// SPDX-License-Identifier: GPL-2.0-only /* Kernel thread helper functions. * Copyright (C) 2004 IBM Corporation, Rusty Russell. * Copyright (C) 2009 Red Hat, Inc. * * Creation is done via kthreadd, so that we get a clean environment * even if we're invoked from userspace (think modprobe, hotplug cpu, * etc.). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_SPINLOCK(kthread_create_lock); static LIST_HEAD(kthread_create_list); struct task_struct *kthreadd_task; struct kthread_create_info { /* Information passed to kthread() from kthreadd. */ int (*threadfn)(void *data); void *data; int node; /* Result passed back to kthread_create() from kthreadd. */ struct task_struct *result; struct completion *done; struct list_head list; }; struct kthread { unsigned long flags; unsigned int cpu; int (*threadfn)(void *); void *data; mm_segment_t oldfs; struct completion parked; struct completion exited; #ifdef CONFIG_BLK_CGROUP struct cgroup_subsys_state *blkcg_css; #endif }; enum KTHREAD_BITS { KTHREAD_IS_PER_CPU = 0, KTHREAD_SHOULD_STOP, KTHREAD_SHOULD_PARK, }; static inline void set_kthread_struct(void *kthread) { /* * We abuse ->set_child_tid to avoid the new member and because it * can't be wrongly copied by copy_process(). We also rely on fact * that the caller can't exec, so PF_KTHREAD can't be cleared. */ current->set_child_tid = (__force void __user *)kthread; } static inline struct kthread *to_kthread(struct task_struct *k) { WARN_ON(!(k->flags & PF_KTHREAD)); return (__force void *)k->set_child_tid; } void free_kthread_struct(struct task_struct *k) { struct kthread *kthread; /* * Can be NULL if this kthread was created by kernel_thread() * or if kmalloc() in kthread() failed. */ kthread = to_kthread(k); #ifdef CONFIG_BLK_CGROUP WARN_ON_ONCE(kthread && kthread->blkcg_css); #endif kfree(kthread); } /** * kthread_should_stop - should this kthread return now? * * When someone calls kthread_stop() on your kthread, it will be woken * and this will return true. You should then return, and your return * value will be passed through to kthread_stop(). */ bool kthread_should_stop(void) { return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); } EXPORT_SYMBOL(kthread_should_stop); bool __kthread_should_park(struct task_struct *k) { return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); } EXPORT_SYMBOL_GPL(__kthread_should_park); /** * kthread_should_park - should this kthread park now? * * When someone calls kthread_park() on your kthread, it will be woken * and this will return true. You should then do the necessary * cleanup and call kthread_parkme() * * Similar to kthread_should_stop(), but this keeps the thread alive * and in a park position. kthread_unpark() "restarts" the thread and * calls the thread function again. */ bool kthread_should_park(void) { return __kthread_should_park(current); } EXPORT_SYMBOL_GPL(kthread_should_park); /** * kthread_freezable_should_stop - should this freezable kthread return now? * @was_frozen: optional out parameter, indicates whether %current was frozen * * kthread_should_stop() for freezable kthreads, which will enter * refrigerator if necessary. This function is safe from kthread_stop() / * freezer deadlock and freezable kthreads should use this function instead * of calling try_to_freeze() directly. */ bool kthread_freezable_should_stop(bool *was_frozen) { bool frozen = false; might_sleep(); if (unlikely(freezing(current))) frozen = __refrigerator(true); if (was_frozen) *was_frozen = frozen; return kthread_should_stop(); } EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); /** * kthread_func - return the function specified on kthread creation * @task: kthread task in question * * Returns NULL if the task is not a kthread. */ void *kthread_func(struct task_struct *task) { if (task->flags & PF_KTHREAD) return to_kthread(task)->threadfn; return NULL; } EXPORT_SYMBOL_GPL(kthread_func); /** * kthread_data - return data value specified on kthread creation * @task: kthread task in question * * Return the data value specified when kthread @task was created. * The caller is responsible for ensuring the validity of @task when * calling this function. */ void *kthread_data(struct task_struct *task) { return to_kthread(task)->data; } EXPORT_SYMBOL_GPL(kthread_data); /** * kthread_probe_data - speculative version of kthread_data() * @task: possible kthread task in question * * @task could be a kthread task. Return the data value specified when it * was created if accessible. If @task isn't a kthread task or its data is * inaccessible for any reason, %NULL is returned. This function requires * that @task itself is safe to dereference. */ void *kthread_probe_data(struct task_struct *task) { struct kthread *kthread = to_kthread(task); void *data = NULL; copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); return data; } static void __kthread_parkme(struct kthread *self) { for (;;) { /* * TASK_PARKED is a special state; we must serialize against * possible pending wakeups to avoid store-store collisions on * task->state. * * Such a collision might possibly result in the task state * changin from TASK_PARKED and us failing the * wait_task_inactive() in kthread_park(). */ set_special_state(TASK_PARKED); if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) break; /* * Thread is going to call schedule(), do not preempt it, * or the caller of kthread_park() may spend more time in * wait_task_inactive(). */ preempt_disable(); complete(&self->parked); schedule_preempt_disabled(); preempt_enable(); } __set_current_state(TASK_RUNNING); } void kthread_parkme(void) { __kthread_parkme(to_kthread(current)); } EXPORT_SYMBOL_GPL(kthread_parkme); static int kthread(void *_create) { /* Copy data: it's on kthread's stack */ struct kthread_create_info *create = _create; int (*threadfn)(void *data) = create->threadfn; void *data = create->data; struct completion *done; struct kthread *self; int ret; self = kzalloc(sizeof(*self), GFP_KERNEL); set_kthread_struct(self); /* If user was SIGKILLed, I release the structure. */ done = xchg(&create->done, NULL); if (!done) { kfree(create); do_exit(-EINTR); } if (!self) { create->result = ERR_PTR(-ENOMEM); complete(done); do_exit(-ENOMEM); } self->threadfn = threadfn; self->data = data; init_completion(&self->exited); init_completion(&self->parked); current->vfork_done = &self->exited; /* OK, tell user we're spawned, wait for stop or wakeup */ __set_current_state(TASK_UNINTERRUPTIBLE); create->result = current; /* * Thread is going to call schedule(), do not preempt it, * or the creator may spend more time in wait_task_inactive(). */ preempt_disable(); complete(done); schedule_preempt_disabled(); preempt_enable(); ret = -EINTR; if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { cgroup_kthread_ready(); __kthread_parkme(self); ret = threadfn(data); } do_exit(ret); } /* called from do_fork() to get node information for about to be created task */ int tsk_fork_get_node(struct task_struct *tsk) { #ifdef CONFIG_NUMA if (tsk == kthreadd_task) return tsk->pref_node_fork; #endif return NUMA_NO_NODE; } static void create_kthread(struct kthread_create_info *create) { int pid; #ifdef CONFIG_NUMA current->pref_node_fork = create->node; #endif /* We want our own signal handler (we take no signals by default). */ pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); if (pid < 0) { /* If user was SIGKILLed, I release the structure. */ struct completion *done = xchg(&create->done, NULL); if (!done) { kfree(create); return; } create->result = ERR_PTR(pid); complete(done); } } static __printf(4, 0) struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], va_list args) { DECLARE_COMPLETION_ONSTACK(done); struct task_struct *task; struct kthread_create_info *create = kmalloc(sizeof(*create), GFP_KERNEL); if (!create) return ERR_PTR(-ENOMEM); create->threadfn = threadfn; create->data = data; create->node = node; create->done = &done; spin_lock(&kthread_create_lock); list_add_tail(&create->list, &kthread_create_list); spin_unlock(&kthread_create_lock); wake_up_process(kthreadd_task); /* * Wait for completion in killable state, for I might be chosen by * the OOM killer while kthreadd is trying to allocate memory for * new kernel thread. */ if (unlikely(wait_for_completion_killable(&done))) { /* * If I was SIGKILLed before kthreadd (or new kernel thread) * calls complete(), leave the cleanup of this structure to * that thread. */ if (xchg(&create->done, NULL)) return ERR_PTR(-EINTR); /* * kthreadd (or new kernel thread) will call complete() * shortly. */ wait_for_completion(&done); } task = create->result; if (!IS_ERR(task)) { static const struct sched_param param = { .sched_priority = 0 }; char name[TASK_COMM_LEN]; /* * task is already visible to other tasks, so updating * COMM must be protected. */ vsnprintf(name, sizeof(name), namefmt, args); set_task_comm(task, name); /* * root may have changed our (kthreadd's) priority or CPU mask. * The kernel thread should not inherit these properties. */ sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m); set_cpus_allowed_ptr(task, housekeeping_cpumask(HK_FLAG_KTHREAD)); } kfree(create); return task; } /** * kthread_create_on_node - create a kthread. * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @node: task and thread structures for the thread are allocated on this node * @namefmt: printf-style name for the thread. * * Description: This helper function creates and names a kernel * thread. The thread will be stopped: use wake_up_process() to start * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and * is affine to all CPUs. * * If thread is going to be bound on a particular cpu, give its node * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. * When woken, the thread will run @threadfn() with @data as its * argument. @threadfn() can either call do_exit() directly if it is a * standalone thread for which no one will call kthread_stop(), or * return when 'kthread_should_stop()' is true (which means * kthread_stop() has been called). The return value should be zero * or a negative error number; it will be passed to kthread_stop(). * * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). */ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], ...) { struct task_struct *task; va_list args; va_start(args, namefmt); task = __kthread_create_on_node(threadfn, data, node, namefmt, args); va_end(args); return task; } EXPORT_SYMBOL(kthread_create_on_node); static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state) { unsigned long flags; if (!wait_task_inactive(p, state)) { WARN_ON(1); return; } /* It's safe because the task is inactive. */ raw_spin_lock_irqsave(&p->pi_lock, flags); do_set_cpus_allowed(p, mask); p->flags |= PF_NO_SETAFFINITY; raw_spin_unlock_irqrestore(&p->pi_lock, flags); } static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state) { __kthread_bind_mask(p, cpumask_of(cpu), state); } void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) { __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); } /** * kthread_bind - bind a just-created kthread to a cpu. * @p: thread created by kthread_create(). * @cpu: cpu (might not be online, must be possible) for @k to run on. * * Description: This function is equivalent to set_cpus_allowed(), * except that @cpu doesn't need to be online, and the thread must be * stopped (i.e., just returned from kthread_create()). */ void kthread_bind(struct task_struct *p, unsigned int cpu) { __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(kthread_bind); /** * kthread_create_on_cpu - Create a cpu bound kthread * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @cpu: The cpu on which the thread should be bound, * @namefmt: printf-style name for the thread. Format is restricted * to "name.*%u". Code fills in cpu number. * * Description: This helper function creates and names a kernel thread */ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), void *data, unsigned int cpu, const char *namefmt) { struct task_struct *p; p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, cpu); if (IS_ERR(p)) return p; kthread_bind(p, cpu); /* CPU hotplug need to bind once again when unparking the thread. */ set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags); to_kthread(p)->cpu = cpu; return p; } /** * kthread_unpark - unpark a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return false, wakes it, and * waits for it to return. If the thread is marked percpu then its * bound to the cpu again. */ void kthread_unpark(struct task_struct *k) { struct kthread *kthread = to_kthread(k); /* * Newly created kthread was parked when the CPU was offline. * The binding was lost and we need to set it again. */ if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) __kthread_bind(k, kthread->cpu, TASK_PARKED); clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); /* * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. */ wake_up_state(k, TASK_PARKED); } EXPORT_SYMBOL_GPL(kthread_unpark); /** * kthread_park - park a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return true, wakes it, and * waits for it to return. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will park without * calling threadfn(). * * Returns 0 if the thread is parked, -ENOSYS if the thread exited. * If called by the kthread itself just the park bit is set. */ int kthread_park(struct task_struct *k) { struct kthread *kthread = to_kthread(k); if (WARN_ON(k->flags & PF_EXITING)) return -ENOSYS; if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) return -EBUSY; set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); if (k != current) { wake_up_process(k); /* * Wait for __kthread_parkme() to complete(), this means we * _will_ have TASK_PARKED and are about to call schedule(). */ wait_for_completion(&kthread->parked); /* * Now wait for that schedule() to complete and the task to * get scheduled out. */ WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); } return 0; } EXPORT_SYMBOL_GPL(kthread_park); /** * kthread_stop - stop a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_stop() for @k to return true, wakes it, and * waits for it to exit. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will exit without * calling threadfn(). * * If threadfn() may call do_exit() itself, the caller must ensure * task_struct can't go away. * * Returns the result of threadfn(), or %-EINTR if wake_up_process() * was never called. */ int kthread_stop(struct task_struct *k) { struct kthread *kthread; int ret; trace_sched_kthread_stop(k); get_task_struct(k); kthread = to_kthread(k); set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); kthread_unpark(k); wake_up_process(k); wait_for_completion(&kthread->exited); ret = k->exit_code; put_task_struct(k); trace_sched_kthread_stop_ret(ret); return ret; } EXPORT_SYMBOL(kthread_stop); int kthreadd(void *unused) { struct task_struct *tsk = current; /* Setup a clean context for our children to inherit. */ set_task_comm(tsk, "kthreadd"); ignore_signals(tsk); set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD)); set_mems_allowed(node_states[N_MEMORY]); current->flags |= PF_NOFREEZE; cgroup_init_kthreadd(); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (list_empty(&kthread_create_list)) schedule(); __set_current_state(TASK_RUNNING); spin_lock(&kthread_create_lock); while (!list_empty(&kthread_create_list)) { struct kthread_create_info *create; create = list_entry(kthread_create_list.next, struct kthread_create_info, list); list_del_init(&create->list); spin_unlock(&kthread_create_lock); create_kthread(create); spin_lock(&kthread_create_lock); } spin_unlock(&kthread_create_lock); } return 0; } void __kthread_init_worker(struct kthread_worker *worker, const char *name, struct lock_class_key *key) { memset(worker, 0, sizeof(struct kthread_worker)); raw_spin_lock_init(&worker->lock); lockdep_set_class_and_name(&worker->lock, key, name); INIT_LIST_HEAD(&worker->work_list); INIT_LIST_HEAD(&worker->delayed_work_list); } EXPORT_SYMBOL_GPL(__kthread_init_worker); /** * kthread_worker_fn - kthread function to process kthread_worker * @worker_ptr: pointer to initialized kthread_worker * * This function implements the main cycle of kthread worker. It processes * work_list until it is stopped with kthread_stop(). It sleeps when the queue * is empty. * * The works are not allowed to keep any locks, disable preemption or interrupts * when they finish. There is defined a safe point for freezing when one work * finishes and before a new one is started. * * Also the works must not be handled by more than one worker at the same time, * see also kthread_queue_work(). */ int kthread_worker_fn(void *worker_ptr) { struct kthread_worker *worker = worker_ptr; struct kthread_work *work; /* * FIXME: Update the check and remove the assignment when all kthread * worker users are created using kthread_create_worker*() functions. */ WARN_ON(worker->task && worker->task != current); worker->task = current; if (worker->flags & KTW_FREEZABLE) set_freezable(); repeat: set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); raw_spin_lock_irq(&worker->lock); worker->task = NULL; raw_spin_unlock_irq(&worker->lock); return 0; } work = NULL; raw_spin_lock_irq(&worker->lock); if (!list_empty(&worker->work_list)) { work = list_first_entry(&worker->work_list, struct kthread_work, node); list_del_init(&work->node); } worker->current_work = work; raw_spin_unlock_irq(&worker->lock); if (work) { kthread_work_func_t func = work->func; __set_current_state(TASK_RUNNING); trace_sched_kthread_work_execute_start(work); work->func(work); /* * Avoid dereferencing work after this point. The trace * event only cares about the address. */ trace_sched_kthread_work_execute_end(work, func); } else if (!freezing(current)) schedule(); try_to_freeze(); cond_resched(); goto repeat; } EXPORT_SYMBOL_GPL(kthread_worker_fn); static __printf(3, 0) struct kthread_worker * __kthread_create_worker(int cpu, unsigned int flags, const char namefmt[], va_list args) { struct kthread_worker *worker; struct task_struct *task; int node = NUMA_NO_NODE; worker = kzalloc(sizeof(*worker), GFP_KERNEL); if (!worker) return ERR_PTR(-ENOMEM); kthread_init_worker(worker); if (cpu >= 0) node = cpu_to_node(cpu); task = __kthread_create_on_node(kthread_worker_fn, worker, node, namefmt, args); if (IS_ERR(task)) goto fail_task; if (cpu >= 0) kthread_bind(task, cpu); worker->flags = flags; worker->task = task; wake_up_process(task); return worker; fail_task: kfree(worker); return ERR_CAST(task); } /** * kthread_create_worker - create a kthread worker * @flags: flags modifying the default behavior of the worker * @namefmt: printf-style name for the kthread worker (task). * * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) * when the needed structures could not get allocated, and ERR_PTR(-EINTR) * when the worker was SIGKILLed. */ struct kthread_worker * kthread_create_worker(unsigned int flags, const char namefmt[], ...) { struct kthread_worker *worker; va_list args; va_start(args, namefmt); worker = __kthread_create_worker(-1, flags, namefmt, args); va_end(args); return worker; } EXPORT_SYMBOL(kthread_create_worker); /** * kthread_create_worker_on_cpu - create a kthread worker and bind it * to a given CPU and the associated NUMA node. * @cpu: CPU number * @flags: flags modifying the default behavior of the worker * @namefmt: printf-style name for the kthread worker (task). * * Use a valid CPU number if you want to bind the kthread worker * to the given CPU and the associated NUMA node. * * A good practice is to add the cpu number also into the worker name. * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). * * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) * when the needed structures could not get allocated, and ERR_PTR(-EINTR) * when the worker was SIGKILLed. */ struct kthread_worker * kthread_create_worker_on_cpu(int cpu, unsigned int flags, const char namefmt[], ...) { struct kthread_worker *worker; va_list args; va_start(args, namefmt); worker = __kthread_create_worker(cpu, flags, namefmt, args); va_end(args); return worker; } EXPORT_SYMBOL(kthread_create_worker_on_cpu); /* * Returns true when the work could not be queued at the moment. * It happens when it is already pending in a worker list * or when it is being cancelled. */ static inline bool queuing_blocked(struct kthread_worker *worker, struct kthread_work *work) { lockdep_assert_held(&worker->lock); return !list_empty(&work->node) || work->canceling; } static void kthread_insert_work_sanity_check(struct kthread_worker *worker, struct kthread_work *work) { lockdep_assert_held(&worker->lock); WARN_ON_ONCE(!list_empty(&work->node)); /* Do not use a work with >1 worker, see kthread_queue_work() */ WARN_ON_ONCE(work->worker && work->worker != worker); } /* insert @work before @pos in @worker */ static void kthread_insert_work(struct kthread_worker *worker, struct kthread_work *work, struct list_head *pos) { kthread_insert_work_sanity_check(worker, work); trace_sched_kthread_work_queue_work(worker, work); list_add_tail(&work->node, pos); work->worker = worker; if (!worker->current_work && likely(worker->task)) wake_up_process(worker->task); } /** * kthread_queue_work - queue a kthread_work * @worker: target kthread_worker * @work: kthread_work to queue * * Queue @work to work processor @task for async execution. @task * must have been created with kthread_worker_create(). Returns %true * if @work was successfully queued, %false if it was already pending. * * Reinitialize the work if it needs to be used by another worker. * For example, when the worker was stopped and started again. */ bool kthread_queue_work(struct kthread_worker *worker, struct kthread_work *work) { bool ret = false; unsigned long flags; raw_spin_lock_irqsave(&worker->lock, flags); if (!queuing_blocked(worker, work)) { kthread_insert_work(worker, work, &worker->work_list); ret = true; } raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_queue_work); /** * kthread_delayed_work_timer_fn - callback that queues the associated kthread * delayed work when the timer expires. * @t: pointer to the expired timer * * The format of the function is defined by struct timer_list. * It should have been called from irqsafe timer with irq already off. */ void kthread_delayed_work_timer_fn(struct timer_list *t) { struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); struct kthread_work *work = &dwork->work; struct kthread_worker *worker = work->worker; unsigned long flags; /* * This might happen when a pending work is reinitialized. * It means that it is used a wrong way. */ if (WARN_ON_ONCE(!worker)) return; raw_spin_lock_irqsave(&worker->lock, flags); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); /* Move the work from worker->delayed_work_list. */ WARN_ON_ONCE(list_empty(&work->node)); list_del_init(&work->node); if (!work->canceling) kthread_insert_work(worker, work, &worker->work_list); raw_spin_unlock_irqrestore(&worker->lock, flags); } EXPORT_SYMBOL(kthread_delayed_work_timer_fn); static void __kthread_queue_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct timer_list *timer = &dwork->timer; struct kthread_work *work = &dwork->work; WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); /* * If @delay is 0, queue @dwork->work immediately. This is for * both optimization and correctness. The earliest @timer can * expire is on the closest next tick and delayed_work users depend * on that there's no such delay when @delay is 0. */ if (!delay) { kthread_insert_work(worker, work, &worker->work_list); return; } /* Be paranoid and try to detect possible races already now. */ kthread_insert_work_sanity_check(worker, work); list_add(&work->node, &worker->delayed_work_list); work->worker = worker; timer->expires = jiffies + delay; add_timer(timer); } /** * kthread_queue_delayed_work - queue the associated kthread work * after a delay. * @worker: target kthread_worker * @dwork: kthread_delayed_work to queue * @delay: number of jiffies to wait before queuing * * If the work has not been pending it starts a timer that will queue * the work after the given @delay. If @delay is zero, it queues the * work immediately. * * Return: %false if the @work has already been pending. It means that * either the timer was running or the work was queued. It returns %true * otherwise. */ bool kthread_queue_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct kthread_work *work = &dwork->work; unsigned long flags; bool ret = false; raw_spin_lock_irqsave(&worker->lock, flags); if (!queuing_blocked(worker, work)) { __kthread_queue_delayed_work(worker, dwork, delay); ret = true; } raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); struct kthread_flush_work { struct kthread_work work; struct completion done; }; static void kthread_flush_work_fn(struct kthread_work *work) { struct kthread_flush_work *fwork = container_of(work, struct kthread_flush_work, work); complete(&fwork->done); } /** * kthread_flush_work - flush a kthread_work * @work: work to flush * * If @work is queued or executing, wait for it to finish execution. */ void kthread_flush_work(struct kthread_work *work) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; struct kthread_worker *worker; bool noop = false; worker = work->worker; if (!worker) return; raw_spin_lock_irq(&worker->lock); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); if (!list_empty(&work->node)) kthread_insert_work(worker, &fwork.work, work->node.next); else if (worker->current_work == work) kthread_insert_work(worker, &fwork.work, worker->work_list.next); else noop = true; raw_spin_unlock_irq(&worker->lock); if (!noop) wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(kthread_flush_work); /* * This function removes the work from the worker queue. Also it makes sure * that it won't get queued later via the delayed work's timer. * * The work might still be in use when this function finishes. See the * current_work proceed by the worker. * * Return: %true if @work was pending and successfully canceled, * %false if @work was not pending */ static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork, unsigned long *flags) { /* Try to cancel the timer if exists. */ if (is_dwork) { struct kthread_delayed_work *dwork = container_of(work, struct kthread_delayed_work, work); struct kthread_worker *worker = work->worker; /* * del_timer_sync() must be called to make sure that the timer * callback is not running. The lock must be temporary released * to avoid a deadlock with the callback. In the meantime, * any queuing is blocked by setting the canceling counter. */ work->canceling++; raw_spin_unlock_irqrestore(&worker->lock, *flags); del_timer_sync(&dwork->timer); raw_spin_lock_irqsave(&worker->lock, *flags); work->canceling--; } /* * Try to remove the work from a worker list. It might either * be from worker->work_list or from worker->delayed_work_list. */ if (!list_empty(&work->node)) { list_del_init(&work->node); return true; } return false; } /** * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work * @worker: kthread worker to use * @dwork: kthread delayed work to queue * @delay: number of jiffies to wait before queuing * * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, * modify @dwork's timer so that it expires after @delay. If @delay is zero, * @work is guaranteed to be queued immediately. * * Return: %true if @dwork was pending and its timer was modified, * %false otherwise. * * A special case is when the work is being canceled in parallel. * It might be caused either by the real kthread_cancel_delayed_work_sync() * or yet another kthread_mod_delayed_work() call. We let the other command * win and return %false here. The caller is supposed to synchronize these * operations a reasonable way. * * This function is safe to call from any context including IRQ handler. * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() * for details. */ bool kthread_mod_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct kthread_work *work = &dwork->work; unsigned long flags; int ret = false; raw_spin_lock_irqsave(&worker->lock, flags); /* Do not bother with canceling when never queued. */ if (!work->worker) goto fast_queue; /* Work must not be used with >1 worker, see kthread_queue_work() */ WARN_ON_ONCE(work->worker != worker); /* Do not fight with another command that is canceling this work. */ if (work->canceling) goto out; ret = __kthread_cancel_work(work, true, &flags); fast_queue: __kthread_queue_delayed_work(worker, dwork, delay); out: raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) { struct kthread_worker *worker = work->worker; unsigned long flags; int ret = false; if (!worker) goto out; raw_spin_lock_irqsave(&worker->lock, flags); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); ret = __kthread_cancel_work(work, is_dwork, &flags); if (worker->current_work != work) goto out_fast; /* * The work is in progress and we need to wait with the lock released. * In the meantime, block any queuing by setting the canceling counter. */ work->canceling++; raw_spin_unlock_irqrestore(&worker->lock, flags); kthread_flush_work(work); raw_spin_lock_irqsave(&worker->lock, flags); work->canceling--; out_fast: raw_spin_unlock_irqrestore(&worker->lock, flags); out: return ret; } /** * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish * @work: the kthread work to cancel * * Cancel @work and wait for its execution to finish. This function * can be used even if the work re-queues itself. On return from this * function, @work is guaranteed to be not pending or executing on any CPU. * * kthread_cancel_work_sync(&delayed_work->work) must not be used for * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. * * The caller must ensure that the worker on which @work was last * queued can't be destroyed before this function returns. * * Return: %true if @work was pending, %false otherwise. */ bool kthread_cancel_work_sync(struct kthread_work *work) { return __kthread_cancel_work_sync(work, false); } EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); /** * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and * wait for it to finish. * @dwork: the kthread delayed work to cancel * * This is kthread_cancel_work_sync() for delayed works. * * Return: %true if @dwork was pending, %false otherwise. */ bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) { return __kthread_cancel_work_sync(&dwork->work, true); } EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); /** * kthread_flush_worker - flush all current works on a kthread_worker * @worker: worker to flush * * Wait until all currently executing or pending works on @worker are * finished. */ void kthread_flush_worker(struct kthread_worker *worker) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; kthread_queue_work(worker, &fwork.work); wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(kthread_flush_worker); /** * kthread_destroy_worker - destroy a kthread worker * @worker: worker to be destroyed * * Flush and destroy @worker. The simple flush is enough because the kthread * worker API is used only in trivial scenarios. There are no multi-step state * machines needed. */ void kthread_destroy_worker(struct kthread_worker *worker) { struct task_struct *task; task = worker->task; if (WARN_ON(!task)) return; kthread_flush_worker(worker); kthread_stop(task); WARN_ON(!list_empty(&worker->work_list)); kfree(worker); } EXPORT_SYMBOL(kthread_destroy_worker); /** * kthread_use_mm - make the calling kthread operate on an address space * @mm: address space to operate on */ void kthread_use_mm(struct mm_struct *mm) { struct mm_struct *active_mm; struct task_struct *tsk = current; WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); WARN_ON_ONCE(tsk->mm); task_lock(tsk); /* Hold off tlb flush IPIs while switching mm's */ local_irq_disable(); active_mm = tsk->active_mm; if (active_mm != mm) { mmgrab(mm); tsk->active_mm = mm; } tsk->mm = mm; switch_mm_irqs_off(active_mm, mm, tsk); local_irq_enable(); task_unlock(tsk); #ifdef finish_arch_post_lock_switch finish_arch_post_lock_switch(); #endif if (active_mm != mm) mmdrop(active_mm); to_kthread(tsk)->oldfs = force_uaccess_begin(); } EXPORT_SYMBOL_GPL(kthread_use_mm); /** * kthread_unuse_mm - reverse the effect of kthread_use_mm() * @mm: address space to operate on */ void kthread_unuse_mm(struct mm_struct *mm) { struct task_struct *tsk = current; WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); WARN_ON_ONCE(!tsk->mm); force_uaccess_end(to_kthread(tsk)->oldfs); task_lock(tsk); sync_mm_rss(mm); local_irq_disable(); tsk->mm = NULL; /* active_mm is still 'mm' */ enter_lazy_tlb(mm, tsk); local_irq_enable(); task_unlock(tsk); } EXPORT_SYMBOL_GPL(kthread_unuse_mm); #ifdef CONFIG_BLK_CGROUP /** * kthread_associate_blkcg - associate blkcg to current kthread * @css: the cgroup info * * Current thread must be a kthread. The thread is running jobs on behalf of * other threads. In some cases, we expect the jobs attach cgroup info of * original threads instead of that of current thread. This function stores * original thread's cgroup info in current kthread context for later * retrieval. */ void kthread_associate_blkcg(struct cgroup_subsys_state *css) { struct kthread *kthread; if (!(current->flags & PF_KTHREAD)) return; kthread = to_kthread(current); if (!kthread) return; if (kthread->blkcg_css) { css_put(kthread->blkcg_css); kthread->blkcg_css = NULL; } if (css) { css_get(css); kthread->blkcg_css = css; } } EXPORT_SYMBOL(kthread_associate_blkcg); /** * kthread_blkcg - get associated blkcg css of current kthread * * Current thread must be a kthread. */ struct cgroup_subsys_state *kthread_blkcg(void) { struct kthread *kthread; if (current->flags & PF_KTHREAD) { kthread = to_kthread(current); if (kthread) return kthread->blkcg_css; } return NULL; } EXPORT_SYMBOL(kthread_blkcg); #endif