/* * Copyright (C) 2007-2009 Advanced Micro Devices, Inc. * Author: Joerg Roedel * Leo Duran * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) #define EXIT_LOOP_COUNT 10000000 static DEFINE_RWLOCK(amd_iommu_devtable_lock); /* A list of preallocated protection domains */ static LIST_HEAD(iommu_pd_list); static DEFINE_SPINLOCK(iommu_pd_list_lock); /* * Domain for untranslated devices - only allocated * if iommu=pt passed on kernel cmd line. */ static struct protection_domain *pt_domain; static struct iommu_ops amd_iommu_ops; /* * general struct to manage commands send to an IOMMU */ struct iommu_cmd { u32 data[4]; }; static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, struct unity_map_entry *e); static struct dma_ops_domain *find_protection_domain(u16 devid); static u64 *alloc_pte(struct protection_domain *domain, unsigned long address, int end_lvl, u64 **pte_page, gfp_t gfp); static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, unsigned long start_page, unsigned int pages); static void reset_iommu_command_buffer(struct amd_iommu *iommu); static u64 *fetch_pte(struct protection_domain *domain, unsigned long address, int map_size); static void update_domain(struct protection_domain *domain); #ifdef CONFIG_AMD_IOMMU_STATS /* * Initialization code for statistics collection */ DECLARE_STATS_COUNTER(compl_wait); DECLARE_STATS_COUNTER(cnt_map_single); DECLARE_STATS_COUNTER(cnt_unmap_single); DECLARE_STATS_COUNTER(cnt_map_sg); DECLARE_STATS_COUNTER(cnt_unmap_sg); DECLARE_STATS_COUNTER(cnt_alloc_coherent); DECLARE_STATS_COUNTER(cnt_free_coherent); DECLARE_STATS_COUNTER(cross_page); DECLARE_STATS_COUNTER(domain_flush_single); DECLARE_STATS_COUNTER(domain_flush_all); DECLARE_STATS_COUNTER(alloced_io_mem); DECLARE_STATS_COUNTER(total_map_requests); static struct dentry *stats_dir; static struct dentry *de_isolate; static struct dentry *de_fflush; static void amd_iommu_stats_add(struct __iommu_counter *cnt) { if (stats_dir == NULL) return; cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, &cnt->value); } static void amd_iommu_stats_init(void) { stats_dir = debugfs_create_dir("amd-iommu", NULL); if (stats_dir == NULL) return; de_isolate = debugfs_create_bool("isolation", 0444, stats_dir, (u32 *)&amd_iommu_isolate); de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir, (u32 *)&amd_iommu_unmap_flush); amd_iommu_stats_add(&compl_wait); amd_iommu_stats_add(&cnt_map_single); amd_iommu_stats_add(&cnt_unmap_single); amd_iommu_stats_add(&cnt_map_sg); amd_iommu_stats_add(&cnt_unmap_sg); amd_iommu_stats_add(&cnt_alloc_coherent); amd_iommu_stats_add(&cnt_free_coherent); amd_iommu_stats_add(&cross_page); amd_iommu_stats_add(&domain_flush_single); amd_iommu_stats_add(&domain_flush_all); amd_iommu_stats_add(&alloced_io_mem); amd_iommu_stats_add(&total_map_requests); } #endif /**************************************************************************** * * Interrupt handling functions * ****************************************************************************/ static void dump_dte_entry(u16 devid) { int i; for (i = 0; i < 8; ++i) pr_err("AMD-Vi: DTE[%d]: %08x\n", i, amd_iommu_dev_table[devid].data[i]); } static void dump_command(unsigned long phys_addr) { struct iommu_cmd *cmd = phys_to_virt(phys_addr); int i; for (i = 0; i < 4; ++i) pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); } static void iommu_print_event(struct amd_iommu *iommu, void *__evt) { u32 *event = __evt; int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; u64 address = (u64)(((u64)event[3]) << 32) | event[2]; printk(KERN_ERR "AMD-Vi: Event logged ["); switch (type) { case EVENT_TYPE_ILL_DEV: printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " "address=0x%016llx flags=0x%04x]\n", PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), address, flags); dump_dte_entry(devid); break; case EVENT_TYPE_IO_FAULT: printk("IO_PAGE_FAULT device=%02x:%02x.%x " "domain=0x%04x address=0x%016llx flags=0x%04x]\n", PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), domid, address, flags); break; case EVENT_TYPE_DEV_TAB_ERR: printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " "address=0x%016llx flags=0x%04x]\n", PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), address, flags); break; case EVENT_TYPE_PAGE_TAB_ERR: printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " "domain=0x%04x address=0x%016llx flags=0x%04x]\n", PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), domid, address, flags); break; case EVENT_TYPE_ILL_CMD: printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); reset_iommu_command_buffer(iommu); dump_command(address); break; case EVENT_TYPE_CMD_HARD_ERR: printk("COMMAND_HARDWARE_ERROR address=0x%016llx " "flags=0x%04x]\n", address, flags); break; case EVENT_TYPE_IOTLB_INV_TO: printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " "address=0x%016llx]\n", PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), address); break; case EVENT_TYPE_INV_DEV_REQ: printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " "address=0x%016llx flags=0x%04x]\n", PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), address, flags); break; default: printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); } } static void iommu_poll_events(struct amd_iommu *iommu) { u32 head, tail; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); while (head != tail) { iommu_print_event(iommu, iommu->evt_buf + head); head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; } writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); spin_unlock_irqrestore(&iommu->lock, flags); } irqreturn_t amd_iommu_int_handler(int irq, void *data) { struct amd_iommu *iommu; for_each_iommu(iommu) iommu_poll_events(iommu); return IRQ_HANDLED; } /**************************************************************************** * * IOMMU command queuing functions * ****************************************************************************/ /* * Writes the command to the IOMMUs command buffer and informs the * hardware about the new command. Must be called with iommu->lock held. */ static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) { u32 tail, head; u8 *target; tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); target = iommu->cmd_buf + tail; memcpy_toio(target, cmd, sizeof(*cmd)); tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); if (tail == head) return -ENOMEM; writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); return 0; } /* * General queuing function for commands. Takes iommu->lock and calls * __iommu_queue_command(). */ static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) { unsigned long flags; int ret; spin_lock_irqsave(&iommu->lock, flags); ret = __iommu_queue_command(iommu, cmd); if (!ret) iommu->need_sync = true; spin_unlock_irqrestore(&iommu->lock, flags); return ret; } /* * This function waits until an IOMMU has completed a completion * wait command */ static void __iommu_wait_for_completion(struct amd_iommu *iommu) { int ready = 0; unsigned status = 0; unsigned long i = 0; INC_STATS_COUNTER(compl_wait); while (!ready && (i < EXIT_LOOP_COUNT)) { ++i; /* wait for the bit to become one */ status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); ready = status & MMIO_STATUS_COM_WAIT_INT_MASK; } /* set bit back to zero */ status &= ~MMIO_STATUS_COM_WAIT_INT_MASK; writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET); if (unlikely(i == EXIT_LOOP_COUNT)) { spin_unlock(&iommu->lock); reset_iommu_command_buffer(iommu); spin_lock(&iommu->lock); } } /* * This function queues a completion wait command into the command * buffer of an IOMMU */ static int __iommu_completion_wait(struct amd_iommu *iommu) { struct iommu_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.data[0] = CMD_COMPL_WAIT_INT_MASK; CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT); return __iommu_queue_command(iommu, &cmd); } /* * This function is called whenever we need to ensure that the IOMMU has * completed execution of all commands we sent. It sends a * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs * us about that by writing a value to a physical address we pass with * the command. */ static int iommu_completion_wait(struct amd_iommu *iommu) { int ret = 0; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); if (!iommu->need_sync) goto out; ret = __iommu_completion_wait(iommu); iommu->need_sync = false; if (ret) goto out; __iommu_wait_for_completion(iommu); out: spin_unlock_irqrestore(&iommu->lock, flags); return 0; } static void iommu_flush_complete(struct protection_domain *domain) { int i; for (i = 0; i < amd_iommus_present; ++i) { if (!domain->dev_iommu[i]) continue; /* * Devices of this domain are behind this IOMMU * We need to wait for completion of all commands. */ iommu_completion_wait(amd_iommus[i]); } } /* * Command send function for invalidating a device table entry */ static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid) { struct iommu_cmd cmd; int ret; BUG_ON(iommu == NULL); memset(&cmd, 0, sizeof(cmd)); CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY); cmd.data[0] = devid; ret = iommu_queue_command(iommu, &cmd); return ret; } static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, u16 domid, int pde, int s) { memset(cmd, 0, sizeof(*cmd)); address &= PAGE_MASK; CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); cmd->data[1] |= domid; cmd->data[2] = lower_32_bits(address); cmd->data[3] = upper_32_bits(address); if (s) /* size bit - we flush more than one 4kb page */ cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; if (pde) /* PDE bit - we wan't flush everything not only the PTEs */ cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; } /* * Generic command send function for invalidaing TLB entries */ static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu, u64 address, u16 domid, int pde, int s) { struct iommu_cmd cmd; int ret; __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s); ret = iommu_queue_command(iommu, &cmd); return ret; } /* * TLB invalidation function which is called from the mapping functions. * It invalidates a single PTE if the range to flush is within a single * page. Otherwise it flushes the whole TLB of the IOMMU. */ static void __iommu_flush_pages(struct protection_domain *domain, u64 address, size_t size, int pde) { int s = 0, i; unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE); address &= PAGE_MASK; if (pages > 1) { /* * If we have to flush more than one page, flush all * TLB entries for this domain */ address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; s = 1; } for (i = 0; i < amd_iommus_present; ++i) { if (!domain->dev_iommu[i]) continue; /* * Devices of this domain are behind this IOMMU * We need a TLB flush */ iommu_queue_inv_iommu_pages(amd_iommus[i], address, domain->id, pde, s); } return; } static void iommu_flush_pages(struct protection_domain *domain, u64 address, size_t size) { __iommu_flush_pages(domain, address, size, 0); } /* Flush the whole IO/TLB for a given protection domain */ static void iommu_flush_tlb(struct protection_domain *domain) { __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); } /* Flush the whole IO/TLB for a given protection domain - including PDE */ static void iommu_flush_tlb_pde(struct protection_domain *domain) { __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); } /* * This function flushes all domains that have devices on the given IOMMU */ static void flush_all_domains_on_iommu(struct amd_iommu *iommu) { u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; struct protection_domain *domain; unsigned long flags; spin_lock_irqsave(&amd_iommu_pd_lock, flags); list_for_each_entry(domain, &amd_iommu_pd_list, list) { if (domain->dev_iommu[iommu->index] == 0) continue; spin_lock(&domain->lock); iommu_queue_inv_iommu_pages(iommu, address, domain->id, 1, 1); iommu_flush_complete(domain); spin_unlock(&domain->lock); } spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); } /* * This function uses heavy locking and may disable irqs for some time. But * this is no issue because it is only called during resume. */ void amd_iommu_flush_all_domains(void) { struct protection_domain *domain; unsigned long flags; spin_lock_irqsave(&amd_iommu_pd_lock, flags); list_for_each_entry(domain, &amd_iommu_pd_list, list) { spin_lock(&domain->lock); iommu_flush_tlb_pde(domain); iommu_flush_complete(domain); spin_unlock(&domain->lock); } spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); } static void flush_all_devices_for_iommu(struct amd_iommu *iommu) { int i; for (i = 0; i <= amd_iommu_last_bdf; ++i) { if (iommu != amd_iommu_rlookup_table[i]) continue; iommu_queue_inv_dev_entry(iommu, i); iommu_completion_wait(iommu); } } static void flush_devices_by_domain(struct protection_domain *domain) { struct amd_iommu *iommu; int i; for (i = 0; i <= amd_iommu_last_bdf; ++i) { if ((domain == NULL && amd_iommu_pd_table[i] == NULL) || (amd_iommu_pd_table[i] != domain)) continue; iommu = amd_iommu_rlookup_table[i]; if (!iommu) continue; iommu_queue_inv_dev_entry(iommu, i); iommu_completion_wait(iommu); } } static void reset_iommu_command_buffer(struct amd_iommu *iommu) { pr_err("AMD-Vi: Resetting IOMMU command buffer\n"); if (iommu->reset_in_progress) panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n"); iommu->reset_in_progress = true; amd_iommu_reset_cmd_buffer(iommu); flush_all_devices_for_iommu(iommu); flush_all_domains_on_iommu(iommu); iommu->reset_in_progress = false; } void amd_iommu_flush_all_devices(void) { flush_devices_by_domain(NULL); } /**************************************************************************** * * The functions below are used the create the page table mappings for * unity mapped regions. * ****************************************************************************/ /* * Generic mapping functions. It maps a physical address into a DMA * address space. It allocates the page table pages if necessary. * In the future it can be extended to a generic mapping function * supporting all features of AMD IOMMU page tables like level skipping * and full 64 bit address spaces. */ static int iommu_map_page(struct protection_domain *dom, unsigned long bus_addr, unsigned long phys_addr, int prot, int map_size) { u64 __pte, *pte; bus_addr = PAGE_ALIGN(bus_addr); phys_addr = PAGE_ALIGN(phys_addr); BUG_ON(!PM_ALIGNED(map_size, bus_addr)); BUG_ON(!PM_ALIGNED(map_size, phys_addr)); if (!(prot & IOMMU_PROT_MASK)) return -EINVAL; pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL); if (IOMMU_PTE_PRESENT(*pte)) return -EBUSY; __pte = phys_addr | IOMMU_PTE_P; if (prot & IOMMU_PROT_IR) __pte |= IOMMU_PTE_IR; if (prot & IOMMU_PROT_IW) __pte |= IOMMU_PTE_IW; *pte = __pte; update_domain(dom); return 0; } static void iommu_unmap_page(struct protection_domain *dom, unsigned long bus_addr, int map_size) { u64 *pte = fetch_pte(dom, bus_addr, map_size); if (pte) *pte = 0; } /* * This function checks if a specific unity mapping entry is needed for * this specific IOMMU. */ static int iommu_for_unity_map(struct amd_iommu *iommu, struct unity_map_entry *entry) { u16 bdf, i; for (i = entry->devid_start; i <= entry->devid_end; ++i) { bdf = amd_iommu_alias_table[i]; if (amd_iommu_rlookup_table[bdf] == iommu) return 1; } return 0; } /* * Init the unity mappings for a specific IOMMU in the system * * Basically iterates over all unity mapping entries and applies them to * the default domain DMA of that IOMMU if necessary. */ static int iommu_init_unity_mappings(struct amd_iommu *iommu) { struct unity_map_entry *entry; int ret; list_for_each_entry(entry, &amd_iommu_unity_map, list) { if (!iommu_for_unity_map(iommu, entry)) continue; ret = dma_ops_unity_map(iommu->default_dom, entry); if (ret) return ret; } return 0; } /* * This function actually applies the mapping to the page table of the * dma_ops domain. */ static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, struct unity_map_entry *e) { u64 addr; int ret; for (addr = e->address_start; addr < e->address_end; addr += PAGE_SIZE) { ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot, PM_MAP_4k); if (ret) return ret; /* * if unity mapping is in aperture range mark the page * as allocated in the aperture */ if (addr < dma_dom->aperture_size) __set_bit(addr >> PAGE_SHIFT, dma_dom->aperture[0]->bitmap); } return 0; } /* * Inits the unity mappings required for a specific device */ static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom, u16 devid) { struct unity_map_entry *e; int ret; list_for_each_entry(e, &amd_iommu_unity_map, list) { if (!(devid >= e->devid_start && devid <= e->devid_end)) continue; ret = dma_ops_unity_map(dma_dom, e); if (ret) return ret; } return 0; } /**************************************************************************** * * The next functions belong to the address allocator for the dma_ops * interface functions. They work like the allocators in the other IOMMU * drivers. Its basically a bitmap which marks the allocated pages in * the aperture. Maybe it could be enhanced in the future to a more * efficient allocator. * ****************************************************************************/ /* * The address allocator core functions. * * called with domain->lock held */ /* * This function checks if there is a PTE for a given dma address. If * there is one, it returns the pointer to it. */ static u64 *fetch_pte(struct protection_domain *domain, unsigned long address, int map_size) { int level; u64 *pte; level = domain->mode - 1; pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; while (level > map_size) { if (!IOMMU_PTE_PRESENT(*pte)) return NULL; level -= 1; pte = IOMMU_PTE_PAGE(*pte); pte = &pte[PM_LEVEL_INDEX(level, address)]; if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) { pte = NULL; break; } } return pte; } /* * This function is used to add a new aperture range to an existing * aperture in case of dma_ops domain allocation or address allocation * failure. */ static int alloc_new_range(struct dma_ops_domain *dma_dom, bool populate, gfp_t gfp) { int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; struct amd_iommu *iommu; int i; #ifdef CONFIG_IOMMU_STRESS populate = false; #endif if (index >= APERTURE_MAX_RANGES) return -ENOMEM; dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); if (!dma_dom->aperture[index]) return -ENOMEM; dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); if (!dma_dom->aperture[index]->bitmap) goto out_free; dma_dom->aperture[index]->offset = dma_dom->aperture_size; if (populate) { unsigned long address = dma_dom->aperture_size; int i, num_ptes = APERTURE_RANGE_PAGES / 512; u64 *pte, *pte_page; for (i = 0; i < num_ptes; ++i) { pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k, &pte_page, gfp); if (!pte) goto out_free; dma_dom->aperture[index]->pte_pages[i] = pte_page; address += APERTURE_RANGE_SIZE / 64; } } dma_dom->aperture_size += APERTURE_RANGE_SIZE; /* Intialize the exclusion range if necessary */ for_each_iommu(iommu) { if (iommu->exclusion_start && iommu->exclusion_start >= dma_dom->aperture[index]->offset && iommu->exclusion_start < dma_dom->aperture_size) { unsigned long startpage; int pages = iommu_num_pages(iommu->exclusion_start, iommu->exclusion_length, PAGE_SIZE); startpage = iommu->exclusion_start >> PAGE_SHIFT; dma_ops_reserve_addresses(dma_dom, startpage, pages); } } /* * Check for areas already mapped as present in the new aperture * range and mark those pages as reserved in the allocator. Such * mappings may already exist as a result of requested unity * mappings for devices. */ for (i = dma_dom->aperture[index]->offset; i < dma_dom->aperture_size; i += PAGE_SIZE) { u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k); if (!pte || !IOMMU_PTE_PRESENT(*pte)) continue; dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1); } update_domain(&dma_dom->domain); return 0; out_free: update_domain(&dma_dom->domain); free_page((unsigned long)dma_dom->aperture[index]->bitmap); kfree(dma_dom->aperture[index]); dma_dom->aperture[index] = NULL; return -ENOMEM; } static unsigned long dma_ops_area_alloc(struct device *dev, struct dma_ops_domain *dom, unsigned int pages, unsigned long align_mask, u64 dma_mask, unsigned long start) { unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; int i = start >> APERTURE_RANGE_SHIFT; unsigned long boundary_size; unsigned long address = -1; unsigned long limit; next_bit >>= PAGE_SHIFT; boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, PAGE_SIZE) >> PAGE_SHIFT; for (;i < max_index; ++i) { unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; if (dom->aperture[i]->offset >= dma_mask) break; limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, dma_mask >> PAGE_SHIFT); address = iommu_area_alloc(dom->aperture[i]->bitmap, limit, next_bit, pages, 0, boundary_size, align_mask); if (address != -1) { address = dom->aperture[i]->offset + (address << PAGE_SHIFT); dom->next_address = address + (pages << PAGE_SHIFT); break; } next_bit = 0; } return address; } static unsigned long dma_ops_alloc_addresses(struct device *dev, struct dma_ops_domain *dom, unsigned int pages, unsigned long align_mask, u64 dma_mask) { unsigned long address; #ifdef CONFIG_IOMMU_STRESS dom->next_address = 0; dom->need_flush = true; #endif address = dma_ops_area_alloc(dev, dom, pages, align_mask, dma_mask, dom->next_address); if (address == -1) { dom->next_address = 0; address = dma_ops_area_alloc(dev, dom, pages, align_mask, dma_mask, 0); dom->need_flush = true; } if (unlikely(address == -1)) address = DMA_ERROR_CODE; WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); return address; } /* * The address free function. * * called with domain->lock held */ static void dma_ops_free_addresses(struct dma_ops_domain *dom, unsigned long address, unsigned int pages) { unsigned i = address >> APERTURE_RANGE_SHIFT; struct aperture_range *range = dom->aperture[i]; BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); #ifdef CONFIG_IOMMU_STRESS if (i < 4) return; #endif if (address >= dom->next_address) dom->need_flush = true; address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; iommu_area_free(range->bitmap, address, pages); } /**************************************************************************** * * The next functions belong to the domain allocation. A domain is * allocated for every IOMMU as the default domain. If device isolation * is enabled, every device get its own domain. The most important thing * about domains is the page table mapping the DMA address space they * contain. * ****************************************************************************/ /* * This function adds a protection domain to the global protection domain list */ static void add_domain_to_list(struct protection_domain *domain) { unsigned long flags; spin_lock_irqsave(&amd_iommu_pd_lock, flags); list_add(&domain->list, &amd_iommu_pd_list); spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); } /* * This function removes a protection domain to the global * protection domain list */ static void del_domain_from_list(struct protection_domain *domain) { unsigned long flags; spin_lock_irqsave(&amd_iommu_pd_lock, flags); list_del(&domain->list); spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); } static u16 domain_id_alloc(void) { unsigned long flags; int id; write_lock_irqsave(&amd_iommu_devtable_lock, flags); id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); BUG_ON(id == 0); if (id > 0 && id < MAX_DOMAIN_ID) __set_bit(id, amd_iommu_pd_alloc_bitmap); else id = 0; write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); return id; } static void domain_id_free(int id) { unsigned long flags; write_lock_irqsave(&amd_iommu_devtable_lock, flags); if (id > 0 && id < MAX_DOMAIN_ID) __clear_bit(id, amd_iommu_pd_alloc_bitmap); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); } /* * Used to reserve address ranges in the aperture (e.g. for exclusion * ranges. */ static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, unsigned long start_page, unsigned int pages) { unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; if (start_page + pages > last_page) pages = last_page - start_page; for (i = start_page; i < start_page + pages; ++i) { int index = i / APERTURE_RANGE_PAGES; int page = i % APERTURE_RANGE_PAGES; __set_bit(page, dom->aperture[index]->bitmap); } } static void free_pagetable(struct protection_domain *domain) { int i, j; u64 *p1, *p2, *p3; p1 = domain->pt_root; if (!p1) return; for (i = 0; i < 512; ++i) { if (!IOMMU_PTE_PRESENT(p1[i])) continue; p2 = IOMMU_PTE_PAGE(p1[i]); for (j = 0; j < 512; ++j) { if (!IOMMU_PTE_PRESENT(p2[j])) continue; p3 = IOMMU_PTE_PAGE(p2[j]); free_page((unsigned long)p3); } free_page((unsigned long)p2); } free_page((unsigned long)p1); domain->pt_root = NULL; } /* * Free a domain, only used if something went wrong in the * allocation path and we need to free an already allocated page table */ static void dma_ops_domain_free(struct dma_ops_domain *dom) { int i; if (!dom) return; del_domain_from_list(&dom->domain); free_pagetable(&dom->domain); for (i = 0; i < APERTURE_MAX_RANGES; ++i) { if (!dom->aperture[i]) continue; free_page((unsigned long)dom->aperture[i]->bitmap); kfree(dom->aperture[i]); } kfree(dom); } /* * Allocates a new protection domain usable for the dma_ops functions. * It also intializes the page table and the address allocator data * structures required for the dma_ops interface */ static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu) { struct dma_ops_domain *dma_dom; dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); if (!dma_dom) return NULL; spin_lock_init(&dma_dom->domain.lock); dma_dom->domain.id = domain_id_alloc(); if (dma_dom->domain.id == 0) goto free_dma_dom; dma_dom->domain.mode = PAGE_MODE_2_LEVEL; dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); dma_dom->domain.flags = PD_DMA_OPS_MASK; dma_dom->domain.priv = dma_dom; if (!dma_dom->domain.pt_root) goto free_dma_dom; dma_dom->need_flush = false; dma_dom->target_dev = 0xffff; add_domain_to_list(&dma_dom->domain); if (alloc_new_range(dma_dom, true, GFP_KERNEL)) goto free_dma_dom; /* * mark the first page as allocated so we never return 0 as * a valid dma-address. So we can use 0 as error value */ dma_dom->aperture[0]->bitmap[0] = 1; dma_dom->next_address = 0; return dma_dom; free_dma_dom: dma_ops_domain_free(dma_dom); return NULL; } /* * little helper function to check whether a given protection domain is a * dma_ops domain */ static bool dma_ops_domain(struct protection_domain *domain) { return domain->flags & PD_DMA_OPS_MASK; } /* * Find out the protection domain structure for a given PCI device. This * will give us the pointer to the page table root for example. */ static struct protection_domain *domain_for_device(u16 devid) { struct protection_domain *dom; unsigned long flags; read_lock_irqsave(&amd_iommu_devtable_lock, flags); dom = amd_iommu_pd_table[devid]; read_unlock_irqrestore(&amd_iommu_devtable_lock, flags); return dom; } static void set_dte_entry(u16 devid, struct protection_domain *domain) { u64 pte_root = virt_to_phys(domain->pt_root); pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) << DEV_ENTRY_MODE_SHIFT; pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; amd_iommu_dev_table[devid].data[2] = domain->id; amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root); amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root); amd_iommu_pd_table[devid] = domain; } /* * If a device is not yet associated with a domain, this function does * assigns it visible for the hardware */ static void __attach_device(struct amd_iommu *iommu, struct protection_domain *domain, u16 devid) { /* lock domain */ spin_lock(&domain->lock); /* update DTE entry */ set_dte_entry(devid, domain); /* Do reference counting */ domain->dev_iommu[iommu->index] += 1; domain->dev_cnt += 1; /* ready */ spin_unlock(&domain->lock); } /* * If a device is not yet associated with a domain, this function does * assigns it visible for the hardware */ static void attach_device(struct amd_iommu *iommu, struct protection_domain *domain, u16 devid) { unsigned long flags; write_lock_irqsave(&amd_iommu_devtable_lock, flags); __attach_device(iommu, domain, devid); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); /* * We might boot into a crash-kernel here. The crashed kernel * left the caches in the IOMMU dirty. So we have to flush * here to evict all dirty stuff. */ iommu_queue_inv_dev_entry(iommu, devid); iommu_flush_tlb_pde(domain); } /* * Removes a device from a protection domain (unlocked) */ static void __detach_device(struct protection_domain *domain, u16 devid) { struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; BUG_ON(!iommu); /* lock domain */ spin_lock(&domain->lock); /* remove domain from the lookup table */ amd_iommu_pd_table[devid] = NULL; /* remove entry from the device table seen by the hardware */ amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; amd_iommu_dev_table[devid].data[1] = 0; amd_iommu_dev_table[devid].data[2] = 0; amd_iommu_apply_erratum_63(devid); /* decrease reference counters */ domain->dev_iommu[iommu->index] -= 1; domain->dev_cnt -= 1; /* ready */ spin_unlock(&domain->lock); /* * If we run in passthrough mode the device must be assigned to the * passthrough domain if it is detached from any other domain */ if (iommu_pass_through) { struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; __attach_device(iommu, pt_domain, devid); } } /* * Removes a device from a protection domain (with devtable_lock held) */ static void detach_device(struct protection_domain *domain, u16 devid) { unsigned long flags; /* lock device table */ write_lock_irqsave(&amd_iommu_devtable_lock, flags); __detach_device(domain, devid); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); } static int device_change_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; struct pci_dev *pdev = to_pci_dev(dev); u16 devid = calc_devid(pdev->bus->number, pdev->devfn); struct protection_domain *domain; struct dma_ops_domain *dma_domain; struct amd_iommu *iommu; unsigned long flags; if (devid > amd_iommu_last_bdf) goto out; devid = amd_iommu_alias_table[devid]; iommu = amd_iommu_rlookup_table[devid]; if (iommu == NULL) goto out; domain = domain_for_device(devid); if (domain && !dma_ops_domain(domain)) WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound " "to a non-dma-ops domain\n", dev_name(dev)); switch (action) { case BUS_NOTIFY_UNBOUND_DRIVER: if (!domain) goto out; if (iommu_pass_through) break; detach_device(domain, devid); break; case BUS_NOTIFY_ADD_DEVICE: /* allocate a protection domain if a device is added */ dma_domain = find_protection_domain(devid); if (dma_domain) goto out; dma_domain = dma_ops_domain_alloc(iommu); if (!dma_domain) goto out; dma_domain->target_dev = devid; spin_lock_irqsave(&iommu_pd_list_lock, flags); list_add_tail(&dma_domain->list, &iommu_pd_list); spin_unlock_irqrestore(&iommu_pd_list_lock, flags); break; default: goto out; } iommu_queue_inv_dev_entry(iommu, devid); iommu_completion_wait(iommu); out: return 0; } static struct notifier_block device_nb = { .notifier_call = device_change_notifier, }; /***************************************************************************** * * The next functions belong to the dma_ops mapping/unmapping code. * *****************************************************************************/ /* * This function checks if the driver got a valid device from the caller to * avoid dereferencing invalid pointers. */ static bool check_device(struct device *dev) { u16 bdf; struct pci_dev *pcidev; if (!dev || !dev->dma_mask) return false; /* No device or no PCI device */ if (!dev || dev->bus != &pci_bus_type) return false; pcidev = to_pci_dev(dev); bdf = calc_devid(pcidev->bus->number, pcidev->devfn); /* Out of our scope? */ if (bdf > amd_iommu_last_bdf) return false; if (amd_iommu_rlookup_table[bdf] == NULL) return false; return true; } /* * In this function the list of preallocated protection domains is traversed to * find the domain for a specific device */ static struct dma_ops_domain *find_protection_domain(u16 devid) { struct dma_ops_domain *entry, *ret = NULL; unsigned long flags; if (list_empty(&iommu_pd_list)) return NULL; spin_lock_irqsave(&iommu_pd_list_lock, flags); list_for_each_entry(entry, &iommu_pd_list, list) { if (entry->target_dev == devid) { ret = entry; break; } } spin_unlock_irqrestore(&iommu_pd_list_lock, flags); return ret; } /* * In the dma_ops path we only have the struct device. This function * finds the corresponding IOMMU, the protection domain and the * requestor id for a given device. * If the device is not yet associated with a domain this is also done * in this function. */ static bool get_device_resources(struct device *dev, struct protection_domain **domain, u16 *bdf) { struct dma_ops_domain *dma_dom; struct amd_iommu *iommu; struct pci_dev *pcidev; u16 _bdf; if (!check_device(dev)) return false; pcidev = to_pci_dev(dev); _bdf = calc_devid(pcidev->bus->number, pcidev->devfn); *bdf = amd_iommu_alias_table[_bdf]; iommu = amd_iommu_rlookup_table[*bdf]; *domain = domain_for_device(*bdf); if (*domain == NULL) { dma_dom = find_protection_domain(*bdf); if (!dma_dom) dma_dom = iommu->default_dom; *domain = &dma_dom->domain; attach_device(iommu, *domain, *bdf); DUMP_printk("Using protection domain %d for device %s\n", (*domain)->id, dev_name(dev)); } if (domain_for_device(_bdf) == NULL) attach_device(iommu, *domain, _bdf); return true; } static void update_device_table(struct protection_domain *domain) { unsigned long flags; int i; for (i = 0; i <= amd_iommu_last_bdf; ++i) { if (amd_iommu_pd_table[i] != domain) continue; write_lock_irqsave(&amd_iommu_devtable_lock, flags); set_dte_entry(i, domain); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); } } static void update_domain(struct protection_domain *domain) { if (!domain->updated) return; update_device_table(domain); flush_devices_by_domain(domain); iommu_flush_tlb_pde(domain); domain->updated = false; } /* * This function is used to add another level to an IO page table. Adding * another level increases the size of the address space by 9 bits to a size up * to 64 bits. */ static bool increase_address_space(struct protection_domain *domain, gfp_t gfp) { u64 *pte; if (domain->mode == PAGE_MODE_6_LEVEL) /* address space already 64 bit large */ return false; pte = (void *)get_zeroed_page(gfp); if (!pte) return false; *pte = PM_LEVEL_PDE(domain->mode, virt_to_phys(domain->pt_root)); domain->pt_root = pte; domain->mode += 1; domain->updated = true; return true; } static u64 *alloc_pte(struct protection_domain *domain, unsigned long address, int end_lvl, u64 **pte_page, gfp_t gfp) { u64 *pte, *page; int level; while (address > PM_LEVEL_SIZE(domain->mode)) increase_address_space(domain, gfp); level = domain->mode - 1; pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; while (level > end_lvl) { if (!IOMMU_PTE_PRESENT(*pte)) { page = (u64 *)get_zeroed_page(gfp); if (!page) return NULL; *pte = PM_LEVEL_PDE(level, virt_to_phys(page)); } level -= 1; pte = IOMMU_PTE_PAGE(*pte); if (pte_page && level == end_lvl) *pte_page = pte; pte = &pte[PM_LEVEL_INDEX(level, address)]; } return pte; } /* * This function fetches the PTE for a given address in the aperture */ static u64* dma_ops_get_pte(struct dma_ops_domain *dom, unsigned long address) { struct aperture_range *aperture; u64 *pte, *pte_page; aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; if (!aperture) return NULL; pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; if (!pte) { pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page, GFP_ATOMIC); aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; } else pte += PM_LEVEL_INDEX(0, address); update_domain(&dom->domain); return pte; } /* * This is the generic map function. It maps one 4kb page at paddr to * the given address in the DMA address space for the domain. */ static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom, unsigned long address, phys_addr_t paddr, int direction) { u64 *pte, __pte; WARN_ON(address > dom->aperture_size); paddr &= PAGE_MASK; pte = dma_ops_get_pte(dom, address); if (!pte) return DMA_ERROR_CODE; __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; if (direction == DMA_TO_DEVICE) __pte |= IOMMU_PTE_IR; else if (direction == DMA_FROM_DEVICE) __pte |= IOMMU_PTE_IW; else if (direction == DMA_BIDIRECTIONAL) __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; WARN_ON(*pte); *pte = __pte; return (dma_addr_t)address; } /* * The generic unmapping function for on page in the DMA address space. */ static void dma_ops_domain_unmap(struct dma_ops_domain *dom, unsigned long address) { struct aperture_range *aperture; u64 *pte; if (address >= dom->aperture_size) return; aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; if (!aperture) return; pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; if (!pte) return; pte += PM_LEVEL_INDEX(0, address); WARN_ON(!*pte); *pte = 0ULL; } /* * This function contains common code for mapping of a physically * contiguous memory region into DMA address space. It is used by all * mapping functions provided with this IOMMU driver. * Must be called with the domain lock held. */ static dma_addr_t __map_single(struct device *dev, struct dma_ops_domain *dma_dom, phys_addr_t paddr, size_t size, int dir, bool align, u64 dma_mask) { dma_addr_t offset = paddr & ~PAGE_MASK; dma_addr_t address, start, ret; unsigned int pages; unsigned long align_mask = 0; int i; pages = iommu_num_pages(paddr, size, PAGE_SIZE); paddr &= PAGE_MASK; INC_STATS_COUNTER(total_map_requests); if (pages > 1) INC_STATS_COUNTER(cross_page); if (align) align_mask = (1UL << get_order(size)) - 1; retry: address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, dma_mask); if (unlikely(address == DMA_ERROR_CODE)) { /* * setting next_address here will let the address * allocator only scan the new allocated range in the * first run. This is a small optimization. */ dma_dom->next_address = dma_dom->aperture_size; if (alloc_new_range(dma_dom, false, GFP_ATOMIC)) goto out; /* * aperture was sucessfully enlarged by 128 MB, try * allocation again */ goto retry; } start = address; for (i = 0; i < pages; ++i) { ret = dma_ops_domain_map(dma_dom, start, paddr, dir); if (ret == DMA_ERROR_CODE) goto out_unmap; paddr += PAGE_SIZE; start += PAGE_SIZE; } address += offset; ADD_STATS_COUNTER(alloced_io_mem, size); if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { iommu_flush_tlb(&dma_dom->domain); dma_dom->need_flush = false; } else if (unlikely(amd_iommu_np_cache)) iommu_flush_pages(&dma_dom->domain, address, size); out: return address; out_unmap: for (--i; i >= 0; --i) { start -= PAGE_SIZE; dma_ops_domain_unmap(dma_dom, start); } dma_ops_free_addresses(dma_dom, address, pages); return DMA_ERROR_CODE; } /* * Does the reverse of the __map_single function. Must be called with * the domain lock held too */ static void __unmap_single(struct dma_ops_domain *dma_dom, dma_addr_t dma_addr, size_t size, int dir) { dma_addr_t i, start; unsigned int pages; if ((dma_addr == DMA_ERROR_CODE) || (dma_addr + size > dma_dom->aperture_size)) return; pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); dma_addr &= PAGE_MASK; start = dma_addr; for (i = 0; i < pages; ++i) { dma_ops_domain_unmap(dma_dom, start); start += PAGE_SIZE; } SUB_STATS_COUNTER(alloced_io_mem, size); dma_ops_free_addresses(dma_dom, dma_addr, pages); if (amd_iommu_unmap_flush || dma_dom->need_flush) { iommu_flush_pages(&dma_dom->domain, dma_addr, size); dma_dom->need_flush = false; } } /* * The exported map_single function for dma_ops. */ static dma_addr_t map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; u16 devid; dma_addr_t addr; u64 dma_mask; phys_addr_t paddr = page_to_phys(page) + offset; INC_STATS_COUNTER(cnt_map_single); if (!get_device_resources(dev, &domain, &devid)) /* device not handled by any AMD IOMMU */ return (dma_addr_t)paddr; dma_mask = *dev->dma_mask; if (!dma_ops_domain(domain)) return DMA_ERROR_CODE; spin_lock_irqsave(&domain->lock, flags); addr = __map_single(dev, domain->priv, paddr, size, dir, false, dma_mask); if (addr == DMA_ERROR_CODE) goto out; iommu_flush_complete(domain); out: spin_unlock_irqrestore(&domain->lock, flags); return addr; } /* * The exported unmap_single function for dma_ops. */ static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; u16 devid; INC_STATS_COUNTER(cnt_unmap_single); if (!get_device_resources(dev, &domain, &devid)) /* device not handled by any AMD IOMMU */ return; if (!dma_ops_domain(domain)) return; spin_lock_irqsave(&domain->lock, flags); __unmap_single(domain->priv, dma_addr, size, dir); iommu_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); } /* * This is a special map_sg function which is used if we should map a * device which is not handled by an AMD IOMMU in the system. */ static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist, int nelems, int dir) { struct scatterlist *s; int i; for_each_sg(sglist, s, nelems, i) { s->dma_address = (dma_addr_t)sg_phys(s); s->dma_length = s->length; } return nelems; } /* * The exported map_sg function for dma_ops (handles scatter-gather * lists). */ static int map_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; u16 devid; int i; struct scatterlist *s; phys_addr_t paddr; int mapped_elems = 0; u64 dma_mask; INC_STATS_COUNTER(cnt_map_sg); if (!get_device_resources(dev, &domain, &devid)) return map_sg_no_iommu(dev, sglist, nelems, dir); dma_mask = *dev->dma_mask; if (!dma_ops_domain(domain)) return 0; spin_lock_irqsave(&domain->lock, flags); for_each_sg(sglist, s, nelems, i) { paddr = sg_phys(s); s->dma_address = __map_single(dev, domain->priv, paddr, s->length, dir, false, dma_mask); if (s->dma_address) { s->dma_length = s->length; mapped_elems++; } else goto unmap; } iommu_flush_complete(domain); out: spin_unlock_irqrestore(&domain->lock, flags); return mapped_elems; unmap: for_each_sg(sglist, s, mapped_elems, i) { if (s->dma_address) __unmap_single(domain->priv, s->dma_address, s->dma_length, dir); s->dma_address = s->dma_length = 0; } mapped_elems = 0; goto out; } /* * The exported map_sg function for dma_ops (handles scatter-gather * lists). */ static void unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; struct scatterlist *s; u16 devid; int i; INC_STATS_COUNTER(cnt_unmap_sg); if (!get_device_resources(dev, &domain, &devid)) return; if (!dma_ops_domain(domain)) return; spin_lock_irqsave(&domain->lock, flags); for_each_sg(sglist, s, nelems, i) { __unmap_single(domain->priv, s->dma_address, s->dma_length, dir); s->dma_address = s->dma_length = 0; } iommu_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); } /* * The exported alloc_coherent function for dma_ops. */ static void *alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t flag) { unsigned long flags; void *virt_addr; struct protection_domain *domain; u16 devid; phys_addr_t paddr; u64 dma_mask = dev->coherent_dma_mask; INC_STATS_COUNTER(cnt_alloc_coherent); if (!get_device_resources(dev, &domain, &devid)) { virt_addr = (void *)__get_free_pages(flag, get_order(size)); *dma_addr = __pa(virt_addr); return virt_addr; } dma_mask = dev->coherent_dma_mask; flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); flag |= __GFP_ZERO; virt_addr = (void *)__get_free_pages(flag, get_order(size)); if (!virt_addr) return NULL; paddr = virt_to_phys(virt_addr); if (!dma_ops_domain(domain)) goto out_free; if (!dma_mask) dma_mask = *dev->dma_mask; spin_lock_irqsave(&domain->lock, flags); *dma_addr = __map_single(dev, domain->priv, paddr, size, DMA_BIDIRECTIONAL, true, dma_mask); if (*dma_addr == DMA_ERROR_CODE) { spin_unlock_irqrestore(&domain->lock, flags); goto out_free; } iommu_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); return virt_addr; out_free: free_pages((unsigned long)virt_addr, get_order(size)); return NULL; } /* * The exported free_coherent function for dma_ops. */ static void free_coherent(struct device *dev, size_t size, void *virt_addr, dma_addr_t dma_addr) { unsigned long flags; struct protection_domain *domain; u16 devid; INC_STATS_COUNTER(cnt_free_coherent); if (!get_device_resources(dev, &domain, &devid)) goto free_mem; if (!dma_ops_domain(domain)) goto free_mem; spin_lock_irqsave(&domain->lock, flags); __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); iommu_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); free_mem: free_pages((unsigned long)virt_addr, get_order(size)); } /* * This function is called by the DMA layer to find out if we can handle a * particular device. It is part of the dma_ops. */ static int amd_iommu_dma_supported(struct device *dev, u64 mask) { return check_device(dev); } /* * The function for pre-allocating protection domains. * * If the driver core informs the DMA layer if a driver grabs a device * we don't need to preallocate the protection domains anymore. * For now we have to. */ static void prealloc_protection_domains(void) { struct pci_dev *dev = NULL; struct dma_ops_domain *dma_dom; struct amd_iommu *iommu; u16 devid, __devid; while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { __devid = devid = calc_devid(dev->bus->number, dev->devfn); if (devid > amd_iommu_last_bdf) continue; devid = amd_iommu_alias_table[devid]; if (domain_for_device(devid)) continue; iommu = amd_iommu_rlookup_table[devid]; if (!iommu) continue; dma_dom = dma_ops_domain_alloc(iommu); if (!dma_dom) continue; init_unity_mappings_for_device(dma_dom, devid); dma_dom->target_dev = devid; attach_device(iommu, &dma_dom->domain, devid); if (__devid != devid) attach_device(iommu, &dma_dom->domain, __devid); list_add_tail(&dma_dom->list, &iommu_pd_list); } } static struct dma_map_ops amd_iommu_dma_ops = { .alloc_coherent = alloc_coherent, .free_coherent = free_coherent, .map_page = map_page, .unmap_page = unmap_page, .map_sg = map_sg, .unmap_sg = unmap_sg, .dma_supported = amd_iommu_dma_supported, }; /* * The function which clues the AMD IOMMU driver into dma_ops. */ int __init amd_iommu_init_dma_ops(void) { struct amd_iommu *iommu; int ret; /* * first allocate a default protection domain for every IOMMU we * found in the system. Devices not assigned to any other * protection domain will be assigned to the default one. */ for_each_iommu(iommu) { iommu->default_dom = dma_ops_domain_alloc(iommu); if (iommu->default_dom == NULL) return -ENOMEM; iommu->default_dom->domain.flags |= PD_DEFAULT_MASK; ret = iommu_init_unity_mappings(iommu); if (ret) goto free_domains; } /* * If device isolation is enabled, pre-allocate the protection * domains for each device. */ if (amd_iommu_isolate) prealloc_protection_domains(); iommu_detected = 1; swiotlb = 0; #ifdef CONFIG_GART_IOMMU gart_iommu_aperture_disabled = 1; gart_iommu_aperture = 0; #endif /* Make the driver finally visible to the drivers */ dma_ops = &amd_iommu_dma_ops; register_iommu(&amd_iommu_ops); bus_register_notifier(&pci_bus_type, &device_nb); amd_iommu_stats_init(); return 0; free_domains: for_each_iommu(iommu) { if (iommu->default_dom) dma_ops_domain_free(iommu->default_dom); } return ret; } /***************************************************************************** * * The following functions belong to the exported interface of AMD IOMMU * * This interface allows access to lower level functions of the IOMMU * like protection domain handling and assignement of devices to domains * which is not possible with the dma_ops interface. * *****************************************************************************/ static void cleanup_domain(struct protection_domain *domain) { unsigned long flags; u16 devid; write_lock_irqsave(&amd_iommu_devtable_lock, flags); for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) if (amd_iommu_pd_table[devid] == domain) __detach_device(domain, devid); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); } static void protection_domain_free(struct protection_domain *domain) { if (!domain) return; del_domain_from_list(domain); if (domain->id) domain_id_free(domain->id); kfree(domain); } static struct protection_domain *protection_domain_alloc(void) { struct protection_domain *domain; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) return NULL; spin_lock_init(&domain->lock); domain->id = domain_id_alloc(); if (!domain->id) goto out_err; add_domain_to_list(domain); return domain; out_err: kfree(domain); return NULL; } static int amd_iommu_domain_init(struct iommu_domain *dom) { struct protection_domain *domain; domain = protection_domain_alloc(); if (!domain) goto out_free; domain->mode = PAGE_MODE_3_LEVEL; domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); if (!domain->pt_root) goto out_free; dom->priv = domain; return 0; out_free: protection_domain_free(domain); return -ENOMEM; } static void amd_iommu_domain_destroy(struct iommu_domain *dom) { struct protection_domain *domain = dom->priv; if (!domain) return; if (domain->dev_cnt > 0) cleanup_domain(domain); BUG_ON(domain->dev_cnt != 0); free_pagetable(domain); domain_id_free(domain->id); kfree(domain); dom->priv = NULL; } static void amd_iommu_detach_device(struct iommu_domain *dom, struct device *dev) { struct protection_domain *domain = dom->priv; struct amd_iommu *iommu; struct pci_dev *pdev; u16 devid; if (dev->bus != &pci_bus_type) return; pdev = to_pci_dev(dev); devid = calc_devid(pdev->bus->number, pdev->devfn); if (devid > 0) detach_device(domain, devid); iommu = amd_iommu_rlookup_table[devid]; if (!iommu) return; iommu_queue_inv_dev_entry(iommu, devid); iommu_completion_wait(iommu); } static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev) { struct protection_domain *domain = dom->priv; struct protection_domain *old_domain; struct amd_iommu *iommu; struct pci_dev *pdev; u16 devid; if (dev->bus != &pci_bus_type) return -EINVAL; pdev = to_pci_dev(dev); devid = calc_devid(pdev->bus->number, pdev->devfn); if (devid >= amd_iommu_last_bdf || devid != amd_iommu_alias_table[devid]) return -EINVAL; iommu = amd_iommu_rlookup_table[devid]; if (!iommu) return -EINVAL; old_domain = domain_for_device(devid); if (old_domain) detach_device(old_domain, devid); attach_device(iommu, domain, devid); iommu_completion_wait(iommu); return 0; } static int amd_iommu_map_range(struct iommu_domain *dom, unsigned long iova, phys_addr_t paddr, size_t size, int iommu_prot) { struct protection_domain *domain = dom->priv; unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE); int prot = 0; int ret; if (iommu_prot & IOMMU_READ) prot |= IOMMU_PROT_IR; if (iommu_prot & IOMMU_WRITE) prot |= IOMMU_PROT_IW; iova &= PAGE_MASK; paddr &= PAGE_MASK; for (i = 0; i < npages; ++i) { ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k); if (ret) return ret; iova += PAGE_SIZE; paddr += PAGE_SIZE; } return 0; } static void amd_iommu_unmap_range(struct iommu_domain *dom, unsigned long iova, size_t size) { struct protection_domain *domain = dom->priv; unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE); iova &= PAGE_MASK; for (i = 0; i < npages; ++i) { iommu_unmap_page(domain, iova, PM_MAP_4k); iova += PAGE_SIZE; } iommu_flush_tlb_pde(domain); } static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, unsigned long iova) { struct protection_domain *domain = dom->priv; unsigned long offset = iova & ~PAGE_MASK; phys_addr_t paddr; u64 *pte; pte = fetch_pte(domain, iova, PM_MAP_4k); if (!pte || !IOMMU_PTE_PRESENT(*pte)) return 0; paddr = *pte & IOMMU_PAGE_MASK; paddr |= offset; return paddr; } static int amd_iommu_domain_has_cap(struct iommu_domain *domain, unsigned long cap) { return 0; } static struct iommu_ops amd_iommu_ops = { .domain_init = amd_iommu_domain_init, .domain_destroy = amd_iommu_domain_destroy, .attach_dev = amd_iommu_attach_device, .detach_dev = amd_iommu_detach_device, .map = amd_iommu_map_range, .unmap = amd_iommu_unmap_range, .iova_to_phys = amd_iommu_iova_to_phys, .domain_has_cap = amd_iommu_domain_has_cap, }; /***************************************************************************** * * The next functions do a basic initialization of IOMMU for pass through * mode * * In passthrough mode the IOMMU is initialized and enabled but not used for * DMA-API translation. * *****************************************************************************/ int __init amd_iommu_init_passthrough(void) { struct pci_dev *dev = NULL; u16 devid, devid2; /* allocate passthroug domain */ pt_domain = protection_domain_alloc(); if (!pt_domain) return -ENOMEM; pt_domain->mode |= PAGE_MODE_NONE; while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { struct amd_iommu *iommu; devid = calc_devid(dev->bus->number, dev->devfn); if (devid > amd_iommu_last_bdf) continue; devid2 = amd_iommu_alias_table[devid]; iommu = amd_iommu_rlookup_table[devid2]; if (!iommu) continue; __attach_device(iommu, pt_domain, devid); __attach_device(iommu, pt_domain, devid2); } pr_info("AMD-Vi: Initialized for Passthrough Mode\n"); return 0; }