linux-next/net/rds/connection.c
Kunwu Chan 047a7d261b net: rds: Simplify the allocation of slab caches in rds_conn_init
Use the new KMEM_CACHE() macro instead of direct kmem_cache_create
to simplify the creation of SLAB caches.

Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
Link: https://lore.kernel.org/r/20240124075801.471330-1-chentao@kylinos.cn
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-01-30 17:08:19 -08:00

947 lines
26 KiB
C

/*
* Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <net/ipv6.h>
#include <net/inet6_hashtables.h>
#include <net/addrconf.h>
#include "rds.h"
#include "loop.h"
#define RDS_CONNECTION_HASH_BITS 12
#define RDS_CONNECTION_HASH_ENTRIES (1 << RDS_CONNECTION_HASH_BITS)
#define RDS_CONNECTION_HASH_MASK (RDS_CONNECTION_HASH_ENTRIES - 1)
/* converting this to RCU is a chore for another day.. */
static DEFINE_SPINLOCK(rds_conn_lock);
static unsigned long rds_conn_count;
static struct hlist_head rds_conn_hash[RDS_CONNECTION_HASH_ENTRIES];
static struct kmem_cache *rds_conn_slab;
static struct hlist_head *rds_conn_bucket(const struct in6_addr *laddr,
const struct in6_addr *faddr)
{
static u32 rds6_hash_secret __read_mostly;
static u32 rds_hash_secret __read_mostly;
u32 lhash, fhash, hash;
net_get_random_once(&rds_hash_secret, sizeof(rds_hash_secret));
net_get_random_once(&rds6_hash_secret, sizeof(rds6_hash_secret));
lhash = (__force u32)laddr->s6_addr32[3];
#if IS_ENABLED(CONFIG_IPV6)
fhash = __ipv6_addr_jhash(faddr, rds6_hash_secret);
#else
fhash = (__force u32)faddr->s6_addr32[3];
#endif
hash = __inet_ehashfn(lhash, 0, fhash, 0, rds_hash_secret);
return &rds_conn_hash[hash & RDS_CONNECTION_HASH_MASK];
}
#define rds_conn_info_set(var, test, suffix) do { \
if (test) \
var |= RDS_INFO_CONNECTION_FLAG_##suffix; \
} while (0)
/* rcu read lock must be held or the connection spinlock */
static struct rds_connection *rds_conn_lookup(struct net *net,
struct hlist_head *head,
const struct in6_addr *laddr,
const struct in6_addr *faddr,
struct rds_transport *trans,
u8 tos, int dev_if)
{
struct rds_connection *conn, *ret = NULL;
hlist_for_each_entry_rcu(conn, head, c_hash_node) {
if (ipv6_addr_equal(&conn->c_faddr, faddr) &&
ipv6_addr_equal(&conn->c_laddr, laddr) &&
conn->c_trans == trans &&
conn->c_tos == tos &&
net == rds_conn_net(conn) &&
conn->c_dev_if == dev_if) {
ret = conn;
break;
}
}
rdsdebug("returning conn %p for %pI6c -> %pI6c\n", ret,
laddr, faddr);
return ret;
}
/*
* This is called by transports as they're bringing down a connection.
* It clears partial message state so that the transport can start sending
* and receiving over this connection again in the future. It is up to
* the transport to have serialized this call with its send and recv.
*/
static void rds_conn_path_reset(struct rds_conn_path *cp)
{
struct rds_connection *conn = cp->cp_conn;
rdsdebug("connection %pI6c to %pI6c reset\n",
&conn->c_laddr, &conn->c_faddr);
rds_stats_inc(s_conn_reset);
rds_send_path_reset(cp);
cp->cp_flags = 0;
/* Do not clear next_rx_seq here, else we cannot distinguish
* retransmitted packets from new packets, and will hand all
* of them to the application. That is not consistent with the
* reliability guarantees of RDS. */
}
static void __rds_conn_path_init(struct rds_connection *conn,
struct rds_conn_path *cp, bool is_outgoing)
{
spin_lock_init(&cp->cp_lock);
cp->cp_next_tx_seq = 1;
init_waitqueue_head(&cp->cp_waitq);
INIT_LIST_HEAD(&cp->cp_send_queue);
INIT_LIST_HEAD(&cp->cp_retrans);
cp->cp_conn = conn;
atomic_set(&cp->cp_state, RDS_CONN_DOWN);
cp->cp_send_gen = 0;
cp->cp_reconnect_jiffies = 0;
cp->cp_conn->c_proposed_version = RDS_PROTOCOL_VERSION;
INIT_DELAYED_WORK(&cp->cp_send_w, rds_send_worker);
INIT_DELAYED_WORK(&cp->cp_recv_w, rds_recv_worker);
INIT_DELAYED_WORK(&cp->cp_conn_w, rds_connect_worker);
INIT_WORK(&cp->cp_down_w, rds_shutdown_worker);
mutex_init(&cp->cp_cm_lock);
cp->cp_flags = 0;
}
/*
* There is only every one 'conn' for a given pair of addresses in the
* system at a time. They contain messages to be retransmitted and so
* span the lifetime of the actual underlying transport connections.
*
* For now they are not garbage collected once they're created. They
* are torn down as the module is removed, if ever.
*/
static struct rds_connection *__rds_conn_create(struct net *net,
const struct in6_addr *laddr,
const struct in6_addr *faddr,
struct rds_transport *trans,
gfp_t gfp, u8 tos,
int is_outgoing,
int dev_if)
{
struct rds_connection *conn, *parent = NULL;
struct hlist_head *head = rds_conn_bucket(laddr, faddr);
struct rds_transport *loop_trans;
unsigned long flags;
int ret, i;
int npaths = (trans->t_mp_capable ? RDS_MPATH_WORKERS : 1);
rcu_read_lock();
conn = rds_conn_lookup(net, head, laddr, faddr, trans, tos, dev_if);
if (conn &&
conn->c_loopback &&
conn->c_trans != &rds_loop_transport &&
ipv6_addr_equal(laddr, faddr) &&
!is_outgoing) {
/* This is a looped back IB connection, and we're
* called by the code handling the incoming connect.
* We need a second connection object into which we
* can stick the other QP. */
parent = conn;
conn = parent->c_passive;
}
rcu_read_unlock();
if (conn)
goto out;
conn = kmem_cache_zalloc(rds_conn_slab, gfp);
if (!conn) {
conn = ERR_PTR(-ENOMEM);
goto out;
}
conn->c_path = kcalloc(npaths, sizeof(struct rds_conn_path), gfp);
if (!conn->c_path) {
kmem_cache_free(rds_conn_slab, conn);
conn = ERR_PTR(-ENOMEM);
goto out;
}
INIT_HLIST_NODE(&conn->c_hash_node);
conn->c_laddr = *laddr;
conn->c_isv6 = !ipv6_addr_v4mapped(laddr);
conn->c_faddr = *faddr;
conn->c_dev_if = dev_if;
conn->c_tos = tos;
#if IS_ENABLED(CONFIG_IPV6)
/* If the local address is link local, set c_bound_if to be the
* index used for this connection. Otherwise, set it to 0 as
* the socket is not bound to an interface. c_bound_if is used
* to look up a socket when a packet is received
*/
if (ipv6_addr_type(laddr) & IPV6_ADDR_LINKLOCAL)
conn->c_bound_if = dev_if;
else
#endif
conn->c_bound_if = 0;
rds_conn_net_set(conn, net);
ret = rds_cong_get_maps(conn);
if (ret) {
kfree(conn->c_path);
kmem_cache_free(rds_conn_slab, conn);
conn = ERR_PTR(ret);
goto out;
}
/*
* This is where a connection becomes loopback. If *any* RDS sockets
* can bind to the destination address then we'd rather the messages
* flow through loopback rather than either transport.
*/
loop_trans = rds_trans_get_preferred(net, faddr, conn->c_dev_if);
if (loop_trans) {
rds_trans_put(loop_trans);
conn->c_loopback = 1;
if (trans->t_prefer_loopback) {
if (likely(is_outgoing)) {
/* "outgoing" connection to local address.
* Protocol says it wants the connection
* handled by the loopback transport.
* This is what TCP does.
*/
trans = &rds_loop_transport;
} else {
/* No transport currently in use
* should end up here, but if it
* does, reset/destroy the connection.
*/
kfree(conn->c_path);
kmem_cache_free(rds_conn_slab, conn);
conn = ERR_PTR(-EOPNOTSUPP);
goto out;
}
}
}
conn->c_trans = trans;
init_waitqueue_head(&conn->c_hs_waitq);
for (i = 0; i < npaths; i++) {
__rds_conn_path_init(conn, &conn->c_path[i],
is_outgoing);
conn->c_path[i].cp_index = i;
}
rcu_read_lock();
if (rds_destroy_pending(conn))
ret = -ENETDOWN;
else
ret = trans->conn_alloc(conn, GFP_ATOMIC);
if (ret) {
rcu_read_unlock();
kfree(conn->c_path);
kmem_cache_free(rds_conn_slab, conn);
conn = ERR_PTR(ret);
goto out;
}
rdsdebug("allocated conn %p for %pI6c -> %pI6c over %s %s\n",
conn, laddr, faddr,
strnlen(trans->t_name, sizeof(trans->t_name)) ?
trans->t_name : "[unknown]", is_outgoing ? "(outgoing)" : "");
/*
* Since we ran without holding the conn lock, someone could
* have created the same conn (either normal or passive) in the
* interim. We check while holding the lock. If we won, we complete
* init and return our conn. If we lost, we rollback and return the
* other one.
*/
spin_lock_irqsave(&rds_conn_lock, flags);
if (parent) {
/* Creating passive conn */
if (parent->c_passive) {
trans->conn_free(conn->c_path[0].cp_transport_data);
kfree(conn->c_path);
kmem_cache_free(rds_conn_slab, conn);
conn = parent->c_passive;
} else {
parent->c_passive = conn;
rds_cong_add_conn(conn);
rds_conn_count++;
}
} else {
/* Creating normal conn */
struct rds_connection *found;
found = rds_conn_lookup(net, head, laddr, faddr, trans,
tos, dev_if);
if (found) {
struct rds_conn_path *cp;
int i;
for (i = 0; i < npaths; i++) {
cp = &conn->c_path[i];
/* The ->conn_alloc invocation may have
* allocated resource for all paths, so all
* of them may have to be freed here.
*/
if (cp->cp_transport_data)
trans->conn_free(cp->cp_transport_data);
}
kfree(conn->c_path);
kmem_cache_free(rds_conn_slab, conn);
conn = found;
} else {
conn->c_my_gen_num = rds_gen_num;
conn->c_peer_gen_num = 0;
hlist_add_head_rcu(&conn->c_hash_node, head);
rds_cong_add_conn(conn);
rds_conn_count++;
}
}
spin_unlock_irqrestore(&rds_conn_lock, flags);
rcu_read_unlock();
out:
return conn;
}
struct rds_connection *rds_conn_create(struct net *net,
const struct in6_addr *laddr,
const struct in6_addr *faddr,
struct rds_transport *trans, u8 tos,
gfp_t gfp, int dev_if)
{
return __rds_conn_create(net, laddr, faddr, trans, gfp, tos, 0, dev_if);
}
EXPORT_SYMBOL_GPL(rds_conn_create);
struct rds_connection *rds_conn_create_outgoing(struct net *net,
const struct in6_addr *laddr,
const struct in6_addr *faddr,
struct rds_transport *trans,
u8 tos, gfp_t gfp, int dev_if)
{
return __rds_conn_create(net, laddr, faddr, trans, gfp, tos, 1, dev_if);
}
EXPORT_SYMBOL_GPL(rds_conn_create_outgoing);
void rds_conn_shutdown(struct rds_conn_path *cp)
{
struct rds_connection *conn = cp->cp_conn;
/* shut it down unless it's down already */
if (!rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_DOWN)) {
/*
* Quiesce the connection mgmt handlers before we start tearing
* things down. We don't hold the mutex for the entire
* duration of the shutdown operation, else we may be
* deadlocking with the CM handler. Instead, the CM event
* handler is supposed to check for state DISCONNECTING
*/
mutex_lock(&cp->cp_cm_lock);
if (!rds_conn_path_transition(cp, RDS_CONN_UP,
RDS_CONN_DISCONNECTING) &&
!rds_conn_path_transition(cp, RDS_CONN_ERROR,
RDS_CONN_DISCONNECTING)) {
rds_conn_path_error(cp,
"shutdown called in state %d\n",
atomic_read(&cp->cp_state));
mutex_unlock(&cp->cp_cm_lock);
return;
}
mutex_unlock(&cp->cp_cm_lock);
wait_event(cp->cp_waitq,
!test_bit(RDS_IN_XMIT, &cp->cp_flags));
wait_event(cp->cp_waitq,
!test_bit(RDS_RECV_REFILL, &cp->cp_flags));
conn->c_trans->conn_path_shutdown(cp);
rds_conn_path_reset(cp);
if (!rds_conn_path_transition(cp, RDS_CONN_DISCONNECTING,
RDS_CONN_DOWN) &&
!rds_conn_path_transition(cp, RDS_CONN_ERROR,
RDS_CONN_DOWN)) {
/* This can happen - eg when we're in the middle of tearing
* down the connection, and someone unloads the rds module.
* Quite reproducible with loopback connections.
* Mostly harmless.
*
* Note that this also happens with rds-tcp because
* we could have triggered rds_conn_path_drop in irq
* mode from rds_tcp_state change on the receipt of
* a FIN, thus we need to recheck for RDS_CONN_ERROR
* here.
*/
rds_conn_path_error(cp, "%s: failed to transition "
"to state DOWN, current state "
"is %d\n", __func__,
atomic_read(&cp->cp_state));
return;
}
}
/* Then reconnect if it's still live.
* The passive side of an IB loopback connection is never added
* to the conn hash, so we never trigger a reconnect on this
* conn - the reconnect is always triggered by the active peer. */
cancel_delayed_work_sync(&cp->cp_conn_w);
rcu_read_lock();
if (!hlist_unhashed(&conn->c_hash_node)) {
rcu_read_unlock();
rds_queue_reconnect(cp);
} else {
rcu_read_unlock();
}
}
/* destroy a single rds_conn_path. rds_conn_destroy() iterates over
* all paths using rds_conn_path_destroy()
*/
static void rds_conn_path_destroy(struct rds_conn_path *cp)
{
struct rds_message *rm, *rtmp;
if (!cp->cp_transport_data)
return;
/* make sure lingering queued work won't try to ref the conn */
cancel_delayed_work_sync(&cp->cp_send_w);
cancel_delayed_work_sync(&cp->cp_recv_w);
rds_conn_path_drop(cp, true);
flush_work(&cp->cp_down_w);
/* tear down queued messages */
list_for_each_entry_safe(rm, rtmp,
&cp->cp_send_queue,
m_conn_item) {
list_del_init(&rm->m_conn_item);
BUG_ON(!list_empty(&rm->m_sock_item));
rds_message_put(rm);
}
if (cp->cp_xmit_rm)
rds_message_put(cp->cp_xmit_rm);
WARN_ON(delayed_work_pending(&cp->cp_send_w));
WARN_ON(delayed_work_pending(&cp->cp_recv_w));
WARN_ON(delayed_work_pending(&cp->cp_conn_w));
WARN_ON(work_pending(&cp->cp_down_w));
cp->cp_conn->c_trans->conn_free(cp->cp_transport_data);
}
/*
* Stop and free a connection.
*
* This can only be used in very limited circumstances. It assumes that once
* the conn has been shutdown that no one else is referencing the connection.
* We can only ensure this in the rmmod path in the current code.
*/
void rds_conn_destroy(struct rds_connection *conn)
{
unsigned long flags;
int i;
struct rds_conn_path *cp;
int npaths = (conn->c_trans->t_mp_capable ? RDS_MPATH_WORKERS : 1);
rdsdebug("freeing conn %p for %pI4 -> "
"%pI4\n", conn, &conn->c_laddr,
&conn->c_faddr);
/* Ensure conn will not be scheduled for reconnect */
spin_lock_irq(&rds_conn_lock);
hlist_del_init_rcu(&conn->c_hash_node);
spin_unlock_irq(&rds_conn_lock);
synchronize_rcu();
/* shut the connection down */
for (i = 0; i < npaths; i++) {
cp = &conn->c_path[i];
rds_conn_path_destroy(cp);
BUG_ON(!list_empty(&cp->cp_retrans));
}
/*
* The congestion maps aren't freed up here. They're
* freed by rds_cong_exit() after all the connections
* have been freed.
*/
rds_cong_remove_conn(conn);
kfree(conn->c_path);
kmem_cache_free(rds_conn_slab, conn);
spin_lock_irqsave(&rds_conn_lock, flags);
rds_conn_count--;
spin_unlock_irqrestore(&rds_conn_lock, flags);
}
EXPORT_SYMBOL_GPL(rds_conn_destroy);
static void __rds_inc_msg_cp(struct rds_incoming *inc,
struct rds_info_iterator *iter,
void *saddr, void *daddr, int flip, bool isv6)
{
#if IS_ENABLED(CONFIG_IPV6)
if (isv6)
rds6_inc_info_copy(inc, iter, saddr, daddr, flip);
else
#endif
rds_inc_info_copy(inc, iter, *(__be32 *)saddr,
*(__be32 *)daddr, flip);
}
static void rds_conn_message_info_cmn(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens,
int want_send, bool isv6)
{
struct hlist_head *head;
struct list_head *list;
struct rds_connection *conn;
struct rds_message *rm;
unsigned int total = 0;
unsigned long flags;
size_t i;
int j;
if (isv6)
len /= sizeof(struct rds6_info_message);
else
len /= sizeof(struct rds_info_message);
rcu_read_lock();
for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash);
i++, head++) {
hlist_for_each_entry_rcu(conn, head, c_hash_node) {
struct rds_conn_path *cp;
int npaths;
if (!isv6 && conn->c_isv6)
continue;
npaths = (conn->c_trans->t_mp_capable ?
RDS_MPATH_WORKERS : 1);
for (j = 0; j < npaths; j++) {
cp = &conn->c_path[j];
if (want_send)
list = &cp->cp_send_queue;
else
list = &cp->cp_retrans;
spin_lock_irqsave(&cp->cp_lock, flags);
/* XXX too lazy to maintain counts.. */
list_for_each_entry(rm, list, m_conn_item) {
total++;
if (total <= len)
__rds_inc_msg_cp(&rm->m_inc,
iter,
&conn->c_laddr,
&conn->c_faddr,
0, isv6);
}
spin_unlock_irqrestore(&cp->cp_lock, flags);
}
}
}
rcu_read_unlock();
lens->nr = total;
if (isv6)
lens->each = sizeof(struct rds6_info_message);
else
lens->each = sizeof(struct rds_info_message);
}
static void rds_conn_message_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens,
int want_send)
{
rds_conn_message_info_cmn(sock, len, iter, lens, want_send, false);
}
#if IS_ENABLED(CONFIG_IPV6)
static void rds6_conn_message_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens,
int want_send)
{
rds_conn_message_info_cmn(sock, len, iter, lens, want_send, true);
}
#endif
static void rds_conn_message_info_send(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
rds_conn_message_info(sock, len, iter, lens, 1);
}
#if IS_ENABLED(CONFIG_IPV6)
static void rds6_conn_message_info_send(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
rds6_conn_message_info(sock, len, iter, lens, 1);
}
#endif
static void rds_conn_message_info_retrans(struct socket *sock,
unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
rds_conn_message_info(sock, len, iter, lens, 0);
}
#if IS_ENABLED(CONFIG_IPV6)
static void rds6_conn_message_info_retrans(struct socket *sock,
unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
rds6_conn_message_info(sock, len, iter, lens, 0);
}
#endif
void rds_for_each_conn_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens,
int (*visitor)(struct rds_connection *, void *),
u64 *buffer,
size_t item_len)
{
struct hlist_head *head;
struct rds_connection *conn;
size_t i;
rcu_read_lock();
lens->nr = 0;
lens->each = item_len;
for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash);
i++, head++) {
hlist_for_each_entry_rcu(conn, head, c_hash_node) {
/* XXX no c_lock usage.. */
if (!visitor(conn, buffer))
continue;
/* We copy as much as we can fit in the buffer,
* but we count all items so that the caller
* can resize the buffer. */
if (len >= item_len) {
rds_info_copy(iter, buffer, item_len);
len -= item_len;
}
lens->nr++;
}
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(rds_for_each_conn_info);
static void rds_walk_conn_path_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens,
int (*visitor)(struct rds_conn_path *, void *),
u64 *buffer,
size_t item_len)
{
struct hlist_head *head;
struct rds_connection *conn;
size_t i;
rcu_read_lock();
lens->nr = 0;
lens->each = item_len;
for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash);
i++, head++) {
hlist_for_each_entry_rcu(conn, head, c_hash_node) {
struct rds_conn_path *cp;
/* XXX We only copy the information from the first
* path for now. The problem is that if there are
* more than one underlying paths, we cannot report
* information of all of them using the existing
* API. For example, there is only one next_tx_seq,
* which path's next_tx_seq should we report? It is
* a bug in the design of MPRDS.
*/
cp = conn->c_path;
/* XXX no cp_lock usage.. */
if (!visitor(cp, buffer))
continue;
/* We copy as much as we can fit in the buffer,
* but we count all items so that the caller
* can resize the buffer.
*/
if (len >= item_len) {
rds_info_copy(iter, buffer, item_len);
len -= item_len;
}
lens->nr++;
}
}
rcu_read_unlock();
}
static int rds_conn_info_visitor(struct rds_conn_path *cp, void *buffer)
{
struct rds_info_connection *cinfo = buffer;
struct rds_connection *conn = cp->cp_conn;
if (conn->c_isv6)
return 0;
cinfo->next_tx_seq = cp->cp_next_tx_seq;
cinfo->next_rx_seq = cp->cp_next_rx_seq;
cinfo->laddr = conn->c_laddr.s6_addr32[3];
cinfo->faddr = conn->c_faddr.s6_addr32[3];
cinfo->tos = conn->c_tos;
strncpy(cinfo->transport, conn->c_trans->t_name,
sizeof(cinfo->transport));
cinfo->flags = 0;
rds_conn_info_set(cinfo->flags, test_bit(RDS_IN_XMIT, &cp->cp_flags),
SENDING);
/* XXX Future: return the state rather than these funky bits */
rds_conn_info_set(cinfo->flags,
atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING,
CONNECTING);
rds_conn_info_set(cinfo->flags,
atomic_read(&cp->cp_state) == RDS_CONN_UP,
CONNECTED);
return 1;
}
#if IS_ENABLED(CONFIG_IPV6)
static int rds6_conn_info_visitor(struct rds_conn_path *cp, void *buffer)
{
struct rds6_info_connection *cinfo6 = buffer;
struct rds_connection *conn = cp->cp_conn;
cinfo6->next_tx_seq = cp->cp_next_tx_seq;
cinfo6->next_rx_seq = cp->cp_next_rx_seq;
cinfo6->laddr = conn->c_laddr;
cinfo6->faddr = conn->c_faddr;
strncpy(cinfo6->transport, conn->c_trans->t_name,
sizeof(cinfo6->transport));
cinfo6->flags = 0;
rds_conn_info_set(cinfo6->flags, test_bit(RDS_IN_XMIT, &cp->cp_flags),
SENDING);
/* XXX Future: return the state rather than these funky bits */
rds_conn_info_set(cinfo6->flags,
atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING,
CONNECTING);
rds_conn_info_set(cinfo6->flags,
atomic_read(&cp->cp_state) == RDS_CONN_UP,
CONNECTED);
/* Just return 1 as there is no error case. This is a helper function
* for rds_walk_conn_path_info() and it wants a return value.
*/
return 1;
}
#endif
static void rds_conn_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
u64 buffer[(sizeof(struct rds_info_connection) + 7) / 8];
rds_walk_conn_path_info(sock, len, iter, lens,
rds_conn_info_visitor,
buffer,
sizeof(struct rds_info_connection));
}
#if IS_ENABLED(CONFIG_IPV6)
static void rds6_conn_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
u64 buffer[(sizeof(struct rds6_info_connection) + 7) / 8];
rds_walk_conn_path_info(sock, len, iter, lens,
rds6_conn_info_visitor,
buffer,
sizeof(struct rds6_info_connection));
}
#endif
int rds_conn_init(void)
{
int ret;
ret = rds_loop_net_init(); /* register pernet callback */
if (ret)
return ret;
rds_conn_slab = KMEM_CACHE(rds_connection, 0);
if (!rds_conn_slab) {
rds_loop_net_exit();
return -ENOMEM;
}
rds_info_register_func(RDS_INFO_CONNECTIONS, rds_conn_info);
rds_info_register_func(RDS_INFO_SEND_MESSAGES,
rds_conn_message_info_send);
rds_info_register_func(RDS_INFO_RETRANS_MESSAGES,
rds_conn_message_info_retrans);
#if IS_ENABLED(CONFIG_IPV6)
rds_info_register_func(RDS6_INFO_CONNECTIONS, rds6_conn_info);
rds_info_register_func(RDS6_INFO_SEND_MESSAGES,
rds6_conn_message_info_send);
rds_info_register_func(RDS6_INFO_RETRANS_MESSAGES,
rds6_conn_message_info_retrans);
#endif
return 0;
}
void rds_conn_exit(void)
{
rds_loop_net_exit(); /* unregister pernet callback */
rds_loop_exit();
WARN_ON(!hlist_empty(rds_conn_hash));
kmem_cache_destroy(rds_conn_slab);
rds_info_deregister_func(RDS_INFO_CONNECTIONS, rds_conn_info);
rds_info_deregister_func(RDS_INFO_SEND_MESSAGES,
rds_conn_message_info_send);
rds_info_deregister_func(RDS_INFO_RETRANS_MESSAGES,
rds_conn_message_info_retrans);
#if IS_ENABLED(CONFIG_IPV6)
rds_info_deregister_func(RDS6_INFO_CONNECTIONS, rds6_conn_info);
rds_info_deregister_func(RDS6_INFO_SEND_MESSAGES,
rds6_conn_message_info_send);
rds_info_deregister_func(RDS6_INFO_RETRANS_MESSAGES,
rds6_conn_message_info_retrans);
#endif
}
/*
* Force a disconnect
*/
void rds_conn_path_drop(struct rds_conn_path *cp, bool destroy)
{
atomic_set(&cp->cp_state, RDS_CONN_ERROR);
rcu_read_lock();
if (!destroy && rds_destroy_pending(cp->cp_conn)) {
rcu_read_unlock();
return;
}
queue_work(rds_wq, &cp->cp_down_w);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(rds_conn_path_drop);
void rds_conn_drop(struct rds_connection *conn)
{
WARN_ON(conn->c_trans->t_mp_capable);
rds_conn_path_drop(&conn->c_path[0], false);
}
EXPORT_SYMBOL_GPL(rds_conn_drop);
/*
* If the connection is down, trigger a connect. We may have scheduled a
* delayed reconnect however - in this case we should not interfere.
*/
void rds_conn_path_connect_if_down(struct rds_conn_path *cp)
{
rcu_read_lock();
if (rds_destroy_pending(cp->cp_conn)) {
rcu_read_unlock();
return;
}
if (rds_conn_path_state(cp) == RDS_CONN_DOWN &&
!test_and_set_bit(RDS_RECONNECT_PENDING, &cp->cp_flags))
queue_delayed_work(rds_wq, &cp->cp_conn_w, 0);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(rds_conn_path_connect_if_down);
/* Check connectivity of all paths
*/
void rds_check_all_paths(struct rds_connection *conn)
{
int i = 0;
do {
rds_conn_path_connect_if_down(&conn->c_path[i]);
} while (++i < conn->c_npaths);
}
void rds_conn_connect_if_down(struct rds_connection *conn)
{
WARN_ON(conn->c_trans->t_mp_capable);
rds_conn_path_connect_if_down(&conn->c_path[0]);
}
EXPORT_SYMBOL_GPL(rds_conn_connect_if_down);
void
__rds_conn_path_error(struct rds_conn_path *cp, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vprintk(fmt, ap);
va_end(ap);
rds_conn_path_drop(cp, false);
}