linux-next/drivers/vfio/pci/vfio_pci_igd.c
Jason Gunthorpe 0886196ca8 vfio: Use GFP_KERNEL_ACCOUNT for userspace persistent allocations
Use GFP_KERNEL_ACCOUNT for userspace persistent allocations.

The GFP_KERNEL_ACCOUNT option lets the memory allocator know that this
is untrusted allocation triggered from userspace and should be a subject
of kmem accounting, and as such it is controlled by the cgroup
mechanism.

The way to find the relevant allocations was for example to look at the
close_device function and trace back all the kfrees to their
allocations.

Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Yishai Hadas <yishaih@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20230108154427.32609-4-yishaih@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2023-01-23 11:26:29 -07:00

452 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* VFIO PCI Intel Graphics support
*
* Copyright (C) 2016 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* Register a device specific region through which to provide read-only
* access to the Intel IGD opregion. The register defining the opregion
* address is also virtualized to prevent user modification.
*/
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include "vfio_pci_priv.h"
#define OPREGION_SIGNATURE "IntelGraphicsMem"
#define OPREGION_SIZE (8 * 1024)
#define OPREGION_PCI_ADDR 0xfc
#define OPREGION_RVDA 0x3ba
#define OPREGION_RVDS 0x3c2
#define OPREGION_VERSION 0x16
struct igd_opregion_vbt {
void *opregion;
void *vbt_ex;
};
/**
* igd_opregion_shift_copy() - Copy OpRegion to user buffer and shift position.
* @dst: User buffer ptr to copy to.
* @off: Offset to user buffer ptr. Increased by bytes on return.
* @src: Source buffer to copy from.
* @pos: Increased by bytes on return.
* @remaining: Decreased by bytes on return.
* @bytes: Bytes to copy and adjust off, pos and remaining.
*
* Copy OpRegion to offset from specific source ptr and shift the offset.
*
* Return: 0 on success, -EFAULT otherwise.
*
*/
static inline unsigned long igd_opregion_shift_copy(char __user *dst,
loff_t *off,
void *src,
loff_t *pos,
size_t *remaining,
size_t bytes)
{
if (copy_to_user(dst + (*off), src, bytes))
return -EFAULT;
*off += bytes;
*pos += bytes;
*remaining -= bytes;
return 0;
}
static ssize_t vfio_pci_igd_rw(struct vfio_pci_core_device *vdev,
char __user *buf, size_t count, loff_t *ppos,
bool iswrite)
{
unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS;
struct igd_opregion_vbt *opregionvbt = vdev->region[i].data;
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK, off = 0;
size_t remaining;
if (pos >= vdev->region[i].size || iswrite)
return -EINVAL;
count = min_t(size_t, count, vdev->region[i].size - pos);
remaining = count;
/* Copy until OpRegion version */
if (remaining && pos < OPREGION_VERSION) {
size_t bytes = min_t(size_t, remaining, OPREGION_VERSION - pos);
if (igd_opregion_shift_copy(buf, &off,
opregionvbt->opregion + pos, &pos,
&remaining, bytes))
return -EFAULT;
}
/* Copy patched (if necessary) OpRegion version */
if (remaining && pos < OPREGION_VERSION + sizeof(__le16)) {
size_t bytes = min_t(size_t, remaining,
OPREGION_VERSION + sizeof(__le16) - pos);
__le16 version = *(__le16 *)(opregionvbt->opregion +
OPREGION_VERSION);
/* Patch to 2.1 if OpRegion 2.0 has extended VBT */
if (le16_to_cpu(version) == 0x0200 && opregionvbt->vbt_ex)
version = cpu_to_le16(0x0201);
if (igd_opregion_shift_copy(buf, &off,
(u8 *)&version +
(pos - OPREGION_VERSION),
&pos, &remaining, bytes))
return -EFAULT;
}
/* Copy until RVDA */
if (remaining && pos < OPREGION_RVDA) {
size_t bytes = min_t(size_t, remaining, OPREGION_RVDA - pos);
if (igd_opregion_shift_copy(buf, &off,
opregionvbt->opregion + pos, &pos,
&remaining, bytes))
return -EFAULT;
}
/* Copy modified (if necessary) RVDA */
if (remaining && pos < OPREGION_RVDA + sizeof(__le64)) {
size_t bytes = min_t(size_t, remaining,
OPREGION_RVDA + sizeof(__le64) - pos);
__le64 rvda = cpu_to_le64(opregionvbt->vbt_ex ?
OPREGION_SIZE : 0);
if (igd_opregion_shift_copy(buf, &off,
(u8 *)&rvda + (pos - OPREGION_RVDA),
&pos, &remaining, bytes))
return -EFAULT;
}
/* Copy the rest of OpRegion */
if (remaining && pos < OPREGION_SIZE) {
size_t bytes = min_t(size_t, remaining, OPREGION_SIZE - pos);
if (igd_opregion_shift_copy(buf, &off,
opregionvbt->opregion + pos, &pos,
&remaining, bytes))
return -EFAULT;
}
/* Copy extended VBT if exists */
if (remaining &&
copy_to_user(buf + off, opregionvbt->vbt_ex + (pos - OPREGION_SIZE),
remaining))
return -EFAULT;
*ppos += count;
return count;
}
static void vfio_pci_igd_release(struct vfio_pci_core_device *vdev,
struct vfio_pci_region *region)
{
struct igd_opregion_vbt *opregionvbt = region->data;
if (opregionvbt->vbt_ex)
memunmap(opregionvbt->vbt_ex);
memunmap(opregionvbt->opregion);
kfree(opregionvbt);
}
static const struct vfio_pci_regops vfio_pci_igd_regops = {
.rw = vfio_pci_igd_rw,
.release = vfio_pci_igd_release,
};
static int vfio_pci_igd_opregion_init(struct vfio_pci_core_device *vdev)
{
__le32 *dwordp = (__le32 *)(vdev->vconfig + OPREGION_PCI_ADDR);
u32 addr, size;
struct igd_opregion_vbt *opregionvbt;
int ret;
u16 version;
ret = pci_read_config_dword(vdev->pdev, OPREGION_PCI_ADDR, &addr);
if (ret)
return ret;
if (!addr || !(~addr))
return -ENODEV;
opregionvbt = kzalloc(sizeof(*opregionvbt), GFP_KERNEL_ACCOUNT);
if (!opregionvbt)
return -ENOMEM;
opregionvbt->opregion = memremap(addr, OPREGION_SIZE, MEMREMAP_WB);
if (!opregionvbt->opregion) {
kfree(opregionvbt);
return -ENOMEM;
}
if (memcmp(opregionvbt->opregion, OPREGION_SIGNATURE, 16)) {
memunmap(opregionvbt->opregion);
kfree(opregionvbt);
return -EINVAL;
}
size = le32_to_cpu(*(__le32 *)(opregionvbt->opregion + 16));
if (!size) {
memunmap(opregionvbt->opregion);
kfree(opregionvbt);
return -EINVAL;
}
size *= 1024; /* In KB */
/*
* OpRegion and VBT:
* When VBT data doesn't exceed 6KB, it's stored in Mailbox #4.
* When VBT data exceeds 6KB size, Mailbox #4 is no longer large enough
* to hold the VBT data, the Extended VBT region is introduced since
* OpRegion 2.0 to hold the VBT data. Since OpRegion 2.0, RVDA/RVDS are
* introduced to define the extended VBT data location and size.
* OpRegion 2.0: RVDA defines the absolute physical address of the
* extended VBT data, RVDS defines the VBT data size.
* OpRegion 2.1 and above: RVDA defines the relative address of the
* extended VBT data to OpRegion base, RVDS defines the VBT data size.
*
* Due to the RVDA definition diff in OpRegion VBT (also the only diff
* between 2.0 and 2.1), exposing OpRegion and VBT as a contiguous range
* for OpRegion 2.0 and above makes it possible to support the
* non-contiguous VBT through a single vfio region. From r/w ops view,
* only contiguous VBT after OpRegion with version 2.1+ is exposed,
* regardless the host OpRegion is 2.0 or non-contiguous 2.1+. The r/w
* ops will on-the-fly shift the actural offset into VBT so that data at
* correct position can be returned to the requester.
*/
version = le16_to_cpu(*(__le16 *)(opregionvbt->opregion +
OPREGION_VERSION));
if (version >= 0x0200) {
u64 rvda = le64_to_cpu(*(__le64 *)(opregionvbt->opregion +
OPREGION_RVDA));
u32 rvds = le32_to_cpu(*(__le32 *)(opregionvbt->opregion +
OPREGION_RVDS));
/* The extended VBT is valid only when RVDA/RVDS are non-zero */
if (rvda && rvds) {
size += rvds;
/*
* Extended VBT location by RVDA:
* Absolute physical addr for 2.0.
* Relative addr to OpRegion header for 2.1+.
*/
if (version == 0x0200)
addr = rvda;
else
addr += rvda;
opregionvbt->vbt_ex = memremap(addr, rvds, MEMREMAP_WB);
if (!opregionvbt->vbt_ex) {
memunmap(opregionvbt->opregion);
kfree(opregionvbt);
return -ENOMEM;
}
}
}
ret = vfio_pci_core_register_dev_region(vdev,
PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &vfio_pci_igd_regops,
size, VFIO_REGION_INFO_FLAG_READ, opregionvbt);
if (ret) {
if (opregionvbt->vbt_ex)
memunmap(opregionvbt->vbt_ex);
memunmap(opregionvbt->opregion);
kfree(opregionvbt);
return ret;
}
/* Fill vconfig with the hw value and virtualize register */
*dwordp = cpu_to_le32(addr);
memset(vdev->pci_config_map + OPREGION_PCI_ADDR,
PCI_CAP_ID_INVALID_VIRT, 4);
return ret;
}
static ssize_t vfio_pci_igd_cfg_rw(struct vfio_pci_core_device *vdev,
char __user *buf, size_t count, loff_t *ppos,
bool iswrite)
{
unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS;
struct pci_dev *pdev = vdev->region[i].data;
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
size_t size;
int ret;
if (pos >= vdev->region[i].size || iswrite)
return -EINVAL;
size = count = min(count, (size_t)(vdev->region[i].size - pos));
if ((pos & 1) && size) {
u8 val;
ret = pci_user_read_config_byte(pdev, pos, &val);
if (ret)
return ret;
if (copy_to_user(buf + count - size, &val, 1))
return -EFAULT;
pos++;
size--;
}
if ((pos & 3) && size > 2) {
u16 val;
__le16 lval;
ret = pci_user_read_config_word(pdev, pos, &val);
if (ret)
return ret;
lval = cpu_to_le16(val);
if (copy_to_user(buf + count - size, &lval, 2))
return -EFAULT;
pos += 2;
size -= 2;
}
while (size > 3) {
u32 val;
__le32 lval;
ret = pci_user_read_config_dword(pdev, pos, &val);
if (ret)
return ret;
lval = cpu_to_le32(val);
if (copy_to_user(buf + count - size, &lval, 4))
return -EFAULT;
pos += 4;
size -= 4;
}
while (size >= 2) {
u16 val;
__le16 lval;
ret = pci_user_read_config_word(pdev, pos, &val);
if (ret)
return ret;
lval = cpu_to_le16(val);
if (copy_to_user(buf + count - size, &lval, 2))
return -EFAULT;
pos += 2;
size -= 2;
}
while (size) {
u8 val;
ret = pci_user_read_config_byte(pdev, pos, &val);
if (ret)
return ret;
if (copy_to_user(buf + count - size, &val, 1))
return -EFAULT;
pos++;
size--;
}
*ppos += count;
return count;
}
static void vfio_pci_igd_cfg_release(struct vfio_pci_core_device *vdev,
struct vfio_pci_region *region)
{
struct pci_dev *pdev = region->data;
pci_dev_put(pdev);
}
static const struct vfio_pci_regops vfio_pci_igd_cfg_regops = {
.rw = vfio_pci_igd_cfg_rw,
.release = vfio_pci_igd_cfg_release,
};
static int vfio_pci_igd_cfg_init(struct vfio_pci_core_device *vdev)
{
struct pci_dev *host_bridge, *lpc_bridge;
int ret;
host_bridge = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0, 0));
if (!host_bridge)
return -ENODEV;
if (host_bridge->vendor != PCI_VENDOR_ID_INTEL ||
host_bridge->class != (PCI_CLASS_BRIDGE_HOST << 8)) {
pci_dev_put(host_bridge);
return -EINVAL;
}
ret = vfio_pci_core_register_dev_region(vdev,
PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG,
&vfio_pci_igd_cfg_regops, host_bridge->cfg_size,
VFIO_REGION_INFO_FLAG_READ, host_bridge);
if (ret) {
pci_dev_put(host_bridge);
return ret;
}
lpc_bridge = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x1f, 0));
if (!lpc_bridge)
return -ENODEV;
if (lpc_bridge->vendor != PCI_VENDOR_ID_INTEL ||
lpc_bridge->class != (PCI_CLASS_BRIDGE_ISA << 8)) {
pci_dev_put(lpc_bridge);
return -EINVAL;
}
ret = vfio_pci_core_register_dev_region(vdev,
PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG,
&vfio_pci_igd_cfg_regops, lpc_bridge->cfg_size,
VFIO_REGION_INFO_FLAG_READ, lpc_bridge);
if (ret) {
pci_dev_put(lpc_bridge);
return ret;
}
return 0;
}
int vfio_pci_igd_init(struct vfio_pci_core_device *vdev)
{
int ret;
ret = vfio_pci_igd_opregion_init(vdev);
if (ret)
return ret;
ret = vfio_pci_igd_cfg_init(vdev);
if (ret)
return ret;
return 0;
}