// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ #include #include #include #include "linux/filter.h" #include #include #include #include "range_tree.h" /* * bpf_arena is a sparsely populated shared memory region between bpf program and * user space process. * * For example on x86-64 the values could be: * user_vm_start 7f7d26200000 // picked by mmap() * kern_vm_start ffffc90001e69000 // picked by get_vm_area() * For user space all pointers within the arena are normal 8-byte addresses. * In this example 7f7d26200000 is the address of the first page (pgoff=0). * The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr * (u32)7f7d26200000 -> 26200000 * hence * ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb * kernel memory region. * * BPF JITs generate the following code to access arena: * mov eax, eax // eax has lower 32-bit of user pointer * mov word ptr [rax + r12 + off], bx * where r12 == kern_vm_start and off is s16. * Hence allocate 4Gb + GUARD_SZ/2 on each side. * * Initially kernel vm_area and user vma are not populated. * User space can fault-in any address which will insert the page * into kernel and user vma. * bpf program can allocate a page via bpf_arena_alloc_pages() kfunc * which will insert it into kernel vm_area. * The later fault-in from user space will populate that page into user vma. */ /* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */ #define GUARD_SZ (1ull << sizeof_field(struct bpf_insn, off) * 8) #define KERN_VM_SZ (SZ_4G + GUARD_SZ) struct bpf_arena { struct bpf_map map; u64 user_vm_start; u64 user_vm_end; struct vm_struct *kern_vm; struct range_tree rt; struct list_head vma_list; struct mutex lock; }; u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) { return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; } u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) { return arena ? arena->user_vm_start : 0; } static long arena_map_peek_elem(struct bpf_map *map, void *value) { return -EOPNOTSUPP; } static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) { return -EOPNOTSUPP; } static long arena_map_pop_elem(struct bpf_map *map, void *value) { return -EOPNOTSUPP; } static long arena_map_delete_elem(struct bpf_map *map, void *value) { return -EOPNOTSUPP; } static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -EOPNOTSUPP; } static long compute_pgoff(struct bpf_arena *arena, long uaddr) { return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; } static struct bpf_map *arena_map_alloc(union bpf_attr *attr) { struct vm_struct *kern_vm; int numa_node = bpf_map_attr_numa_node(attr); struct bpf_arena *arena; u64 vm_range; int err = -ENOMEM; if (!bpf_jit_supports_arena()) return ERR_PTR(-EOPNOTSUPP); if (attr->key_size || attr->value_size || attr->max_entries == 0 || /* BPF_F_MMAPABLE must be set */ !(attr->map_flags & BPF_F_MMAPABLE) || /* No unsupported flags present */ (attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV))) return ERR_PTR(-EINVAL); if (attr->map_extra & ~PAGE_MASK) /* If non-zero the map_extra is an expected user VMA start address */ return ERR_PTR(-EINVAL); vm_range = (u64)attr->max_entries * PAGE_SIZE; if (vm_range > SZ_4G) return ERR_PTR(-E2BIG); if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32)) /* user vma must not cross 32-bit boundary */ return ERR_PTR(-ERANGE); kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP); if (!kern_vm) return ERR_PTR(-ENOMEM); arena = bpf_map_area_alloc(sizeof(*arena), numa_node); if (!arena) goto err; arena->kern_vm = kern_vm; arena->user_vm_start = attr->map_extra; if (arena->user_vm_start) arena->user_vm_end = arena->user_vm_start + vm_range; INIT_LIST_HEAD(&arena->vma_list); bpf_map_init_from_attr(&arena->map, attr); range_tree_init(&arena->rt); err = range_tree_set(&arena->rt, 0, attr->max_entries); if (err) { bpf_map_area_free(arena); goto err; } mutex_init(&arena->lock); return &arena->map; err: free_vm_area(kern_vm); return ERR_PTR(err); } static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data) { struct page *page; pte_t pte; pte = ptep_get(ptep); if (!pte_present(pte)) /* sanity check */ return 0; page = pte_page(pte); /* * We do not update pte here: * 1. Nobody should be accessing bpf_arena's range outside of a kernel bug * 2. TLB flushing is batched or deferred. Even if we clear pte, * the TLB entries can stick around and continue to permit access to * the freed page. So it all relies on 1. */ __free_page(page); return 0; } static void arena_map_free(struct bpf_map *map) { struct bpf_arena *arena = container_of(map, struct bpf_arena, map); /* * Check that user vma-s are not around when bpf map is freed. * mmap() holds vm_file which holds bpf_map refcnt. * munmap() must have happened on vma followed by arena_vm_close() * which would clear arena->vma_list. */ if (WARN_ON_ONCE(!list_empty(&arena->vma_list))) return; /* * free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area(). * It unmaps everything from vmalloc area and clears pgtables. * Call apply_to_existing_page_range() first to find populated ptes and * free those pages. */ apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena), KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL); free_vm_area(arena->kern_vm); range_tree_destroy(&arena->rt); bpf_map_area_free(arena); } static void *arena_map_lookup_elem(struct bpf_map *map, void *key) { return ERR_PTR(-EINVAL); } static long arena_map_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return -EOPNOTSUPP; } static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type) { return 0; } static u64 arena_map_mem_usage(const struct bpf_map *map) { return 0; } struct vma_list { struct vm_area_struct *vma; struct list_head head; refcount_t mmap_count; }; static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma) { struct vma_list *vml; vml = kmalloc(sizeof(*vml), GFP_KERNEL); if (!vml) return -ENOMEM; refcount_set(&vml->mmap_count, 1); vma->vm_private_data = vml; vml->vma = vma; list_add(&vml->head, &arena->vma_list); return 0; } static void arena_vm_open(struct vm_area_struct *vma) { struct vma_list *vml = vma->vm_private_data; refcount_inc(&vml->mmap_count); } static void arena_vm_close(struct vm_area_struct *vma) { struct bpf_map *map = vma->vm_file->private_data; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); struct vma_list *vml = vma->vm_private_data; if (!refcount_dec_and_test(&vml->mmap_count)) return; guard(mutex)(&arena->lock); /* update link list under lock */ list_del(&vml->head); vma->vm_private_data = NULL; kfree(vml); } static vm_fault_t arena_vm_fault(struct vm_fault *vmf) { struct bpf_map *map = vmf->vma->vm_file->private_data; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); struct page *page; long kbase, kaddr; int ret; kbase = bpf_arena_get_kern_vm_start(arena); kaddr = kbase + (u32)(vmf->address); guard(mutex)(&arena->lock); page = vmalloc_to_page((void *)kaddr); if (page) /* already have a page vmap-ed */ goto out; if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) /* User space requested to segfault when page is not allocated by bpf prog */ return VM_FAULT_SIGSEGV; ret = range_tree_clear(&arena->rt, vmf->pgoff, 1); if (ret) return VM_FAULT_SIGSEGV; /* Account into memcg of the process that created bpf_arena */ ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); if (ret) { range_tree_set(&arena->rt, vmf->pgoff, 1); return VM_FAULT_SIGSEGV; } ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); if (ret) { range_tree_set(&arena->rt, vmf->pgoff, 1); __free_page(page); return VM_FAULT_SIGSEGV; } out: page_ref_add(page, 1); vmf->page = page; return 0; } static const struct vm_operations_struct arena_vm_ops = { .open = arena_vm_open, .close = arena_vm_close, .fault = arena_vm_fault, }; static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct bpf_map *map = filp->private_data; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); long ret; if (pgoff) return -EINVAL; if (len > SZ_4G) return -E2BIG; /* if user_vm_start was specified at arena creation time */ if (arena->user_vm_start) { if (len > arena->user_vm_end - arena->user_vm_start) return -E2BIG; if (len != arena->user_vm_end - arena->user_vm_start) return -EINVAL; if (addr != arena->user_vm_start) return -EINVAL; } ret = mm_get_unmapped_area(current->mm, filp, addr, len * 2, 0, flags); if (IS_ERR_VALUE(ret)) return ret; if ((ret >> 32) == ((ret + len - 1) >> 32)) return ret; if (WARN_ON_ONCE(arena->user_vm_start)) /* checks at map creation time should prevent this */ return -EFAULT; return round_up(ret, SZ_4G); } static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_arena *arena = container_of(map, struct bpf_arena, map); guard(mutex)(&arena->lock); if (arena->user_vm_start && arena->user_vm_start != vma->vm_start) /* * If map_extra was not specified at arena creation time then * 1st user process can do mmap(NULL, ...) to pick user_vm_start * 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..); * or * specify addr in map_extra and * use the same addr later with mmap(addr, MAP_FIXED..); */ return -EBUSY; if (arena->user_vm_end && arena->user_vm_end != vma->vm_end) /* all user processes must have the same size of mmap-ed region */ return -EBUSY; /* Earlier checks should prevent this */ if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > SZ_4G || vma->vm_pgoff)) return -EFAULT; if (remember_vma(arena, vma)) return -ENOMEM; arena->user_vm_start = vma->vm_start; arena->user_vm_end = vma->vm_end; /* * bpf_map_mmap() checks that it's being mmaped as VM_SHARED and * clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid * potential change of user_vm_start. */ vm_flags_set(vma, VM_DONTEXPAND); vma->vm_ops = &arena_vm_ops; return 0; } static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) { struct bpf_arena *arena = container_of(map, struct bpf_arena, map); if ((u64)off > arena->user_vm_end - arena->user_vm_start) return -ERANGE; *imm = (unsigned long)arena->user_vm_start; return 0; } BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena) const struct bpf_map_ops arena_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = arena_map_alloc, .map_free = arena_map_free, .map_direct_value_addr = arena_map_direct_value_addr, .map_mmap = arena_map_mmap, .map_get_unmapped_area = arena_get_unmapped_area, .map_get_next_key = arena_map_get_next_key, .map_push_elem = arena_map_push_elem, .map_peek_elem = arena_map_peek_elem, .map_pop_elem = arena_map_pop_elem, .map_lookup_elem = arena_map_lookup_elem, .map_update_elem = arena_map_update_elem, .map_delete_elem = arena_map_delete_elem, .map_check_btf = arena_map_check_btf, .map_mem_usage = arena_map_mem_usage, .map_btf_id = &bpf_arena_map_btf_ids[0], }; static u64 clear_lo32(u64 val) { return val & ~(u64)~0U; } /* * Allocate pages and vmap them into kernel vmalloc area. * Later the pages will be mmaped into user space vma. */ static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) { /* user_vm_end/start are fixed before bpf prog runs */ long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); struct page **pages; long pgoff = 0; u32 uaddr32; int ret, i; if (page_cnt > page_cnt_max) return 0; if (uaddr) { if (uaddr & ~PAGE_MASK) return 0; pgoff = compute_pgoff(arena, uaddr); if (pgoff > page_cnt_max - page_cnt) /* requested address will be outside of user VMA */ return 0; } /* zeroing is needed, since alloc_pages_bulk() only fills in non-zero entries */ pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); if (!pages) return 0; guard(mutex)(&arena->lock); if (uaddr) { ret = is_range_tree_set(&arena->rt, pgoff, page_cnt); if (ret) goto out_free_pages; ret = range_tree_clear(&arena->rt, pgoff, page_cnt); } else { ret = pgoff = range_tree_find(&arena->rt, page_cnt); if (pgoff >= 0) ret = range_tree_clear(&arena->rt, pgoff, page_cnt); } if (ret) goto out_free_pages; ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, node_id, page_cnt, pages); if (ret) goto out; uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); /* Earlier checks made sure that uaddr32 + page_cnt * PAGE_SIZE - 1 * will not overflow 32-bit. Lower 32-bit need to represent * contiguous user address range. * Map these pages at kern_vm_start base. * kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE - 1 can overflow * lower 32-bit and it's ok. */ ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); if (ret) { for (i = 0; i < page_cnt; i++) __free_page(pages[i]); goto out; } kvfree(pages); return clear_lo32(arena->user_vm_start) + uaddr32; out: range_tree_set(&arena->rt, pgoff, page_cnt); out_free_pages: kvfree(pages); return 0; } /* * If page is present in vmalloc area, unmap it from vmalloc area, * unmap it from all user space vma-s, * and free it. */ static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) { struct vma_list *vml; list_for_each_entry(vml, &arena->vma_list, head) zap_page_range_single(vml->vma, uaddr, PAGE_SIZE * page_cnt, NULL); } static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) { u64 full_uaddr, uaddr_end; long kaddr, pgoff, i; struct page *page; /* only aligned lower 32-bit are relevant */ uaddr = (u32)uaddr; uaddr &= PAGE_MASK; full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); if (full_uaddr >= uaddr_end) return; page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; guard(mutex)(&arena->lock); pgoff = compute_pgoff(arena, uaddr); /* clear range */ range_tree_set(&arena->rt, pgoff, page_cnt); if (page_cnt > 1) /* bulk zap if multiple pages being freed */ zap_pages(arena, full_uaddr, page_cnt); kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { page = vmalloc_to_page((void *)kaddr); if (!page) continue; if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ /* Optimization for the common case of page_cnt==1: * If page wasn't mapped into some user vma there * is no need to call zap_pages which is slow. When * page_cnt is big it's faster to do the batched zap. */ zap_pages(arena, full_uaddr, 1); vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); __free_page(page); } } __bpf_kfunc_start_defs(); __bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt, int node_id, u64 flags) { struct bpf_map *map = p__map; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt) return NULL; return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id); } __bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt) { struct bpf_map *map = p__map; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign) return; arena_free_pages(arena, (long)ptr__ign, page_cnt); } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(arena_kfuncs) BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) BTF_KFUNCS_END(arena_kfuncs) static const struct btf_kfunc_id_set common_kfunc_set = { .owner = THIS_MODULE, .set = &arena_kfuncs, }; static int __init kfunc_init(void) { return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); } late_initcall(kfunc_init);