// SPDX-License-Identifier: GPL-2.0-only /* * fs/libfs.c * Library for filesystems writers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* sync_mapping_buffers */ #include #include #include #include #include #include #include #include "internal.h" int simple_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); return 0; } EXPORT_SYMBOL(simple_getattr); int simple_statfs(struct dentry *dentry, struct kstatfs *buf) { u64 id = huge_encode_dev(dentry->d_sb->s_dev); buf->f_fsid = u64_to_fsid(id); buf->f_type = dentry->d_sb->s_magic; buf->f_bsize = PAGE_SIZE; buf->f_namelen = NAME_MAX; return 0; } EXPORT_SYMBOL(simple_statfs); /* * Retaining negative dentries for an in-memory filesystem just wastes * memory and lookup time: arrange for them to be deleted immediately. */ int always_delete_dentry(const struct dentry *dentry) { return 1; } EXPORT_SYMBOL(always_delete_dentry); const struct dentry_operations simple_dentry_operations = { .d_delete = always_delete_dentry, }; EXPORT_SYMBOL(simple_dentry_operations); /* * Lookup the data. This is trivial - if the dentry didn't already * exist, we know it is negative. Set d_op to delete negative dentries. */ struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { if (dentry->d_name.len > NAME_MAX) return ERR_PTR(-ENAMETOOLONG); if (!dentry->d_sb->s_d_op) d_set_d_op(dentry, &simple_dentry_operations); d_add(dentry, NULL); return NULL; } EXPORT_SYMBOL(simple_lookup); int dcache_dir_open(struct inode *inode, struct file *file) { file->private_data = d_alloc_cursor(file->f_path.dentry); return file->private_data ? 0 : -ENOMEM; } EXPORT_SYMBOL(dcache_dir_open); int dcache_dir_close(struct inode *inode, struct file *file) { dput(file->private_data); return 0; } EXPORT_SYMBOL(dcache_dir_close); /* parent is locked at least shared */ /* * Returns an element of siblings' list. * We are looking for th positive after

; if * found, dentry is grabbed and returned to caller. * If no such element exists, NULL is returned. */ static struct dentry *scan_positives(struct dentry *cursor, struct hlist_node **p, loff_t count, struct dentry *last) { struct dentry *dentry = cursor->d_parent, *found = NULL; spin_lock(&dentry->d_lock); while (*p) { struct dentry *d = hlist_entry(*p, struct dentry, d_sib); p = &d->d_sib.next; // we must at least skip cursors, to avoid livelocks if (d->d_flags & DCACHE_DENTRY_CURSOR) continue; if (simple_positive(d) && !--count) { spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); if (simple_positive(d)) found = dget_dlock(d); spin_unlock(&d->d_lock); if (likely(found)) break; count = 1; } if (need_resched()) { if (!hlist_unhashed(&cursor->d_sib)) __hlist_del(&cursor->d_sib); hlist_add_behind(&cursor->d_sib, &d->d_sib); p = &cursor->d_sib.next; spin_unlock(&dentry->d_lock); cond_resched(); spin_lock(&dentry->d_lock); } } spin_unlock(&dentry->d_lock); dput(last); return found; } loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) { struct dentry *dentry = file->f_path.dentry; switch (whence) { case 1: offset += file->f_pos; fallthrough; case 0: if (offset >= 0) break; fallthrough; default: return -EINVAL; } if (offset != file->f_pos) { struct dentry *cursor = file->private_data; struct dentry *to = NULL; inode_lock_shared(dentry->d_inode); if (offset > 2) to = scan_positives(cursor, &dentry->d_children.first, offset - 2, NULL); spin_lock(&dentry->d_lock); hlist_del_init(&cursor->d_sib); if (to) hlist_add_behind(&cursor->d_sib, &to->d_sib); spin_unlock(&dentry->d_lock); dput(to); file->f_pos = offset; inode_unlock_shared(dentry->d_inode); } return offset; } EXPORT_SYMBOL(dcache_dir_lseek); /* * Directory is locked and all positive dentries in it are safe, since * for ramfs-type trees they can't go away without unlink() or rmdir(), * both impossible due to the lock on directory. */ int dcache_readdir(struct file *file, struct dir_context *ctx) { struct dentry *dentry = file->f_path.dentry; struct dentry *cursor = file->private_data; struct dentry *next = NULL; struct hlist_node **p; if (!dir_emit_dots(file, ctx)) return 0; if (ctx->pos == 2) p = &dentry->d_children.first; else p = &cursor->d_sib.next; while ((next = scan_positives(cursor, p, 1, next)) != NULL) { if (!dir_emit(ctx, next->d_name.name, next->d_name.len, d_inode(next)->i_ino, fs_umode_to_dtype(d_inode(next)->i_mode))) break; ctx->pos++; p = &next->d_sib.next; } spin_lock(&dentry->d_lock); hlist_del_init(&cursor->d_sib); if (next) hlist_add_before(&cursor->d_sib, &next->d_sib); spin_unlock(&dentry->d_lock); dput(next); return 0; } EXPORT_SYMBOL(dcache_readdir); ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) { return -EISDIR; } EXPORT_SYMBOL(generic_read_dir); const struct file_operations simple_dir_operations = { .open = dcache_dir_open, .release = dcache_dir_close, .llseek = dcache_dir_lseek, .read = generic_read_dir, .iterate_shared = dcache_readdir, .fsync = noop_fsync, }; EXPORT_SYMBOL(simple_dir_operations); const struct inode_operations simple_dir_inode_operations = { .lookup = simple_lookup, }; EXPORT_SYMBOL(simple_dir_inode_operations); /* 0 is '.', 1 is '..', so always start with offset 2 or more */ enum { DIR_OFFSET_MIN = 2, }; static void offset_set(struct dentry *dentry, long offset) { dentry->d_fsdata = (void *)offset; } static long dentry2offset(struct dentry *dentry) { return (long)dentry->d_fsdata; } static struct lock_class_key simple_offset_lock_class; /** * simple_offset_init - initialize an offset_ctx * @octx: directory offset map to be initialized * */ void simple_offset_init(struct offset_ctx *octx) { mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); octx->next_offset = DIR_OFFSET_MIN; } /** * simple_offset_add - Add an entry to a directory's offset map * @octx: directory offset ctx to be updated * @dentry: new dentry being added * * Returns zero on success. @octx and the dentry's offset are updated. * Otherwise, a negative errno value is returned. */ int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) { unsigned long offset; int ret; if (dentry2offset(dentry) != 0) return -EBUSY; ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, LONG_MAX, &octx->next_offset, GFP_KERNEL); if (ret < 0) return ret; offset_set(dentry, offset); return 0; } /** * simple_offset_remove - Remove an entry to a directory's offset map * @octx: directory offset ctx to be updated * @dentry: dentry being removed * */ void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) { long offset; offset = dentry2offset(dentry); if (offset == 0) return; mtree_erase(&octx->mt, offset); offset_set(dentry, 0); } /** * simple_offset_empty - Check if a dentry can be unlinked * @dentry: dentry to be tested * * Returns 0 if @dentry is a non-empty directory; otherwise returns 1. */ int simple_offset_empty(struct dentry *dentry) { struct inode *inode = d_inode(dentry); struct offset_ctx *octx; struct dentry *child; unsigned long index; int ret = 1; if (!inode || !S_ISDIR(inode->i_mode)) return ret; index = DIR_OFFSET_MIN; octx = inode->i_op->get_offset_ctx(inode); mt_for_each(&octx->mt, child, index, LONG_MAX) { spin_lock(&child->d_lock); if (simple_positive(child)) { spin_unlock(&child->d_lock); ret = 0; break; } spin_unlock(&child->d_lock); } return ret; } /** * simple_offset_rename_exchange - exchange rename with directory offsets * @old_dir: parent of dentry being moved * @old_dentry: dentry being moved * @new_dir: destination parent * @new_dentry: destination dentry * * Returns zero on success. Otherwise a negative errno is returned and the * rename is rolled back. */ int simple_offset_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); long old_index = dentry2offset(old_dentry); long new_index = dentry2offset(new_dentry); int ret; simple_offset_remove(old_ctx, old_dentry); simple_offset_remove(new_ctx, new_dentry); ret = simple_offset_add(new_ctx, old_dentry); if (ret) goto out_restore; ret = simple_offset_add(old_ctx, new_dentry); if (ret) { simple_offset_remove(new_ctx, old_dentry); goto out_restore; } ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); if (ret) { simple_offset_remove(new_ctx, old_dentry); simple_offset_remove(old_ctx, new_dentry); goto out_restore; } return 0; out_restore: offset_set(old_dentry, old_index); mtree_store(&old_ctx->mt, old_index, old_dentry, GFP_KERNEL); offset_set(new_dentry, new_index); mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL); return ret; } /** * simple_offset_destroy - Release offset map * @octx: directory offset ctx that is about to be destroyed * * During fs teardown (eg. umount), a directory's offset map might still * contain entries. xa_destroy() cleans out anything that remains. */ void simple_offset_destroy(struct offset_ctx *octx) { mtree_destroy(&octx->mt); } /** * offset_dir_llseek - Advance the read position of a directory descriptor * @file: an open directory whose position is to be updated * @offset: a byte offset * @whence: enumerator describing the starting position for this update * * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. * * Returns the updated read position if successful; otherwise a * negative errno is returned and the read position remains unchanged. */ static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) { switch (whence) { case SEEK_CUR: offset += file->f_pos; fallthrough; case SEEK_SET: if (offset >= 0) break; fallthrough; default: return -EINVAL; } /* In this case, ->private_data is protected by f_pos_lock */ file->private_data = NULL; return vfs_setpos(file, offset, LONG_MAX); } static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset) { MA_STATE(mas, &octx->mt, offset, offset); struct dentry *child, *found = NULL; rcu_read_lock(); child = mas_find(&mas, LONG_MAX); if (!child) goto out; spin_lock(&child->d_lock); if (simple_positive(child)) found = dget_dlock(child); spin_unlock(&child->d_lock); out: rcu_read_unlock(); return found; } static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) { struct inode *inode = d_inode(dentry); long offset = dentry2offset(dentry); return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, inode->i_ino, fs_umode_to_dtype(inode->i_mode)); } static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) { struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); struct dentry *dentry; while (true) { dentry = offset_find_next(octx, ctx->pos); if (!dentry) return ERR_PTR(-ENOENT); if (!offset_dir_emit(ctx, dentry)) { dput(dentry); break; } ctx->pos = dentry2offset(dentry) + 1; dput(dentry); } return NULL; } /** * offset_readdir - Emit entries starting at offset @ctx->pos * @file: an open directory to iterate over * @ctx: directory iteration context * * Caller must hold @file's i_rwsem to prevent insertion or removal of * entries during this call. * * On entry, @ctx->pos contains an offset that represents the first entry * to be read from the directory. * * The operation continues until there are no more entries to read, or * until the ctx->actor indicates there is no more space in the caller's * output buffer. * * On return, @ctx->pos contains an offset that will read the next entry * in this directory when offset_readdir() is called again with @ctx. * * Return values: * %0 - Complete */ static int offset_readdir(struct file *file, struct dir_context *ctx) { struct dentry *dir = file->f_path.dentry; lockdep_assert_held(&d_inode(dir)->i_rwsem); if (!dir_emit_dots(file, ctx)) return 0; /* In this case, ->private_data is protected by f_pos_lock */ if (ctx->pos == DIR_OFFSET_MIN) file->private_data = NULL; else if (file->private_data == ERR_PTR(-ENOENT)) return 0; file->private_data = offset_iterate_dir(d_inode(dir), ctx); return 0; } const struct file_operations simple_offset_dir_operations = { .llseek = offset_dir_llseek, .iterate_shared = offset_readdir, .read = generic_read_dir, .fsync = noop_fsync, }; static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) { struct dentry *child = NULL, *d; spin_lock(&parent->d_lock); d = prev ? d_next_sibling(prev) : d_first_child(parent); hlist_for_each_entry_from(d, d_sib) { if (simple_positive(d)) { spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); if (simple_positive(d)) child = dget_dlock(d); spin_unlock(&d->d_lock); if (likely(child)) break; } } spin_unlock(&parent->d_lock); dput(prev); return child; } void simple_recursive_removal(struct dentry *dentry, void (*callback)(struct dentry *)) { struct dentry *this = dget(dentry); while (true) { struct dentry *victim = NULL, *child; struct inode *inode = this->d_inode; inode_lock(inode); if (d_is_dir(this)) inode->i_flags |= S_DEAD; while ((child = find_next_child(this, victim)) == NULL) { // kill and ascend // update metadata while it's still locked inode_set_ctime_current(inode); clear_nlink(inode); inode_unlock(inode); victim = this; this = this->d_parent; inode = this->d_inode; inode_lock(inode); if (simple_positive(victim)) { d_invalidate(victim); // avoid lost mounts if (d_is_dir(victim)) fsnotify_rmdir(inode, victim); else fsnotify_unlink(inode, victim); if (callback) callback(victim); dput(victim); // unpin it } if (victim == dentry) { inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); if (d_is_dir(dentry)) drop_nlink(inode); inode_unlock(inode); dput(dentry); return; } } inode_unlock(inode); this = child; } } EXPORT_SYMBOL(simple_recursive_removal); static const struct super_operations simple_super_operations = { .statfs = simple_statfs, }; static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) { struct pseudo_fs_context *ctx = fc->fs_private; struct inode *root; s->s_maxbytes = MAX_LFS_FILESIZE; s->s_blocksize = PAGE_SIZE; s->s_blocksize_bits = PAGE_SHIFT; s->s_magic = ctx->magic; s->s_op = ctx->ops ?: &simple_super_operations; s->s_xattr = ctx->xattr; s->s_time_gran = 1; root = new_inode(s); if (!root) return -ENOMEM; /* * since this is the first inode, make it number 1. New inodes created * after this must take care not to collide with it (by passing * max_reserved of 1 to iunique). */ root->i_ino = 1; root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; simple_inode_init_ts(root); s->s_root = d_make_root(root); if (!s->s_root) return -ENOMEM; s->s_d_op = ctx->dops; return 0; } static int pseudo_fs_get_tree(struct fs_context *fc) { return get_tree_nodev(fc, pseudo_fs_fill_super); } static void pseudo_fs_free(struct fs_context *fc) { kfree(fc->fs_private); } static const struct fs_context_operations pseudo_fs_context_ops = { .free = pseudo_fs_free, .get_tree = pseudo_fs_get_tree, }; /* * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that * will never be mountable) */ struct pseudo_fs_context *init_pseudo(struct fs_context *fc, unsigned long magic) { struct pseudo_fs_context *ctx; ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); if (likely(ctx)) { ctx->magic = magic; fc->fs_private = ctx; fc->ops = &pseudo_fs_context_ops; fc->sb_flags |= SB_NOUSER; fc->global = true; } return ctx; } EXPORT_SYMBOL(init_pseudo); int simple_open(struct inode *inode, struct file *file) { if (inode->i_private) file->private_data = inode->i_private; return 0; } EXPORT_SYMBOL(simple_open); int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(old_dentry); inode_set_mtime_to_ts(dir, inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); inc_nlink(inode); ihold(inode); dget(dentry); d_instantiate(dentry, inode); return 0; } EXPORT_SYMBOL(simple_link); int simple_empty(struct dentry *dentry) { struct dentry *child; int ret = 0; spin_lock(&dentry->d_lock); hlist_for_each_entry(child, &dentry->d_children, d_sib) { spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); if (simple_positive(child)) { spin_unlock(&child->d_lock); goto out; } spin_unlock(&child->d_lock); } ret = 1; out: spin_unlock(&dentry->d_lock); return ret; } EXPORT_SYMBOL(simple_empty); int simple_unlink(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); inode_set_mtime_to_ts(dir, inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); drop_nlink(inode); dput(dentry); return 0; } EXPORT_SYMBOL(simple_unlink); int simple_rmdir(struct inode *dir, struct dentry *dentry) { if (!simple_empty(dentry)) return -ENOTEMPTY; drop_nlink(d_inode(dentry)); simple_unlink(dir, dentry); drop_nlink(dir); return 0; } EXPORT_SYMBOL(simple_rmdir); /** * simple_rename_timestamp - update the various inode timestamps for rename * @old_dir: old parent directory * @old_dentry: dentry that is being renamed * @new_dir: new parent directory * @new_dentry: target for rename * * POSIX mandates that the old and new parent directories have their ctime and * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have * their ctime updated. */ void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct inode *newino = d_inode(new_dentry); inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); if (new_dir != old_dir) inode_set_mtime_to_ts(new_dir, inode_set_ctime_current(new_dir)); inode_set_ctime_current(d_inode(old_dentry)); if (newino) inode_set_ctime_current(newino); } EXPORT_SYMBOL_GPL(simple_rename_timestamp); int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { bool old_is_dir = d_is_dir(old_dentry); bool new_is_dir = d_is_dir(new_dentry); if (old_dir != new_dir && old_is_dir != new_is_dir) { if (old_is_dir) { drop_nlink(old_dir); inc_nlink(new_dir); } else { drop_nlink(new_dir); inc_nlink(old_dir); } } simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); return 0; } EXPORT_SYMBOL_GPL(simple_rename_exchange); int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { int they_are_dirs = d_is_dir(old_dentry); if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) return -EINVAL; if (flags & RENAME_EXCHANGE) return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); if (!simple_empty(new_dentry)) return -ENOTEMPTY; if (d_really_is_positive(new_dentry)) { simple_unlink(new_dir, new_dentry); if (they_are_dirs) { drop_nlink(d_inode(new_dentry)); drop_nlink(old_dir); } } else if (they_are_dirs) { drop_nlink(old_dir); inc_nlink(new_dir); } simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); return 0; } EXPORT_SYMBOL(simple_rename); /** * simple_setattr - setattr for simple filesystem * @idmap: idmap of the target mount * @dentry: dentry * @iattr: iattr structure * * Returns 0 on success, -error on failure. * * simple_setattr is a simple ->setattr implementation without a proper * implementation of size changes. * * It can either be used for in-memory filesystems or special files * on simple regular filesystems. Anything that needs to change on-disk * or wire state on size changes needs its own setattr method. */ int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *iattr) { struct inode *inode = d_inode(dentry); int error; error = setattr_prepare(idmap, dentry, iattr); if (error) return error; if (iattr->ia_valid & ATTR_SIZE) truncate_setsize(inode, iattr->ia_size); setattr_copy(idmap, inode, iattr); mark_inode_dirty(inode); return 0; } EXPORT_SYMBOL(simple_setattr); static int simple_read_folio(struct file *file, struct folio *folio) { folio_zero_range(folio, 0, folio_size(folio)); flush_dcache_folio(folio); folio_mark_uptodate(folio); folio_unlock(folio); return 0; } int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { struct folio *folio; folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) return PTR_ERR(folio); *pagep = &folio->page; if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { size_t from = offset_in_folio(folio, pos); folio_zero_segments(folio, 0, from, from + len, folio_size(folio)); } return 0; } EXPORT_SYMBOL(simple_write_begin); /** * simple_write_end - .write_end helper for non-block-device FSes * @file: See .write_end of address_space_operations * @mapping: " * @pos: " * @len: " * @copied: " * @page: " * @fsdata: " * * simple_write_end does the minimum needed for updating a page after writing is * done. It has the same API signature as the .write_end of * address_space_operations vector. So it can just be set onto .write_end for * FSes that don't need any other processing. i_mutex is assumed to be held. * Block based filesystems should use generic_write_end(). * NOTE: Even though i_size might get updated by this function, mark_inode_dirty * is not called, so a filesystem that actually does store data in .write_inode * should extend on what's done here with a call to mark_inode_dirty() in the * case that i_size has changed. * * Use *ONLY* with simple_read_folio() */ static int simple_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct folio *folio = page_folio(page); struct inode *inode = folio->mapping->host; loff_t last_pos = pos + copied; /* zero the stale part of the folio if we did a short copy */ if (!folio_test_uptodate(folio)) { if (copied < len) { size_t from = offset_in_folio(folio, pos); folio_zero_range(folio, from + copied, len - copied); } folio_mark_uptodate(folio); } /* * No need to use i_size_read() here, the i_size * cannot change under us because we hold the i_mutex. */ if (last_pos > inode->i_size) i_size_write(inode, last_pos); folio_mark_dirty(folio); folio_unlock(folio); folio_put(folio); return copied; } /* * Provides ramfs-style behavior: data in the pagecache, but no writeback. */ const struct address_space_operations ram_aops = { .read_folio = simple_read_folio, .write_begin = simple_write_begin, .write_end = simple_write_end, .dirty_folio = noop_dirty_folio, }; EXPORT_SYMBOL(ram_aops); /* * the inodes created here are not hashed. If you use iunique to generate * unique inode values later for this filesystem, then you must take care * to pass it an appropriate max_reserved value to avoid collisions. */ int simple_fill_super(struct super_block *s, unsigned long magic, const struct tree_descr *files) { struct inode *inode; struct dentry *dentry; int i; s->s_blocksize = PAGE_SIZE; s->s_blocksize_bits = PAGE_SHIFT; s->s_magic = magic; s->s_op = &simple_super_operations; s->s_time_gran = 1; inode = new_inode(s); if (!inode) return -ENOMEM; /* * because the root inode is 1, the files array must not contain an * entry at index 1 */ inode->i_ino = 1; inode->i_mode = S_IFDIR | 0755; simple_inode_init_ts(inode); inode->i_op = &simple_dir_inode_operations; inode->i_fop = &simple_dir_operations; set_nlink(inode, 2); s->s_root = d_make_root(inode); if (!s->s_root) return -ENOMEM; for (i = 0; !files->name || files->name[0]; i++, files++) { if (!files->name) continue; /* warn if it tries to conflict with the root inode */ if (unlikely(i == 1)) printk(KERN_WARNING "%s: %s passed in a files array" "with an index of 1!\n", __func__, s->s_type->name); dentry = d_alloc_name(s->s_root, files->name); if (!dentry) return -ENOMEM; inode = new_inode(s); if (!inode) { dput(dentry); return -ENOMEM; } inode->i_mode = S_IFREG | files->mode; simple_inode_init_ts(inode); inode->i_fop = files->ops; inode->i_ino = i; d_add(dentry, inode); } return 0; } EXPORT_SYMBOL(simple_fill_super); static DEFINE_SPINLOCK(pin_fs_lock); int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) { struct vfsmount *mnt = NULL; spin_lock(&pin_fs_lock); if (unlikely(!*mount)) { spin_unlock(&pin_fs_lock); mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); if (IS_ERR(mnt)) return PTR_ERR(mnt); spin_lock(&pin_fs_lock); if (!*mount) *mount = mnt; } mntget(*mount); ++*count; spin_unlock(&pin_fs_lock); mntput(mnt); return 0; } EXPORT_SYMBOL(simple_pin_fs); void simple_release_fs(struct vfsmount **mount, int *count) { struct vfsmount *mnt; spin_lock(&pin_fs_lock); mnt = *mount; if (!--*count) *mount = NULL; spin_unlock(&pin_fs_lock); mntput(mnt); } EXPORT_SYMBOL(simple_release_fs); /** * simple_read_from_buffer - copy data from the buffer to user space * @to: the user space buffer to read to * @count: the maximum number of bytes to read * @ppos: the current position in the buffer * @from: the buffer to read from * @available: the size of the buffer * * The simple_read_from_buffer() function reads up to @count bytes from the * buffer @from at offset @ppos into the user space address starting at @to. * * On success, the number of bytes read is returned and the offset @ppos is * advanced by this number, or negative value is returned on error. **/ ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available) { loff_t pos = *ppos; size_t ret; if (pos < 0) return -EINVAL; if (pos >= available || !count) return 0; if (count > available - pos) count = available - pos; ret = copy_to_user(to, from + pos, count); if (ret == count) return -EFAULT; count -= ret; *ppos = pos + count; return count; } EXPORT_SYMBOL(simple_read_from_buffer); /** * simple_write_to_buffer - copy data from user space to the buffer * @to: the buffer to write to * @available: the size of the buffer * @ppos: the current position in the buffer * @from: the user space buffer to read from * @count: the maximum number of bytes to read * * The simple_write_to_buffer() function reads up to @count bytes from the user * space address starting at @from into the buffer @to at offset @ppos. * * On success, the number of bytes written is returned and the offset @ppos is * advanced by this number, or negative value is returned on error. **/ ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count) { loff_t pos = *ppos; size_t res; if (pos < 0) return -EINVAL; if (pos >= available || !count) return 0; if (count > available - pos) count = available - pos; res = copy_from_user(to + pos, from, count); if (res == count) return -EFAULT; count -= res; *ppos = pos + count; return count; } EXPORT_SYMBOL(simple_write_to_buffer); /** * memory_read_from_buffer - copy data from the buffer * @to: the kernel space buffer to read to * @count: the maximum number of bytes to read * @ppos: the current position in the buffer * @from: the buffer to read from * @available: the size of the buffer * * The memory_read_from_buffer() function reads up to @count bytes from the * buffer @from at offset @ppos into the kernel space address starting at @to. * * On success, the number of bytes read is returned and the offset @ppos is * advanced by this number, or negative value is returned on error. **/ ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, const void *from, size_t available) { loff_t pos = *ppos; if (pos < 0) return -EINVAL; if (pos >= available) return 0; if (count > available - pos) count = available - pos; memcpy(to, from + pos, count); *ppos = pos + count; return count; } EXPORT_SYMBOL(memory_read_from_buffer); /* * Transaction based IO. * The file expects a single write which triggers the transaction, and then * possibly a read which collects the result - which is stored in a * file-local buffer. */ void simple_transaction_set(struct file *file, size_t n) { struct simple_transaction_argresp *ar = file->private_data; BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); /* * The barrier ensures that ar->size will really remain zero until * ar->data is ready for reading. */ smp_mb(); ar->size = n; } EXPORT_SYMBOL(simple_transaction_set); char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) { struct simple_transaction_argresp *ar; static DEFINE_SPINLOCK(simple_transaction_lock); if (size > SIMPLE_TRANSACTION_LIMIT - 1) return ERR_PTR(-EFBIG); ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); if (!ar) return ERR_PTR(-ENOMEM); spin_lock(&simple_transaction_lock); /* only one write allowed per open */ if (file->private_data) { spin_unlock(&simple_transaction_lock); free_page((unsigned long)ar); return ERR_PTR(-EBUSY); } file->private_data = ar; spin_unlock(&simple_transaction_lock); if (copy_from_user(ar->data, buf, size)) return ERR_PTR(-EFAULT); return ar->data; } EXPORT_SYMBOL(simple_transaction_get); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) { struct simple_transaction_argresp *ar = file->private_data; if (!ar) return 0; return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); } EXPORT_SYMBOL(simple_transaction_read); int simple_transaction_release(struct inode *inode, struct file *file) { free_page((unsigned long)file->private_data); return 0; } EXPORT_SYMBOL(simple_transaction_release); /* Simple attribute files */ struct simple_attr { int (*get)(void *, u64 *); int (*set)(void *, u64); char get_buf[24]; /* enough to store a u64 and "\n\0" */ char set_buf[24]; void *data; const char *fmt; /* format for read operation */ struct mutex mutex; /* protects access to these buffers */ }; /* simple_attr_open is called by an actual attribute open file operation * to set the attribute specific access operations. */ int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt) { struct simple_attr *attr; attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (!attr) return -ENOMEM; attr->get = get; attr->set = set; attr->data = inode->i_private; attr->fmt = fmt; mutex_init(&attr->mutex); file->private_data = attr; return nonseekable_open(inode, file); } EXPORT_SYMBOL_GPL(simple_attr_open); int simple_attr_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ /* read from the buffer that is filled with the get function */ ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct simple_attr *attr; size_t size; ssize_t ret; attr = file->private_data; if (!attr->get) return -EACCES; ret = mutex_lock_interruptible(&attr->mutex); if (ret) return ret; if (*ppos && attr->get_buf[0]) { /* continued read */ size = strlen(attr->get_buf); } else { /* first read */ u64 val; ret = attr->get(attr->data, &val); if (ret) goto out; size = scnprintf(attr->get_buf, sizeof(attr->get_buf), attr->fmt, (unsigned long long)val); } ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); out: mutex_unlock(&attr->mutex); return ret; } EXPORT_SYMBOL_GPL(simple_attr_read); /* interpret the buffer as a number to call the set function with */ static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, size_t len, loff_t *ppos, bool is_signed) { struct simple_attr *attr; unsigned long long val; size_t size; ssize_t ret; attr = file->private_data; if (!attr->set) return -EACCES; ret = mutex_lock_interruptible(&attr->mutex); if (ret) return ret; ret = -EFAULT; size = min(sizeof(attr->set_buf) - 1, len); if (copy_from_user(attr->set_buf, buf, size)) goto out; attr->set_buf[size] = '\0'; if (is_signed) ret = kstrtoll(attr->set_buf, 0, &val); else ret = kstrtoull(attr->set_buf, 0, &val); if (ret) goto out; ret = attr->set(attr->data, val); if (ret == 0) ret = len; /* on success, claim we got the whole input */ out: mutex_unlock(&attr->mutex); return ret; } ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { return simple_attr_write_xsigned(file, buf, len, ppos, false); } EXPORT_SYMBOL_GPL(simple_attr_write); ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { return simple_attr_write_xsigned(file, buf, len, ppos, true); } EXPORT_SYMBOL_GPL(simple_attr_write_signed); /** * generic_encode_ino32_fh - generic export_operations->encode_fh function * @inode: the object to encode * @fh: where to store the file handle fragment * @max_len: maximum length to store there (in 4 byte units) * @parent: parent directory inode, if wanted * * This generic encode_fh function assumes that the 32 inode number * is suitable for locating an inode, and that the generation number * can be used to check that it is still valid. It places them in the * filehandle fragment where export_decode_fh expects to find them. */ int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, struct inode *parent) { struct fid *fid = (void *)fh; int len = *max_len; int type = FILEID_INO32_GEN; if (parent && (len < 4)) { *max_len = 4; return FILEID_INVALID; } else if (len < 2) { *max_len = 2; return FILEID_INVALID; } len = 2; fid->i32.ino = inode->i_ino; fid->i32.gen = inode->i_generation; if (parent) { fid->i32.parent_ino = parent->i_ino; fid->i32.parent_gen = parent->i_generation; len = 4; type = FILEID_INO32_GEN_PARENT; } *max_len = len; return type; } EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); /** * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation * @sb: filesystem to do the file handle conversion on * @fid: file handle to convert * @fh_len: length of the file handle in bytes * @fh_type: type of file handle * @get_inode: filesystem callback to retrieve inode * * This function decodes @fid as long as it has one of the well-known * Linux filehandle types and calls @get_inode on it to retrieve the * inode for the object specified in the file handle. */ struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type, struct inode *(*get_inode) (struct super_block *sb, u64 ino, u32 gen)) { struct inode *inode = NULL; if (fh_len < 2) return NULL; switch (fh_type) { case FILEID_INO32_GEN: case FILEID_INO32_GEN_PARENT: inode = get_inode(sb, fid->i32.ino, fid->i32.gen); break; } return d_obtain_alias(inode); } EXPORT_SYMBOL_GPL(generic_fh_to_dentry); /** * generic_fh_to_parent - generic helper for the fh_to_parent export operation * @sb: filesystem to do the file handle conversion on * @fid: file handle to convert * @fh_len: length of the file handle in bytes * @fh_type: type of file handle * @get_inode: filesystem callback to retrieve inode * * This function decodes @fid as long as it has one of the well-known * Linux filehandle types and calls @get_inode on it to retrieve the * inode for the _parent_ object specified in the file handle if it * is specified in the file handle, or NULL otherwise. */ struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type, struct inode *(*get_inode) (struct super_block *sb, u64 ino, u32 gen)) { struct inode *inode = NULL; if (fh_len <= 2) return NULL; switch (fh_type) { case FILEID_INO32_GEN_PARENT: inode = get_inode(sb, fid->i32.parent_ino, (fh_len > 3 ? fid->i32.parent_gen : 0)); break; } return d_obtain_alias(inode); } EXPORT_SYMBOL_GPL(generic_fh_to_parent); /** * __generic_file_fsync - generic fsync implementation for simple filesystems * * @file: file to synchronize * @start: start offset in bytes * @end: end offset in bytes (inclusive) * @datasync: only synchronize essential metadata if true * * This is a generic implementation of the fsync method for simple * filesystems which track all non-inode metadata in the buffers list * hanging off the address_space structure. */ int __generic_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; int err; int ret; err = file_write_and_wait_range(file, start, end); if (err) return err; inode_lock(inode); ret = sync_mapping_buffers(inode->i_mapping); if (!(inode->i_state & I_DIRTY_ALL)) goto out; if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) goto out; err = sync_inode_metadata(inode, 1); if (ret == 0) ret = err; out: inode_unlock(inode); /* check and advance again to catch errors after syncing out buffers */ err = file_check_and_advance_wb_err(file); if (ret == 0) ret = err; return ret; } EXPORT_SYMBOL(__generic_file_fsync); /** * generic_file_fsync - generic fsync implementation for simple filesystems * with flush * @file: file to synchronize * @start: start offset in bytes * @end: end offset in bytes (inclusive) * @datasync: only synchronize essential metadata if true * */ int generic_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; int err; err = __generic_file_fsync(file, start, end, datasync); if (err) return err; return blkdev_issue_flush(inode->i_sb->s_bdev); } EXPORT_SYMBOL(generic_file_fsync); /** * generic_check_addressable - Check addressability of file system * @blocksize_bits: log of file system block size * @num_blocks: number of blocks in file system * * Determine whether a file system with @num_blocks blocks (and a * block size of 2**@blocksize_bits) is addressable by the sector_t * and page cache of the system. Return 0 if so and -EFBIG otherwise. */ int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) { u64 last_fs_block = num_blocks - 1; u64 last_fs_page = last_fs_block >> (PAGE_SHIFT - blocksize_bits); if (unlikely(num_blocks == 0)) return 0; if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) return -EINVAL; if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || (last_fs_page > (pgoff_t)(~0ULL))) { return -EFBIG; } return 0; } EXPORT_SYMBOL(generic_check_addressable); /* * No-op implementation of ->fsync for in-memory filesystems. */ int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) { return 0; } EXPORT_SYMBOL(noop_fsync); ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { /* * iomap based filesystems support direct I/O without need for * this callback. However, it still needs to be set in * inode->a_ops so that open/fcntl know that direct I/O is * generally supported. */ return -EINVAL; } EXPORT_SYMBOL_GPL(noop_direct_IO); /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ void kfree_link(void *p) { kfree(p); } EXPORT_SYMBOL(kfree_link); struct inode *alloc_anon_inode(struct super_block *s) { static const struct address_space_operations anon_aops = { .dirty_folio = noop_dirty_folio, }; struct inode *inode = new_inode_pseudo(s); if (!inode) return ERR_PTR(-ENOMEM); inode->i_ino = get_next_ino(); inode->i_mapping->a_ops = &anon_aops; /* * Mark the inode dirty from the very beginning, * that way it will never be moved to the dirty * list because mark_inode_dirty() will think * that it already _is_ on the dirty list. */ inode->i_state = I_DIRTY; inode->i_mode = S_IRUSR | S_IWUSR; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_flags |= S_PRIVATE; simple_inode_init_ts(inode); return inode; } EXPORT_SYMBOL(alloc_anon_inode); /** * simple_nosetlease - generic helper for prohibiting leases * @filp: file pointer * @arg: type of lease to obtain * @flp: new lease supplied for insertion * @priv: private data for lm_setup operation * * Generic helper for filesystems that do not wish to allow leases to be set. * All arguments are ignored and it just returns -EINVAL. */ int simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, void **priv) { return -EINVAL; } EXPORT_SYMBOL(simple_nosetlease); /** * simple_get_link - generic helper to get the target of "fast" symlinks * @dentry: not used here * @inode: the symlink inode * @done: not used here * * Generic helper for filesystems to use for symlink inodes where a pointer to * the symlink target is stored in ->i_link. NOTE: this isn't normally called, * since as an optimization the path lookup code uses any non-NULL ->i_link * directly, without calling ->get_link(). But ->get_link() still must be set, * to mark the inode_operations as being for a symlink. * * Return: the symlink target */ const char *simple_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { return inode->i_link; } EXPORT_SYMBOL(simple_get_link); const struct inode_operations simple_symlink_inode_operations = { .get_link = simple_get_link, }; EXPORT_SYMBOL(simple_symlink_inode_operations); /* * Operations for a permanently empty directory. */ static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { return ERR_PTR(-ENOENT); } static int empty_dir_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); return 0; } static int empty_dir_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { return -EPERM; } static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) { return -EOPNOTSUPP; } static const struct inode_operations empty_dir_inode_operations = { .lookup = empty_dir_lookup, .permission = generic_permission, .setattr = empty_dir_setattr, .getattr = empty_dir_getattr, .listxattr = empty_dir_listxattr, }; static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) { /* An empty directory has two entries . and .. at offsets 0 and 1 */ return generic_file_llseek_size(file, offset, whence, 2, 2); } static int empty_dir_readdir(struct file *file, struct dir_context *ctx) { dir_emit_dots(file, ctx); return 0; } static const struct file_operations empty_dir_operations = { .llseek = empty_dir_llseek, .read = generic_read_dir, .iterate_shared = empty_dir_readdir, .fsync = noop_fsync, }; void make_empty_dir_inode(struct inode *inode) { set_nlink(inode, 2); inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; inode->i_uid = GLOBAL_ROOT_UID; inode->i_gid = GLOBAL_ROOT_GID; inode->i_rdev = 0; inode->i_size = 0; inode->i_blkbits = PAGE_SHIFT; inode->i_blocks = 0; inode->i_op = &empty_dir_inode_operations; inode->i_opflags &= ~IOP_XATTR; inode->i_fop = &empty_dir_operations; } bool is_empty_dir_inode(struct inode *inode) { return (inode->i_fop == &empty_dir_operations) && (inode->i_op == &empty_dir_inode_operations); } #if IS_ENABLED(CONFIG_UNICODE) /** * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems * @dentry: dentry whose name we are checking against * @len: len of name of dentry * @str: str pointer to name of dentry * @name: Name to compare against * * Return: 0 if names match, 1 if mismatch, or -ERRNO */ static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, const char *str, const struct qstr *name) { const struct dentry *parent; const struct inode *dir; char strbuf[DNAME_INLINE_LEN]; struct qstr qstr; /* * Attempt a case-sensitive match first. It is cheaper and * should cover most lookups, including all the sane * applications that expect a case-sensitive filesystem. * * This comparison is safe under RCU because the caller * guarantees the consistency between str and len. See * __d_lookup_rcu_op_compare() for details. */ if (len == name->len && !memcmp(str, name->name, len)) return 0; parent = READ_ONCE(dentry->d_parent); dir = READ_ONCE(parent->d_inode); if (!dir || !IS_CASEFOLDED(dir)) return 1; /* * If the dentry name is stored in-line, then it may be concurrently * modified by a rename. If this happens, the VFS will eventually retry * the lookup, so it doesn't matter what ->d_compare() returns. * However, it's unsafe to call utf8_strncasecmp() with an unstable * string. Therefore, we have to copy the name into a temporary buffer. */ if (len <= DNAME_INLINE_LEN - 1) { memcpy(strbuf, str, len); strbuf[len] = 0; str = strbuf; /* prevent compiler from optimizing out the temporary buffer */ barrier(); } qstr.len = len; qstr.name = str; return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); } /** * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems * @dentry: dentry of the parent directory * @str: qstr of name whose hash we should fill in * * Return: 0 if hash was successful or unchanged, and -EINVAL on error */ static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) { const struct inode *dir = READ_ONCE(dentry->d_inode); struct super_block *sb = dentry->d_sb; const struct unicode_map *um = sb->s_encoding; int ret; if (!dir || !IS_CASEFOLDED(dir)) return 0; ret = utf8_casefold_hash(um, dentry, str); if (ret < 0 && sb_has_strict_encoding(sb)) return -EINVAL; return 0; } static const struct dentry_operations generic_ci_dentry_ops = { .d_hash = generic_ci_d_hash, .d_compare = generic_ci_d_compare, #ifdef CONFIG_FS_ENCRYPTION .d_revalidate = fscrypt_d_revalidate, #endif }; #endif #ifdef CONFIG_FS_ENCRYPTION static const struct dentry_operations generic_encrypted_dentry_ops = { .d_revalidate = fscrypt_d_revalidate, }; #endif /** * generic_set_sb_d_ops - helper for choosing the set of * filesystem-wide dentry operations for the enabled features * @sb: superblock to be configured * * Filesystems supporting casefolding and/or fscrypt can call this * helper at mount-time to configure sb->s_d_op to best set of dentry * operations required for the enabled features. The helper must be * called after these have been configured, but before the root dentry * is created. */ void generic_set_sb_d_ops(struct super_block *sb) { #if IS_ENABLED(CONFIG_UNICODE) if (sb->s_encoding) { sb->s_d_op = &generic_ci_dentry_ops; return; } #endif #ifdef CONFIG_FS_ENCRYPTION if (sb->s_cop) { sb->s_d_op = &generic_encrypted_dentry_ops; return; } #endif } EXPORT_SYMBOL(generic_set_sb_d_ops); /** * inode_maybe_inc_iversion - increments i_version * @inode: inode with the i_version that should be updated * @force: increment the counter even if it's not necessary? * * Every time the inode is modified, the i_version field must be seen to have * changed by any observer. * * If "force" is set or the QUERIED flag is set, then ensure that we increment * the value, and clear the queried flag. * * In the common case where neither is set, then we can return "false" without * updating i_version. * * If this function returns false, and no other metadata has changed, then we * can avoid logging the metadata. */ bool inode_maybe_inc_iversion(struct inode *inode, bool force) { u64 cur, new; /* * The i_version field is not strictly ordered with any other inode * information, but the legacy inode_inc_iversion code used a spinlock * to serialize increments. * * Here, we add full memory barriers to ensure that any de-facto * ordering with other info is preserved. * * This barrier pairs with the barrier in inode_query_iversion() */ smp_mb(); cur = inode_peek_iversion_raw(inode); do { /* If flag is clear then we needn't do anything */ if (!force && !(cur & I_VERSION_QUERIED)) return false; /* Since lowest bit is flag, add 2 to avoid it */ new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); return true; } EXPORT_SYMBOL(inode_maybe_inc_iversion); /** * inode_query_iversion - read i_version for later use * @inode: inode from which i_version should be read * * Read the inode i_version counter. This should be used by callers that wish * to store the returned i_version for later comparison. This will guarantee * that a later query of the i_version will result in a different value if * anything has changed. * * In this implementation, we fetch the current value, set the QUERIED flag and * then try to swap it into place with a cmpxchg, if it wasn't already set. If * that fails, we try again with the newly fetched value from the cmpxchg. */ u64 inode_query_iversion(struct inode *inode) { u64 cur, new; cur = inode_peek_iversion_raw(inode); do { /* If flag is already set, then no need to swap */ if (cur & I_VERSION_QUERIED) { /* * This barrier (and the implicit barrier in the * cmpxchg below) pairs with the barrier in * inode_maybe_inc_iversion(). */ smp_mb(); break; } new = cur | I_VERSION_QUERIED; } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); return cur >> I_VERSION_QUERIED_SHIFT; } EXPORT_SYMBOL(inode_query_iversion); ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, ssize_t direct_written, ssize_t buffered_written) { struct address_space *mapping = iocb->ki_filp->f_mapping; loff_t pos = iocb->ki_pos - buffered_written; loff_t end = iocb->ki_pos - 1; int err; /* * If the buffered write fallback returned an error, we want to return * the number of bytes which were written by direct I/O, or the error * code if that was zero. * * Note that this differs from normal direct-io semantics, which will * return -EFOO even if some bytes were written. */ if (unlikely(buffered_written < 0)) { if (direct_written) return direct_written; return buffered_written; } /* * We need to ensure that the page cache pages are written to disk and * invalidated to preserve the expected O_DIRECT semantics. */ err = filemap_write_and_wait_range(mapping, pos, end); if (err < 0) { /* * We don't know how much we wrote, so just return the number of * bytes which were direct-written */ iocb->ki_pos -= buffered_written; if (direct_written) return direct_written; return err; } invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); return direct_written + buffered_written; } EXPORT_SYMBOL_GPL(direct_write_fallback); /** * simple_inode_init_ts - initialize the timestamps for a new inode * @inode: inode to be initialized * * When a new inode is created, most filesystems set the timestamps to the * current time. Add a helper to do this. */ struct timespec64 simple_inode_init_ts(struct inode *inode) { struct timespec64 ts = inode_set_ctime_current(inode); inode_set_atime_to_ts(inode, ts); inode_set_mtime_to_ts(inode, ts); return ts; } EXPORT_SYMBOL(simple_inode_init_ts); static inline struct dentry *get_stashed_dentry(struct dentry *stashed) { struct dentry *dentry; guard(rcu)(); dentry = READ_ONCE(stashed); if (!dentry) return NULL; if (!lockref_get_not_dead(&dentry->d_lockref)) return NULL; return dentry; } static struct dentry *prepare_anon_dentry(struct dentry **stashed, unsigned long ino, struct super_block *sb, void *data) { struct dentry *dentry; struct inode *inode; const struct stashed_operations *sops = sb->s_fs_info; dentry = d_alloc_anon(sb); if (!dentry) return ERR_PTR(-ENOMEM); inode = new_inode_pseudo(sb); if (!inode) { dput(dentry); return ERR_PTR(-ENOMEM); } inode->i_ino = ino; inode->i_flags |= S_IMMUTABLE; inode->i_mode = S_IFREG; simple_inode_init_ts(inode); sops->init_inode(inode, data); /* Notice when this is changed. */ WARN_ON_ONCE(!S_ISREG(inode->i_mode)); WARN_ON_ONCE(!IS_IMMUTABLE(inode)); /* Store address of location where dentry's supposed to be stashed. */ dentry->d_fsdata = stashed; /* @data is now owned by the fs */ d_instantiate(dentry, inode); return dentry; } static struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry) { guard(rcu)(); for (;;) { struct dentry *old; /* Assume any old dentry was cleared out. */ old = cmpxchg(stashed, NULL, dentry); if (likely(!old)) return dentry; /* Check if somebody else installed a reusable dentry. */ if (lockref_get_not_dead(&old->d_lockref)) return old; /* There's an old dead dentry there, try to take it over. */ if (likely(try_cmpxchg(stashed, &old, dentry))) return dentry; } } /** * path_from_stashed - create path from stashed or new dentry * @stashed: where to retrieve or stash dentry * @ino: inode number to use * @mnt: mnt of the filesystems to use * @data: data to store in inode->i_private * @path: path to create * * The function tries to retrieve a stashed dentry from @stashed. If the dentry * is still valid then it will be reused. If the dentry isn't able the function * will allocate a new dentry and inode. It will then check again whether it * can reuse an existing dentry in case one has been added in the meantime or * update @stashed with the newly added dentry. * * Special-purpose helper for nsfs and pidfs. * * Return: On success zero and on failure a negative error is returned. */ int path_from_stashed(struct dentry **stashed, unsigned long ino, struct vfsmount *mnt, void *data, struct path *path) { struct dentry *dentry; const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; /* See if dentry can be reused. */ path->dentry = get_stashed_dentry(*stashed); if (path->dentry) { sops->put_data(data); goto out_path; } /* Allocate a new dentry. */ dentry = prepare_anon_dentry(stashed, ino, mnt->mnt_sb, data); if (IS_ERR(dentry)) { sops->put_data(data); return PTR_ERR(dentry); } /* Added a new dentry. @data is now owned by the filesystem. */ path->dentry = stash_dentry(stashed, dentry); if (path->dentry != dentry) dput(dentry); out_path: WARN_ON_ONCE(path->dentry->d_fsdata != stashed); WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); path->mnt = mntget(mnt); return 0; } void stashed_dentry_prune(struct dentry *dentry) { struct dentry **stashed = dentry->d_fsdata; struct inode *inode = d_inode(dentry); if (WARN_ON_ONCE(!stashed)) return; if (!inode) return; /* * Only replace our own @dentry as someone else might've * already cleared out @dentry and stashed their own * dentry in there. */ cmpxchg(stashed, dentry, NULL); }