mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 13:34:30 +00:00
b920aa77be
Provide the s390 specific vdso getrandom() architecture backend. _vdso_rng_data required data is placed within the _vdso_data vvar page, by using a hardcoded offset larger than vdso_data. As required the chacha20 implementation does not write to the stack. The implementation follows more or less the arm64 implementations and makes use of vector instructions. It has a fallback to the getrandom() system call for machines where the vector facility is not installed. The check if the vector facility is installed, as well as an optimization for machines with the vector-enhancements facility 2, is implemented with alternatives, avoiding runtime checks. Note that __kernel_getrandom() is implemented without the vdso user wrapper which would setup a stack frame for odd cases (aka very old glibc variants) where the caller has not done that. All callers of __kernel_getrandom() are required to setup a stack frame, like the C ABI requires it. The vdso testcases vdso_test_getrandom and vdso_test_chacha pass. Benchmark on a z16: $ ./vdso_test_getrandom bench-single vdso: 25000000 times in 0.493703559 seconds syscall: 25000000 times in 6.584025337 seconds Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Reviewed-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
275 lines
6.9 KiB
C
275 lines
6.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* vdso setup for s390
|
|
*
|
|
* Copyright IBM Corp. 2008
|
|
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
|
|
*/
|
|
|
|
#include <linux/binfmts.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/time_namespace.h>
|
|
#include <linux/random.h>
|
|
#include <vdso/datapage.h>
|
|
#include <asm/vdso/vsyscall.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/vdso.h>
|
|
|
|
extern char vdso64_start[], vdso64_end[];
|
|
extern char vdso32_start[], vdso32_end[];
|
|
|
|
static struct vm_special_mapping vvar_mapping;
|
|
|
|
static union vdso_data_store vdso_data_store __page_aligned_data;
|
|
|
|
struct vdso_data *vdso_data = vdso_data_store.data;
|
|
|
|
#ifdef CONFIG_TIME_NS
|
|
struct vdso_data *arch_get_vdso_data(void *vvar_page)
|
|
{
|
|
return (struct vdso_data *)(vvar_page);
|
|
}
|
|
|
|
/*
|
|
* The VVAR page layout depends on whether a task belongs to the root or
|
|
* non-root time namespace. Whenever a task changes its namespace, the VVAR
|
|
* page tables are cleared and then they will be re-faulted with a
|
|
* corresponding layout.
|
|
* See also the comment near timens_setup_vdso_data() for details.
|
|
*/
|
|
int vdso_join_timens(struct task_struct *task, struct time_namespace *ns)
|
|
{
|
|
struct mm_struct *mm = task->mm;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
struct vm_area_struct *vma;
|
|
|
|
mmap_read_lock(mm);
|
|
for_each_vma(vmi, vma) {
|
|
if (!vma_is_special_mapping(vma, &vvar_mapping))
|
|
continue;
|
|
zap_vma_pages(vma);
|
|
break;
|
|
}
|
|
mmap_read_unlock(mm);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static vm_fault_t vvar_fault(const struct vm_special_mapping *sm,
|
|
struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct page *timens_page = find_timens_vvar_page(vma);
|
|
unsigned long addr, pfn;
|
|
vm_fault_t err;
|
|
|
|
switch (vmf->pgoff) {
|
|
case VVAR_DATA_PAGE_OFFSET:
|
|
pfn = virt_to_pfn(vdso_data);
|
|
if (timens_page) {
|
|
/*
|
|
* Fault in VVAR page too, since it will be accessed
|
|
* to get clock data anyway.
|
|
*/
|
|
addr = vmf->address + VVAR_TIMENS_PAGE_OFFSET * PAGE_SIZE;
|
|
err = vmf_insert_pfn(vma, addr, pfn);
|
|
if (unlikely(err & VM_FAULT_ERROR))
|
|
return err;
|
|
pfn = page_to_pfn(timens_page);
|
|
}
|
|
break;
|
|
#ifdef CONFIG_TIME_NS
|
|
case VVAR_TIMENS_PAGE_OFFSET:
|
|
/*
|
|
* If a task belongs to a time namespace then a namespace
|
|
* specific VVAR is mapped with the VVAR_DATA_PAGE_OFFSET and
|
|
* the real VVAR page is mapped with the VVAR_TIMENS_PAGE_OFFSET
|
|
* offset.
|
|
* See also the comment near timens_setup_vdso_data().
|
|
*/
|
|
if (!timens_page)
|
|
return VM_FAULT_SIGBUS;
|
|
pfn = virt_to_pfn(vdso_data);
|
|
break;
|
|
#endif /* CONFIG_TIME_NS */
|
|
default:
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
return vmf_insert_pfn(vma, vmf->address, pfn);
|
|
}
|
|
|
|
static int vdso_mremap(const struct vm_special_mapping *sm,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
current->mm->context.vdso_base = vma->vm_start;
|
|
return 0;
|
|
}
|
|
|
|
static struct vm_special_mapping vvar_mapping = {
|
|
.name = "[vvar]",
|
|
.fault = vvar_fault,
|
|
};
|
|
|
|
static struct vm_special_mapping vdso64_mapping = {
|
|
.name = "[vdso]",
|
|
.mremap = vdso_mremap,
|
|
};
|
|
|
|
static struct vm_special_mapping vdso32_mapping = {
|
|
.name = "[vdso]",
|
|
.mremap = vdso_mremap,
|
|
};
|
|
|
|
int vdso_getcpu_init(void)
|
|
{
|
|
set_tod_programmable_field(smp_processor_id());
|
|
return 0;
|
|
}
|
|
early_initcall(vdso_getcpu_init); /* Must be called before SMP init */
|
|
|
|
static int map_vdso(unsigned long addr, unsigned long vdso_mapping_len)
|
|
{
|
|
unsigned long vvar_start, vdso_text_start, vdso_text_len;
|
|
struct vm_special_mapping *vdso_mapping;
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(VVAR_NR_PAGES != __VVAR_PAGES);
|
|
if (mmap_write_lock_killable(mm))
|
|
return -EINTR;
|
|
|
|
if (is_compat_task()) {
|
|
vdso_text_len = vdso32_end - vdso32_start;
|
|
vdso_mapping = &vdso32_mapping;
|
|
} else {
|
|
vdso_text_len = vdso64_end - vdso64_start;
|
|
vdso_mapping = &vdso64_mapping;
|
|
}
|
|
vvar_start = get_unmapped_area(NULL, addr, vdso_mapping_len, 0, 0);
|
|
rc = vvar_start;
|
|
if (IS_ERR_VALUE(vvar_start))
|
|
goto out;
|
|
vma = _install_special_mapping(mm, vvar_start, VVAR_NR_PAGES*PAGE_SIZE,
|
|
VM_READ|VM_MAYREAD|VM_IO|VM_DONTDUMP|
|
|
VM_PFNMAP,
|
|
&vvar_mapping);
|
|
rc = PTR_ERR(vma);
|
|
if (IS_ERR(vma))
|
|
goto out;
|
|
vdso_text_start = vvar_start + VVAR_NR_PAGES * PAGE_SIZE;
|
|
/* VM_MAYWRITE for COW so gdb can set breakpoints */
|
|
vma = _install_special_mapping(mm, vdso_text_start, vdso_text_len,
|
|
VM_READ|VM_EXEC|
|
|
VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC,
|
|
vdso_mapping);
|
|
if (IS_ERR(vma)) {
|
|
do_munmap(mm, vvar_start, PAGE_SIZE, NULL);
|
|
rc = PTR_ERR(vma);
|
|
} else {
|
|
current->mm->context.vdso_base = vdso_text_start;
|
|
rc = 0;
|
|
}
|
|
out:
|
|
mmap_write_unlock(mm);
|
|
return rc;
|
|
}
|
|
|
|
static unsigned long vdso_addr(unsigned long start, unsigned long len)
|
|
{
|
|
unsigned long addr, end, offset;
|
|
|
|
/*
|
|
* Round up the start address. It can start out unaligned as a result
|
|
* of stack start randomization.
|
|
*/
|
|
start = PAGE_ALIGN(start);
|
|
|
|
/* Round the lowest possible end address up to a PMD boundary. */
|
|
end = (start + len + PMD_SIZE - 1) & PMD_MASK;
|
|
if (end >= VDSO_BASE)
|
|
end = VDSO_BASE;
|
|
end -= len;
|
|
|
|
if (end > start) {
|
|
offset = get_random_u32_below(((end - start) >> PAGE_SHIFT) + 1);
|
|
addr = start + (offset << PAGE_SHIFT);
|
|
} else {
|
|
addr = start;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
unsigned long vdso_text_size(void)
|
|
{
|
|
unsigned long size;
|
|
|
|
if (is_compat_task())
|
|
size = vdso32_end - vdso32_start;
|
|
else
|
|
size = vdso64_end - vdso64_start;
|
|
return PAGE_ALIGN(size);
|
|
}
|
|
|
|
unsigned long vdso_size(void)
|
|
{
|
|
return vdso_text_size() + VVAR_NR_PAGES * PAGE_SIZE;
|
|
}
|
|
|
|
int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
|
|
{
|
|
unsigned long addr = VDSO_BASE;
|
|
unsigned long size = vdso_size();
|
|
|
|
if (current->flags & PF_RANDOMIZE)
|
|
addr = vdso_addr(current->mm->start_stack + PAGE_SIZE, size);
|
|
return map_vdso(addr, size);
|
|
}
|
|
|
|
static struct page ** __init vdso_setup_pages(void *start, void *end)
|
|
{
|
|
int pages = (end - start) >> PAGE_SHIFT;
|
|
struct page **pagelist;
|
|
int i;
|
|
|
|
pagelist = kcalloc(pages + 1, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pagelist)
|
|
panic("%s: Cannot allocate page list for VDSO", __func__);
|
|
for (i = 0; i < pages; i++)
|
|
pagelist[i] = virt_to_page(start + i * PAGE_SIZE);
|
|
return pagelist;
|
|
}
|
|
|
|
static void vdso_apply_alternatives(void)
|
|
{
|
|
const struct elf64_shdr *alt, *shdr;
|
|
struct alt_instr *start, *end;
|
|
const struct elf64_hdr *hdr;
|
|
|
|
hdr = (struct elf64_hdr *)vdso64_start;
|
|
shdr = (void *)hdr + hdr->e_shoff;
|
|
alt = find_section(hdr, shdr, ".altinstructions");
|
|
if (!alt)
|
|
return;
|
|
start = (void *)hdr + alt->sh_offset;
|
|
end = (void *)hdr + alt->sh_offset + alt->sh_size;
|
|
apply_alternatives(start, end);
|
|
}
|
|
|
|
static int __init vdso_init(void)
|
|
{
|
|
vdso_apply_alternatives();
|
|
vdso64_mapping.pages = vdso_setup_pages(vdso64_start, vdso64_end);
|
|
if (IS_ENABLED(CONFIG_COMPAT))
|
|
vdso32_mapping.pages = vdso_setup_pages(vdso32_start, vdso32_end);
|
|
return 0;
|
|
}
|
|
arch_initcall(vdso_init);
|