd_insert_request(hctx, rq, flags, &free); } spin_unlock(&dd->lock); blk_mq_free_requests(&free); } /* Callback from inside blk_mq_rq_ctx_init(). */ static void dd_prepare_request(struct request *rq) { rq->elv.priv[0] = NULL; } static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx) { struct deadline_data *dd = hctx->queue->elevator->elevator_data; enum dd_prio p; for (p = 0; p <= DD_PRIO_MAX; p++) if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE])) return true; return false; } /* * Callback from inside blk_mq_free_request(). * * For zoned block devices, write unlock the target zone of * completed write requests. Do this while holding the zone lock * spinlock so that the zone is never unlocked while deadline_fifo_request() * or deadline_next_request() are executing. This function is called for * all requests, whether or not these requests complete successfully. * * For a zoned block device, __dd_dispatch_request() may have stopped * dispatching requests if all the queued requests are write requests directed * at zones that are already locked due to on-going write requests. To ensure * write request dispatch progress in this case, mark the queue as needing a * restart to ensure that the queue is run again after completion of the * request and zones being unlocked. */ static void dd_finish_request(struct request *rq) { struct request_queue *q = rq->q; struct deadline_data *dd = q->elevator->elevator_data; const u8 ioprio_class = dd_rq_ioclass(rq); const enum dd_prio prio = ioprio_class_to_prio[ioprio_class]; struct dd_per_prio *per_prio = &dd->per_prio[prio]; /* * The block layer core may call dd_finish_request() without having * called dd_insert_requests(). Skip requests that bypassed I/O * scheduling. See also blk_mq_request_bypass_insert(). */ if (!rq->elv.priv[0]) return; atomic_inc(&per_prio->stats.completed); if (blk_queue_is_zoned(q)) { unsigned long flags; spin_lock_irqsave(&dd->zone_lock, flags); blk_req_zone_write_unlock(rq); spin_unlock_irqrestore(&dd->zone_lock, flags); if (dd_has_write_work(rq->mq_hctx)) blk_mq_sched_mark_restart_hctx(rq->mq_hctx); } } static bool dd_has_work_for_prio(struct dd_per_prio *per_prio) { return !list_empty_careful(&per_prio->dispatch) || !list_empty_careful(&per_prio->fifo_list[DD_READ]) || !list_empty_careful(&per_prio->fifo_list[DD_WRITE]); } static bool dd_has_work(struct blk_mq_hw_ctx *hctx) { struct deadline_data *dd = hctx->queue->elevator->elevator_data; enum dd_prio prio; for (prio = 0; prio <= DD_PRIO_MAX; prio++) if (dd_has_work_for_prio(&dd->per_prio[prio])) return true; return false; } /* * sysfs parts below */ #define SHOW_INT(__FUNC, __VAR) \ static ssize_t __FUNC(struct elevator_queue *e, char *page) \ { \ struct deadline_data *dd = e->elevator_data; \ \ return sysfs_emit(page, "%d\n", __VAR); \ } #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR)) SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]); SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]); SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire); SHOW_INT(deadline_writes_starved_show, dd->writes_starved); SHOW_INT(deadline_front_merges_show, dd->front_merges); SHOW_INT(deadline_async_depth_show, dd->async_depth); SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch); #undef SHOW_INT #undef SHOW_JIFFIES #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ { \ struct deadline_data *dd = e->elevator_data; \ int __data, __ret; \ \ __ret = kstrtoint(page, 0, &__data); \ if (__ret < 0) \ return __ret; \ if (__data < (MIN)) \ __data = (MIN); \ else if (__data > (MAX)) \ __data = (MAX); \ *(__PTR) = __CONV(__data); \ return count; \ } #define STORE_INT(__FUNC, __PTR, MIN, MAX) \ STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, ) #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX) \ STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies) STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX); STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX); STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX); STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX); STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1); STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX); STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX); #undef STORE_FUNCTION #undef STORE_INT #undef STORE_JIFFIES #define DD_ATTR(name) \ __ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store) static struct elv_fs_entry deadline_attrs[] = { DD_ATTR(read_expire), DD_ATTR(write_expire), DD_ATTR(writes_starved), DD_ATTR(front_merges), DD_ATTR(async_depth), DD_ATTR(fifo_batch), DD_ATTR(prio_aging_expire), __ATTR_NULL }; #ifdef CONFIG_BLK_DEBUG_FS #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name) \ static void *deadline_##name##_fifo_start(struct seq_file *m, \ loff_t *pos) \ __acquires(&dd->lock) \ { \ struct request_queue *q = m->private; \ struct deadline_data *dd = q->elevator->elevator_data; \ struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ \ spin_lock(&dd->lock); \ return seq_list_start(&per_prio->fifo_list[data_dir], *pos); \ } \ \ static void *deadline_##name##_fifo_next(struct seq_file *m, void *v, \ loff_t *pos) \ { \ struct request_queue *q = m->private; \ struct deadline_data *dd = q->elevator->elevator_data; \ struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ \ return seq_list_next(v, &per_prio->fifo_list[data_dir], pos); \ } \ \ static void deadline_##name##_fifo_stop(struct seq_file *m, void *v) \ __releases(&dd->lock) \ { \ struct request_queue *q = m->private; \ struct deadline_data *dd = q->elevator->elevator_data; \ \ spin_unlock(&dd->lock); \ } \ \ static const struct seq_operations deadline_##name##_fifo_seq_ops = { \ .start = deadline_##name##_fifo_start, \ .next = deadline_##name##_fifo_next, \ .stop = deadline_##name##_fifo_stop, \ .show = blk_mq_debugfs_rq_show, \ }; \ \ static int deadline_##name##_next_rq_show(void *data, \ struct seq_file *m) \ { \ struct request_queue *q = data; \ struct deadline_data *dd = q->elevator->elevator_data; \ struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ struct request *rq = per_prio->next_rq[data_dir]; \ \ if (rq) \ __blk_mq_debugfs_rq_show(m, rq); \ return 0; \ } DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0); DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0); DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1); DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1); DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2); DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2); #undef DEADLINE_DEBUGFS_DDIR_ATTRS static int deadline_batching_show(void *data, struct seq_file *m) { struct request_queue *q = data; struct deadline_data *dd = q->elevator->elevator_data; seq_printf(m, "%u\n", dd->batching); return 0; } static int deadline_starved_show(void *data, struct seq_file *m) { struct request_queue *q = data; struct deadline_data *dd = q->elevator->elevator_data; seq_printf(m, "%u\n", dd->starved); return 0; } static int dd_async_depth_show(void *data, struct seq_file *m) { struct request_queue *q = data; struct deadline_data *dd = q->elevator->elevator_data; seq_printf(m, "%u\n", dd->async_depth); return 0; } static int dd_queued_show(void *data, struct seq_file *m) { struct request_queue *q = data; struct deadline_data *dd = q->elevator->elevator_data; u32 rt, be, idle; spin_lock(&dd->lock); rt = dd_queued(dd, DD_RT_PRIO); be = dd_queued(dd, DD_BE_PRIO); idle = dd_queued(dd, DD_IDLE_PRIO); spin_unlock(&dd->lock); seq_printf(m, "%u %u %u\n", rt, be, idle); return 0; } /* Number of requests owned by the block driver for a given priority. */ static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio) { const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats; lockdep_assert_held(&dd->lock); return stats->dispatched + stats->merged - atomic_read(&stats->completed); } static int dd_owned_by_driver_show(void *data, struct seq_file *m) { struct request_queue *q = data; struct deadline_data *dd = q->elevator->elevator_data; u32 rt, be, idle; spin_lock(&dd->lock); rt = dd_owned_by_driver(dd, DD_RT_PRIO); be = dd_owned_by_driver(dd, DD_BE_PRIO); idle = dd_owned_by_driver(dd, DD_IDLE_PRIO); spin_unlock(&dd->lock); seq_printf(m, "%u %u %u\n", rt, be, idle); return 0; } #define DEADLINE_DISPATCH_ATTR(prio) \ static void *deadline_dispatch##prio##_start(struct seq_file *m, \ loff_t *pos) \ __acquires(&dd->lock) \ { \ struct request_queue *q = m->private; \ struct deadline_data *dd = q->elevator->elevator_data; \ struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ \ spin_lock(&dd->lock); \ return seq_list_start(&per_prio->dispatch, *pos); \ } \ \ static void *deadline_dispatch##prio##_next(struct seq_file *m, \ void *v, loff_t *pos) \ { \ struct request_queue *q = m->private; \ struct deadline_data *dd = q->elevator->elevator_data; \ struct dd_per_prio *per_prio = &dd->per_prio[prio]; \ \ return seq_list_next(v, &per_prio->dispatch, pos); \ } \ \ static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v) \ __releases(&dd->lock) \ { \ struct request_queue *q = m->private; \ struct deadline_data *dd = q->elevator->elevator_data; \ \ spin_unlock(&dd->lock); \ } \ \ static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \ .start = deadline_dispatch##prio##_start, \ .next = deadline_dispatch##prio##_next, \ .stop = deadline_dispatch##prio##_stop, \ .show = blk_mq_debugfs_rq_show, \ } DEADLINE_DISPATCH_ATTR(0); DEADLINE_DISPATCH_ATTR(1); DEADLINE_DISPATCH_ATTR(2); #undef DEADLINE_DISPATCH_ATTR #define DEADLINE_QUEUE_DDIR_ATTRS(name) \ {#name "_fifo_list", 0400, \ .seq_ops = &deadline_##name##_fifo_seq_ops} #define DEADLINE_NEXT_RQ_ATTR(name) \ {#name "_next_rq", 0400, deadline_##name##_next_rq_show} static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = { DEADLINE_QUEUE_DDIR_ATTRS(read0), DEADLINE_QUEUE_DDIR_ATTRS(write0), DEADLINE_QUEUE_DDIR_ATTRS(read1), DEADLINE_QUEUE_DDIR_ATTRS(write1), DEADLINE_QUEUE_DDIR_ATTRS(read2), DEADLINE_QUEUE_DDIR_ATTRS(write2), DEADLINE_NEXT_RQ_ATTR(read0), DEADLINE_NEXT_RQ_ATTR(write0), DEADLINE_NEXT_RQ_ATTR(read1), DEADLINE_NEXT_RQ_ATTR(write1), DEADLINE_NEXT_RQ_ATTR(read2), DEADLINE_NEXT_RQ_ATTR(write2), {"batching", 0400, deadline_batching_show}, {"starved", 0400, deadline_starved_show}, {"async_depth", 0400, dd_async_depth_show}, {"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops}, {"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops}, {"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops}, {"owned_by_driver", 0400, dd_owned_by_driver_show}, {"queued", 0400, dd_queued_show}, {}, }; #undef DEADLINE_QUEUE_DDIR_ATTRS #endif static struct elevator_type mq_deadline = { .ops = { .depth_updated = dd_depth_updated, .limit_depth = dd_limit_depth, .insert_requests = dd_insert_requests, .dispatch_request = dd_dispatch_request, .prepare_request = dd_prepare_request, .finish_request = dd_finish_request, .next_request = elv_rb_latter_request, .former_request = elv_rb_former_request, .bio_merge = dd_bio_merge, .request_merge = dd_request_merge, .requests_merged = dd_merged_requests, .request_merged = dd_request_merged, .has_work = dd_has_work, .init_sched = dd_init_sched, .exit_sched = dd_exit_sched, .init_hctx = dd_init_hctx, }, #ifdef CONFIG_BLK_DEBUG_FS .queue_debugfs_attrs = deadline_queue_debugfs_attrs, #endif .elevator_attrs = deadline_attrs, .elevator_name = "mq-deadline", .elevator_alias = "deadline", .elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE, .elevator_owner = THIS_MODULE, }; MODULE_ALIAS("mq-deadline-iosched"); static int __init deadline_init(void) { return elv_register(&mq_deadline); } static void __exit deadline_exit(void) { elv_unregister(&mq_deadline); } module_init(deadline_init); module_exit(deadline_exit); MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MQ deadline IO scheduler");