linux-next/drivers/phy/freescale/phy-fsl-samsung-hdmi.c
Adam Ford d567679f2b phy: freescale: fsl-samsung-hdmi: Clean up fld_tg_code calculation
Currently, the calcuation for fld_tg_code is based on a lookup table,
but there are gaps in the lookup table, and frequencies in these
gaps may not properly use the correct divider.  Based on the description
of FLD_CK_DIV, the internal PLL frequency should be less than 50 MHz,
so directly calcuate the value of FLD_CK_DIV from pixclk.
This allow for proper calcuation of any pixel clock and eliminates a
few gaps in the LUT.

Since the value of the int_pllclk is in Hz, do the fixed-point
math in Hz to achieve a more accurate value and reduces the complexity
of the caluation to 24MHz * (256 / int_pllclk).

Fixes: 6ad082bee9 ("phy: freescale: add Samsung HDMI PHY")
Signed-off-by: Adam Ford <aford173@gmail.com>
Reviewed-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Link: https://lore.kernel.org/r/20241026132014.73050-3-aford173@gmail.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2024-12-08 21:21:20 +05:30

758 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 NXP
* Copyright 2022 Pengutronix, Lucas Stach <kernel@pengutronix.de>
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#define PHY_REG(reg) (reg * 4)
#define REG01_PMS_P_MASK GENMASK(3, 0)
#define REG03_PMS_S_MASK GENMASK(7, 4)
#define REG12_CK_DIV_MASK GENMASK(5, 4)
#define REG13_TG_CODE_LOW_MASK GENMASK(7, 0)
#define REG14_TOL_MASK GENMASK(7, 4)
#define REG14_RP_CODE_MASK GENMASK(3, 1)
#define REG14_TG_CODE_HIGH_MASK GENMASK(0, 0)
#define REG21_SEL_TX_CK_INV BIT(7)
#define REG21_PMS_S_MASK GENMASK(3, 0)
/*
* REG33 does not match the ref manual. According to Sandor Yu from NXP,
* "There is a doc issue on the i.MX8MP latest RM"
* REG33 is being used per guidance from Sandor
*/
#define REG33_MODE_SET_DONE BIT(7)
#define REG33_FIX_DA BIT(1)
#define REG34_PHY_READY BIT(7)
#define REG34_PLL_LOCK BIT(6)
#define REG34_PHY_CLK_READY BIT(5)
#ifndef MHZ
#define MHZ (1000UL * 1000UL)
#endif
#define PHY_PLL_DIV_REGS_NUM 7
struct phy_config {
u32 pixclk;
u8 pll_div_regs[PHY_PLL_DIV_REGS_NUM];
};
/*
* The calculated_phy_pll_cfg only handles integer divider for PMS,
* meaning the last four entries will be fixed, but the first three will
* be calculated by the PMS calculator.
*/
static struct phy_config calculated_phy_pll_cfg = {
.pixclk = 0,
.pll_div_regs = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00 },
};
/* The lookup table contains values for which the fractional divder is used */
static const struct phy_config phy_pll_cfg[] = {
{
.pixclk = 22250000,
.pll_div_regs = { 0xd1, 0x4b, 0xf1, 0x89, 0x88, 0x80, 0x40 },
}, {
.pixclk = 23750000,
.pll_div_regs = { 0xd1, 0x50, 0xf1, 0x86, 0x85, 0x80, 0x40 },
}, {
.pixclk = 24024000,
.pll_div_regs = { 0xd1, 0x50, 0xf1, 0x99, 0x02, 0x80, 0x40 },
}, {
.pixclk = 25175000,
.pll_div_regs = { 0xd1, 0x54, 0xfc, 0xcc, 0x91, 0x80, 0x40 },
}, {
.pixclk = 26750000,
.pll_div_regs = { 0xd1, 0x5a, 0xf2, 0x89, 0x88, 0x80, 0x40 },
}, {
.pixclk = 27027000,
.pll_div_regs = { 0xd1, 0x5a, 0xf2, 0xfd, 0x0c, 0x80, 0x40 },
}, {
.pixclk = 29500000,
.pll_div_regs = { 0xd1, 0x62, 0xf4, 0x95, 0x08, 0x80, 0x40 },
}, {
.pixclk = 30750000,
.pll_div_regs = { 0xd1, 0x66, 0xf4, 0x82, 0x01, 0x88, 0x45 },
}, {
.pixclk = 30888000,
.pll_div_regs = { 0xd1, 0x66, 0xf4, 0x99, 0x18, 0x88, 0x45 },
}, {
.pixclk = 33750000,
.pll_div_regs = { 0xd1, 0x70, 0xf4, 0x82, 0x01, 0x80, 0x40 },
}, {
.pixclk = 35000000,
.pll_div_regs = { 0xd1, 0x58, 0xb8, 0x8b, 0x88, 0x80, 0x40 },
}, {
.pixclk = 36036000,
.pll_div_regs = { 0xd1, 0x5a, 0xb2, 0xfd, 0x0c, 0x80, 0x40 },
}, {
.pixclk = 43243200,
.pll_div_regs = { 0xd1, 0x5a, 0x92, 0xfd, 0x0c, 0x80, 0x40 },
}, {
.pixclk = 44500000,
.pll_div_regs = { 0xd1, 0x5c, 0x92, 0x98, 0x11, 0x84, 0x41 },
}, {
.pixclk = 47000000,
.pll_div_regs = { 0xd1, 0x62, 0x94, 0x95, 0x82, 0x80, 0x40 },
}, {
.pixclk = 47500000,
.pll_div_regs = { 0xd1, 0x63, 0x96, 0xa1, 0x82, 0x80, 0x40 },
}, {
.pixclk = 50349650,
.pll_div_regs = { 0xd1, 0x54, 0x7c, 0xc3, 0x8f, 0x80, 0x40 },
}, {
.pixclk = 53250000,
.pll_div_regs = { 0xd1, 0x58, 0x72, 0x84, 0x03, 0x82, 0x41 },
}, {
.pixclk = 53500000,
.pll_div_regs = { 0xd1, 0x5a, 0x72, 0x89, 0x88, 0x80, 0x40 },
}, {
.pixclk = 54054000,
.pll_div_regs = { 0xd1, 0x5a, 0x72, 0xfd, 0x0c, 0x80, 0x40 },
}, {
.pixclk = 59000000,
.pll_div_regs = { 0xd1, 0x62, 0x74, 0x95, 0x08, 0x80, 0x40 },
}, {
.pixclk = 59340659,
.pll_div_regs = { 0xd1, 0x62, 0x74, 0xdb, 0x52, 0x88, 0x47 },
}, {
.pixclk = 61500000,
.pll_div_regs = { 0xd1, 0x66, 0x74, 0x82, 0x01, 0x88, 0x45 },
}, {
.pixclk = 63500000,
.pll_div_regs = { 0xd1, 0x69, 0x74, 0x89, 0x08, 0x80, 0x40 },
}, {
.pixclk = 67500000,
.pll_div_regs = { 0xd1, 0x54, 0x52, 0x87, 0x03, 0x80, 0x40 },
}, {
.pixclk = 70000000,
.pll_div_regs = { 0xd1, 0x58, 0x58, 0x8b, 0x88, 0x80, 0x40 },
}, {
.pixclk = 72072000,
.pll_div_regs = { 0xd1, 0x5a, 0x52, 0xfd, 0x0c, 0x80, 0x40 },
}, {
.pixclk = 74176000,
.pll_div_regs = { 0xd1, 0x5d, 0x58, 0xdb, 0xA2, 0x88, 0x41 },
}, {
.pixclk = 74250000,
.pll_div_regs = { 0xd1, 0x5c, 0x52, 0x90, 0x0d, 0x84, 0x41 },
}, {
.pixclk = 78500000,
.pll_div_regs = { 0xd1, 0x62, 0x54, 0x87, 0x01, 0x80, 0x40 },
}, {
.pixclk = 82000000,
.pll_div_regs = { 0xd1, 0x66, 0x54, 0x82, 0x01, 0x88, 0x45 },
}, {
.pixclk = 82500000,
.pll_div_regs = { 0xd1, 0x67, 0x54, 0x88, 0x01, 0x90, 0x49 },
}, {
.pixclk = 89000000,
.pll_div_regs = { 0xd1, 0x70, 0x54, 0x84, 0x83, 0x80, 0x40 },
}, {
.pixclk = 90000000,
.pll_div_regs = { 0xd1, 0x70, 0x54, 0x82, 0x01, 0x80, 0x40 },
}, {
.pixclk = 94000000,
.pll_div_regs = { 0xd1, 0x4e, 0x32, 0xa7, 0x10, 0x80, 0x40 },
}, {
.pixclk = 95000000,
.pll_div_regs = { 0xd1, 0x50, 0x31, 0x86, 0x85, 0x80, 0x40 },
}, {
.pixclk = 98901099,
.pll_div_regs = { 0xd1, 0x52, 0x3a, 0xdb, 0x4c, 0x88, 0x47 },
}, {
.pixclk = 99000000,
.pll_div_regs = { 0xd1, 0x52, 0x32, 0x82, 0x01, 0x88, 0x47 },
}, {
.pixclk = 100699300,
.pll_div_regs = { 0xd1, 0x54, 0x3c, 0xc3, 0x8f, 0x80, 0x40 },
}, {
.pixclk = 102500000,
.pll_div_regs = { 0xd1, 0x55, 0x32, 0x8c, 0x05, 0x90, 0x4b },
}, {
.pixclk = 104750000,
.pll_div_regs = { 0xd1, 0x57, 0x32, 0x98, 0x07, 0x90, 0x49 },
}, {
.pixclk = 106500000,
.pll_div_regs = { 0xd1, 0x58, 0x32, 0x84, 0x03, 0x82, 0x41 },
}, {
.pixclk = 107000000,
.pll_div_regs = { 0xd1, 0x5a, 0x32, 0x89, 0x88, 0x80, 0x40 },
}, {
.pixclk = 108108000,
.pll_div_regs = { 0xd1, 0x5a, 0x32, 0xfd, 0x0c, 0x80, 0x40 },
}, {
.pixclk = 118000000,
.pll_div_regs = { 0xd1, 0x62, 0x34, 0x95, 0x08, 0x80, 0x40 },
}, {
.pixclk = 123000000,
.pll_div_regs = { 0xd1, 0x66, 0x34, 0x82, 0x01, 0x88, 0x45 },
}, {
.pixclk = 127000000,
.pll_div_regs = { 0xd1, 0x69, 0x34, 0x89, 0x08, 0x80, 0x40 },
}, {
.pixclk = 135000000,
.pll_div_regs = { 0xd1, 0x70, 0x34, 0x82, 0x01, 0x80, 0x40 },
}, {
.pixclk = 135580000,
.pll_div_regs = { 0xd1, 0x71, 0x39, 0xe9, 0x82, 0x9c, 0x5b },
}, {
.pixclk = 137520000,
.pll_div_regs = { 0xd1, 0x72, 0x38, 0x99, 0x10, 0x85, 0x41 },
}, {
.pixclk = 138750000,
.pll_div_regs = { 0xd1, 0x73, 0x35, 0x88, 0x05, 0x90, 0x4d },
}, {
.pixclk = 140000000,
.pll_div_regs = { 0xd1, 0x75, 0x36, 0xa7, 0x90, 0x80, 0x40 },
}, {
.pixclk = 148352000,
.pll_div_regs = { 0xd1, 0x7b, 0x35, 0xdb, 0x39, 0x90, 0x45 },
}, {
.pixclk = 148500000,
.pll_div_regs = { 0xd1, 0x7b, 0x35, 0x84, 0x03, 0x90, 0x45 },
}, {
.pixclk = 154000000,
.pll_div_regs = { 0xd1, 0x40, 0x18, 0x83, 0x01, 0x00, 0x40 },
}, {
.pixclk = 157000000,
.pll_div_regs = { 0xd1, 0x41, 0x11, 0xa7, 0x14, 0x80, 0x40 },
}, {
.pixclk = 160000000,
.pll_div_regs = { 0xd1, 0x42, 0x12, 0xa1, 0x20, 0x80, 0x40 },
}, {
.pixclk = 162000000,
.pll_div_regs = { 0xd1, 0x43, 0x18, 0x8b, 0x08, 0x96, 0x55 },
}, {
.pixclk = 164000000,
.pll_div_regs = { 0xd1, 0x45, 0x11, 0x83, 0x82, 0x90, 0x4b },
}, {
.pixclk = 165000000,
.pll_div_regs = { 0xd1, 0x45, 0x11, 0x84, 0x81, 0x90, 0x4b },
}, {
.pixclk = 185625000,
.pll_div_regs = { 0xd1, 0x4e, 0x12, 0x9a, 0x95, 0x80, 0x40 },
}, {
.pixclk = 188000000,
.pll_div_regs = { 0xd1, 0x4e, 0x12, 0xa7, 0x10, 0x80, 0x40 },
}, {
.pixclk = 198000000,
.pll_div_regs = { 0xd1, 0x52, 0x12, 0x82, 0x01, 0x88, 0x47 },
}, {
.pixclk = 205000000,
.pll_div_regs = { 0xd1, 0x55, 0x12, 0x8c, 0x05, 0x90, 0x4b },
}, {
.pixclk = 209500000,
.pll_div_regs = { 0xd1, 0x57, 0x12, 0x98, 0x07, 0x90, 0x49 },
}, {
.pixclk = 213000000,
.pll_div_regs = { 0xd1, 0x58, 0x12, 0x84, 0x03, 0x82, 0x41 },
}, {
.pixclk = 216216000,
.pll_div_regs = { 0xd1, 0x5a, 0x12, 0xfd, 0x0c, 0x80, 0x40 },
}, {
.pixclk = 254000000,
.pll_div_regs = { 0xd1, 0x69, 0x14, 0x89, 0x08, 0x80, 0x40 },
}, {
.pixclk = 277500000,
.pll_div_regs = { 0xd1, 0x73, 0x15, 0x88, 0x05, 0x90, 0x4d },
}, {
.pixclk = 297000000,
.pll_div_regs = { 0xd1, 0x7b, 0x15, 0x84, 0x03, 0x90, 0x45 },
},
};
struct reg_settings {
u8 reg;
u8 val;
};
static const struct reg_settings common_phy_cfg[] = {
{ PHY_REG(0), 0x00 },
/* PHY_REG(1-7) pix clk specific */
{ PHY_REG(8), 0x4f }, { PHY_REG(9), 0x30 },
{ PHY_REG(10), 0x33 }, { PHY_REG(11), 0x65 },
/* REG12 pixclk specific */
/* REG13 pixclk specific */
/* REG14 pixclk specific */
{ PHY_REG(15), 0x80 }, { PHY_REG(16), 0x6c },
{ PHY_REG(17), 0xf2 }, { PHY_REG(18), 0x67 },
{ PHY_REG(19), 0x00 }, { PHY_REG(20), 0x10 },
/* REG21 pixclk specific */
{ PHY_REG(22), 0x30 }, { PHY_REG(23), 0x32 },
{ PHY_REG(24), 0x60 }, { PHY_REG(25), 0x8f },
{ PHY_REG(26), 0x00 }, { PHY_REG(27), 0x00 },
{ PHY_REG(28), 0x08 }, { PHY_REG(29), 0x00 },
{ PHY_REG(30), 0x00 }, { PHY_REG(31), 0x00 },
{ PHY_REG(32), 0x00 }, { PHY_REG(33), 0x80 },
{ PHY_REG(34), 0x00 }, { PHY_REG(35), 0x00 },
{ PHY_REG(36), 0x00 }, { PHY_REG(37), 0x00 },
{ PHY_REG(38), 0x00 }, { PHY_REG(39), 0x00 },
{ PHY_REG(40), 0x00 }, { PHY_REG(41), 0xe0 },
{ PHY_REG(42), 0x83 }, { PHY_REG(43), 0x0f },
{ PHY_REG(44), 0x3E }, { PHY_REG(45), 0xf8 },
{ PHY_REG(46), 0x00 }, { PHY_REG(47), 0x00 }
};
struct fsl_samsung_hdmi_phy {
struct device *dev;
void __iomem *regs;
struct clk *apbclk;
struct clk *refclk;
/* clk provider */
struct clk_hw hw;
const struct phy_config *cur_cfg;
};
static inline struct fsl_samsung_hdmi_phy *
to_fsl_samsung_hdmi_phy(struct clk_hw *hw)
{
return container_of(hw, struct fsl_samsung_hdmi_phy, hw);
}
static void
fsl_samsung_hdmi_phy_configure_pll_lock_det(struct fsl_samsung_hdmi_phy *phy,
const struct phy_config *cfg)
{
u32 pclk = cfg->pixclk;
u32 fld_tg_code;
u32 int_pllclk;
u8 div;
/* Find int_pllclk speed */
for (div = 0; div < 4; div++) {
int_pllclk = pclk / (1 << div);
if (int_pllclk < (50 * MHZ))
break;
}
writeb(FIELD_PREP(REG12_CK_DIV_MASK, div), phy->regs + PHY_REG(12));
/*
* Calculation for the frequency lock detector target code (fld_tg_code)
* is based on reference manual register description of PHY_REG13
* (13.10.3.1.14.2):
* 1st) Calculate int_pllclk which is determinded by FLD_CK_DIV
* 2nd) Increase resolution to avoid rounding issues
* 3th) Do the div (256 / Freq. of int_pllclk) * 24
* 4th) Reduce the resolution and always round up since the NXP
* settings rounding up always too. TODO: Check if that is
* correct.
*/
fld_tg_code = DIV_ROUND_UP(24 * MHZ * 256, int_pllclk);
/* FLD_TOL and FLD_RP_CODE taken from downstream driver */
writeb(FIELD_PREP(REG13_TG_CODE_LOW_MASK, fld_tg_code),
phy->regs + PHY_REG(13));
writeb(FIELD_PREP(REG14_TOL_MASK, 2) |
FIELD_PREP(REG14_RP_CODE_MASK, 2) |
FIELD_PREP(REG14_TG_CODE_HIGH_MASK, fld_tg_code >> 8),
phy->regs + PHY_REG(14));
}
static unsigned long fsl_samsung_hdmi_phy_find_pms(unsigned long fout, u8 *p, u16 *m, u8 *s)
{
unsigned long best_freq = 0;
u32 min_delta = 0xffffffff;
u8 _p, best_p;
u16 _m, best_m;
u8 _s, best_s;
/*
* Figure 13-78 of the reference manual states the PLL should be TMDS x 5
* while the TMDS_CLKO should be the PLL / 5. So to calculate the PLL,
* take the pix clock x 5, then return the value of the PLL / 5.
*/
fout *= 5;
/* The ref manual states the values of 'P' range from 1 to 11 */
for (_p = 1; _p <= 11; ++_p) {
for (_s = 1; _s <= 16; ++_s) {
u64 tmp;
u32 delta;
/* s must be one or even */
if (_s > 1 && (_s & 0x01) == 1)
_s++;
/* _s cannot be 14 per the TRM */
if (_s == 14)
continue;
/*
* The Ref manual doesn't explicitly state the range of M,
* but it does show it as an 8-bit value, so reject
* any value above 255.
*/
tmp = (u64)fout * (_p * _s);
do_div(tmp, 24 * MHZ);
if (tmp > 255)
continue;
_m = tmp;
/*
* Rev 2 of the Ref Manual states the
* VCO can range between 750MHz and
* 3GHz. The VCO is assumed to be
* Fvco = (M * f_ref) / P,
* where f_ref is 24MHz.
*/
tmp = (u64)_m * 24 * MHZ;
do_div(tmp, _p);
if (tmp < 750 * MHZ ||
tmp > 3000 * MHZ)
continue;
/* Final frequency after post-divider */
do_div(tmp, _s);
delta = abs(fout - tmp);
if (delta < min_delta) {
best_p = _p;
best_s = _s;
best_m = _m;
min_delta = delta;
best_freq = tmp;
}
/* If we have an exact match, stop looking for a better value */
if (!delta)
goto done;
}
}
done:
if (best_freq) {
*p = best_p;
*m = best_m;
*s = best_s;
}
return best_freq / 5;
}
static int fsl_samsung_hdmi_phy_configure(struct fsl_samsung_hdmi_phy *phy,
const struct phy_config *cfg)
{
int i, ret;
u8 val;
/* HDMI PHY init */
writeb(REG33_FIX_DA, phy->regs + PHY_REG(33));
/* common PHY registers */
for (i = 0; i < ARRAY_SIZE(common_phy_cfg); i++)
writeb(common_phy_cfg[i].val, phy->regs + common_phy_cfg[i].reg);
/* set individual PLL registers PHY_REG1 ... PHY_REG7 */
for (i = 0; i < PHY_PLL_DIV_REGS_NUM; i++)
writeb(cfg->pll_div_regs[i], phy->regs + PHY_REG(1) + i * 4);
/* High nibble of PHY_REG3 and low nibble of PHY_REG21 both contain 'S' */
writeb(REG21_SEL_TX_CK_INV | FIELD_PREP(REG21_PMS_S_MASK,
cfg->pll_div_regs[2] >> 4), phy->regs + PHY_REG(21));
fsl_samsung_hdmi_phy_configure_pll_lock_det(phy, cfg);
writeb(REG33_FIX_DA | REG33_MODE_SET_DONE, phy->regs + PHY_REG(33));
ret = readb_poll_timeout(phy->regs + PHY_REG(34), val,
val & REG34_PLL_LOCK, 50, 20000);
if (ret)
dev_err(phy->dev, "PLL failed to lock\n");
return ret;
}
static unsigned long phy_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct fsl_samsung_hdmi_phy *phy = to_fsl_samsung_hdmi_phy(hw);
if (!phy->cur_cfg)
return 74250000;
return phy->cur_cfg->pixclk;
}
/* Helper function to lookup the available fractional-divider rate */
static const struct phy_config *fsl_samsung_hdmi_phy_lookup_rate(unsigned long rate)
{
int i;
/* Search the lookup table */
for (i = ARRAY_SIZE(phy_pll_cfg) - 1; i >= 0; i--)
if (phy_pll_cfg[i].pixclk <= rate)
break;
return &phy_pll_cfg[i];
}
static void fsl_samsung_hdmi_calculate_phy(struct phy_config *cal_phy, unsigned long rate,
u8 p, u16 m, u8 s)
{
cal_phy->pixclk = rate;
cal_phy->pll_div_regs[0] = FIELD_PREP(REG01_PMS_P_MASK, p);
cal_phy->pll_div_regs[1] = m;
cal_phy->pll_div_regs[2] = FIELD_PREP(REG03_PMS_S_MASK, s-1);
/* pll_div_regs 3-6 are fixed and pre-defined already */
}
static u32 fsl_samsung_hdmi_phy_get_closest_rate(unsigned long rate,
u32 int_div_clk, u32 frac_div_clk)
{
/* Calculate the absolute value of the differences and return whichever is closest */
if (abs((long)rate - (long)int_div_clk) < abs((long)(rate - (long)frac_div_clk)))
return int_div_clk;
return frac_div_clk;
}
static long phy_clk_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *parent_rate)
{
const struct phy_config *fract_div_phy;
u32 int_div_clk;
u16 m;
u8 p, s;
/* If the clock is out of range return error instead of searching */
if (rate > 297000000 || rate < 22250000)
return -EINVAL;
/* Search the fractional divider lookup table */
fract_div_phy = fsl_samsung_hdmi_phy_lookup_rate(rate);
/* If the rate is an exact match, return that value */
if (rate == fract_div_phy->pixclk)
return fract_div_phy->pixclk;
/* If the exact match isn't found, calculate the integer divider */
int_div_clk = fsl_samsung_hdmi_phy_find_pms(rate, &p, &m, &s);
/* If the int_div_clk rate is an exact match, return that value */
if (int_div_clk == rate)
return int_div_clk;
/* If neither rate is an exact match, use the value from the LUT */
return fract_div_phy->pixclk;
}
static int phy_use_fract_div(struct fsl_samsung_hdmi_phy *phy, const struct phy_config *fract_div_phy)
{
phy->cur_cfg = fract_div_phy;
dev_dbg(phy->dev, "fsl_samsung_hdmi_phy: using fractional divider rate = %u\n",
phy->cur_cfg->pixclk);
return fsl_samsung_hdmi_phy_configure(phy, phy->cur_cfg);
}
static int phy_use_integer_div(struct fsl_samsung_hdmi_phy *phy,
const struct phy_config *int_div_clk)
{
phy->cur_cfg = &calculated_phy_pll_cfg;
dev_dbg(phy->dev, "fsl_samsung_hdmi_phy: integer divider rate = %u\n",
phy->cur_cfg->pixclk);
return fsl_samsung_hdmi_phy_configure(phy, phy->cur_cfg);
}
static int phy_clk_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct fsl_samsung_hdmi_phy *phy = to_fsl_samsung_hdmi_phy(hw);
const struct phy_config *fract_div_phy;
u32 int_div_clk;
u16 m;
u8 p, s;
/* Search the fractional divider lookup table */
fract_div_phy = fsl_samsung_hdmi_phy_lookup_rate(rate);
/* If the rate is an exact match, use that value */
if (fract_div_phy->pixclk == rate)
return phy_use_fract_div(phy, fract_div_phy);
/*
* If the rate from the fractional divider is not exact, check the integer divider,
* and use it if that value is an exact match.
*/
int_div_clk = fsl_samsung_hdmi_phy_find_pms(rate, &p, &m, &s);
fsl_samsung_hdmi_calculate_phy(&calculated_phy_pll_cfg, int_div_clk, p, m, s);
if (int_div_clk == rate)
return phy_use_integer_div(phy, &calculated_phy_pll_cfg);
/*
* Compare the difference between the integer clock and the fractional clock against
* the desired clock and which whichever is closest.
*/
if (fsl_samsung_hdmi_phy_get_closest_rate(rate, int_div_clk,
fract_div_phy->pixclk) == fract_div_phy->pixclk)
return phy_use_fract_div(phy, fract_div_phy);
else
return phy_use_integer_div(phy, &calculated_phy_pll_cfg);
}
static const struct clk_ops phy_clk_ops = {
.recalc_rate = phy_clk_recalc_rate,
.round_rate = phy_clk_round_rate,
.set_rate = phy_clk_set_rate,
};
static int phy_clk_register(struct fsl_samsung_hdmi_phy *phy)
{
struct device *dev = phy->dev;
struct device_node *np = dev->of_node;
struct clk_init_data init;
const char *parent_name;
struct clk *phyclk;
int ret;
parent_name = __clk_get_name(phy->refclk);
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = 0;
init.name = "hdmi_pclk";
init.ops = &phy_clk_ops;
phy->hw.init = &init;
phyclk = devm_clk_register(dev, &phy->hw);
if (IS_ERR(phyclk))
return dev_err_probe(dev, PTR_ERR(phyclk),
"failed to register clock\n");
ret = of_clk_add_hw_provider(np, of_clk_hw_simple_get, phyclk);
if (ret)
return dev_err_probe(dev, ret,
"failed to register clock provider\n");
return 0;
}
static int fsl_samsung_hdmi_phy_probe(struct platform_device *pdev)
{
struct fsl_samsung_hdmi_phy *phy;
int ret;
phy = devm_kzalloc(&pdev->dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
platform_set_drvdata(pdev, phy);
phy->dev = &pdev->dev;
phy->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(phy->regs))
return PTR_ERR(phy->regs);
phy->apbclk = devm_clk_get(phy->dev, "apb");
if (IS_ERR(phy->apbclk))
return dev_err_probe(phy->dev, PTR_ERR(phy->apbclk),
"failed to get apb clk\n");
phy->refclk = devm_clk_get(phy->dev, "ref");
if (IS_ERR(phy->refclk))
return dev_err_probe(phy->dev, PTR_ERR(phy->refclk),
"failed to get ref clk\n");
ret = clk_prepare_enable(phy->apbclk);
if (ret) {
dev_err(phy->dev, "failed to enable apbclk\n");
return ret;
}
pm_runtime_get_noresume(phy->dev);
pm_runtime_set_active(phy->dev);
pm_runtime_enable(phy->dev);
ret = phy_clk_register(phy);
if (ret) {
dev_err(&pdev->dev, "register clk failed\n");
goto register_clk_failed;
}
pm_runtime_put(phy->dev);
return 0;
register_clk_failed:
clk_disable_unprepare(phy->apbclk);
return ret;
}
static void fsl_samsung_hdmi_phy_remove(struct platform_device *pdev)
{
of_clk_del_provider(pdev->dev.of_node);
}
static int __maybe_unused fsl_samsung_hdmi_phy_suspend(struct device *dev)
{
struct fsl_samsung_hdmi_phy *phy = dev_get_drvdata(dev);
clk_disable_unprepare(phy->apbclk);
return 0;
}
static int __maybe_unused fsl_samsung_hdmi_phy_resume(struct device *dev)
{
struct fsl_samsung_hdmi_phy *phy = dev_get_drvdata(dev);
int ret = 0;
ret = clk_prepare_enable(phy->apbclk);
if (ret) {
dev_err(phy->dev, "failed to enable apbclk\n");
return ret;
}
if (phy->cur_cfg)
ret = fsl_samsung_hdmi_phy_configure(phy, phy->cur_cfg);
return ret;
}
static DEFINE_RUNTIME_DEV_PM_OPS(fsl_samsung_hdmi_phy_pm_ops,
fsl_samsung_hdmi_phy_suspend,
fsl_samsung_hdmi_phy_resume, NULL);
static const struct of_device_id fsl_samsung_hdmi_phy_of_match[] = {
{
.compatible = "fsl,imx8mp-hdmi-phy",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, fsl_samsung_hdmi_phy_of_match);
static struct platform_driver fsl_samsung_hdmi_phy_driver = {
.probe = fsl_samsung_hdmi_phy_probe,
.remove = fsl_samsung_hdmi_phy_remove,
.driver = {
.name = "fsl-samsung-hdmi-phy",
.of_match_table = fsl_samsung_hdmi_phy_of_match,
.pm = pm_ptr(&fsl_samsung_hdmi_phy_pm_ops),
},
};
module_platform_driver(fsl_samsung_hdmi_phy_driver);
MODULE_AUTHOR("Sandor Yu <Sandor.yu@nxp.com>");
MODULE_DESCRIPTION("SAMSUNG HDMI 2.0 Transmitter PHY Driver");
MODULE_LICENSE("GPL");