linux-next/net/rds/send.c
Yewon Choi 1422f28826 rds: introduce acquire/release ordering in acquire/release_in_xmit()
acquire/release_in_xmit() work as bit lock in rds_send_xmit(), so they
are expected to ensure acquire/release memory ordering semantics.
However, test_and_set_bit/clear_bit() don't imply such semantics, on
top of this, following smp_mb__after_atomic() does not guarantee release
ordering (memory barrier actually should be placed before clear_bit()).

Instead, we use clear_bit_unlock/test_and_set_bit_lock() here.

Fixes: 0f4b1c7e89 ("rds: fix rds_send_xmit() serialization")
Fixes: 1f9ecd7eac ("RDS: Pass rds_conn_path to rds_send_xmit()")
Signed-off-by: Yewon Choi <woni9911@gmail.com>
Reviewed-by: Michal Kubiak <michal.kubiak@intel.com>
Link: https://lore.kernel.org/r/ZfQUxnNTO9AJmzwc@libra05
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-03-19 12:15:35 +01:00

1510 lines
39 KiB
C

/*
* Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/gfp.h>
#include <net/sock.h>
#include <linux/in.h>
#include <linux/list.h>
#include <linux/ratelimit.h>
#include <linux/export.h>
#include <linux/sizes.h>
#include "rds.h"
/* When transmitting messages in rds_send_xmit, we need to emerge from
* time to time and briefly release the CPU. Otherwise the softlock watchdog
* will kick our shin.
* Also, it seems fairer to not let one busy connection stall all the
* others.
*
* send_batch_count is the number of times we'll loop in send_xmit. Setting
* it to 0 will restore the old behavior (where we looped until we had
* drained the queue).
*/
static int send_batch_count = SZ_1K;
module_param(send_batch_count, int, 0444);
MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
static void rds_send_remove_from_sock(struct list_head *messages, int status);
/*
* Reset the send state. Callers must ensure that this doesn't race with
* rds_send_xmit().
*/
void rds_send_path_reset(struct rds_conn_path *cp)
{
struct rds_message *rm, *tmp;
unsigned long flags;
if (cp->cp_xmit_rm) {
rm = cp->cp_xmit_rm;
cp->cp_xmit_rm = NULL;
/* Tell the user the RDMA op is no longer mapped by the
* transport. This isn't entirely true (it's flushed out
* independently) but as the connection is down, there's
* no ongoing RDMA to/from that memory */
rds_message_unmapped(rm);
rds_message_put(rm);
}
cp->cp_xmit_sg = 0;
cp->cp_xmit_hdr_off = 0;
cp->cp_xmit_data_off = 0;
cp->cp_xmit_atomic_sent = 0;
cp->cp_xmit_rdma_sent = 0;
cp->cp_xmit_data_sent = 0;
cp->cp_conn->c_map_queued = 0;
cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
/* Mark messages as retransmissions, and move them to the send q */
spin_lock_irqsave(&cp->cp_lock, flags);
list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
}
list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
spin_unlock_irqrestore(&cp->cp_lock, flags);
}
EXPORT_SYMBOL_GPL(rds_send_path_reset);
static int acquire_in_xmit(struct rds_conn_path *cp)
{
return test_and_set_bit_lock(RDS_IN_XMIT, &cp->cp_flags) == 0;
}
static void release_in_xmit(struct rds_conn_path *cp)
{
clear_bit_unlock(RDS_IN_XMIT, &cp->cp_flags);
/*
* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
* hot path and finding waiters is very rare. We don't want to walk
* the system-wide hashed waitqueue buckets in the fast path only to
* almost never find waiters.
*/
if (waitqueue_active(&cp->cp_waitq))
wake_up_all(&cp->cp_waitq);
}
/*
* We're making the conscious trade-off here to only send one message
* down the connection at a time.
* Pro:
* - tx queueing is a simple fifo list
* - reassembly is optional and easily done by transports per conn
* - no per flow rx lookup at all, straight to the socket
* - less per-frag memory and wire overhead
* Con:
* - queued acks can be delayed behind large messages
* Depends:
* - small message latency is higher behind queued large messages
* - large message latency isn't starved by intervening small sends
*/
int rds_send_xmit(struct rds_conn_path *cp)
{
struct rds_connection *conn = cp->cp_conn;
struct rds_message *rm;
unsigned long flags;
unsigned int tmp;
struct scatterlist *sg;
int ret = 0;
LIST_HEAD(to_be_dropped);
int batch_count;
unsigned long send_gen = 0;
int same_rm = 0;
restart:
batch_count = 0;
/*
* sendmsg calls here after having queued its message on the send
* queue. We only have one task feeding the connection at a time. If
* another thread is already feeding the queue then we back off. This
* avoids blocking the caller and trading per-connection data between
* caches per message.
*/
if (!acquire_in_xmit(cp)) {
rds_stats_inc(s_send_lock_contention);
ret = -ENOMEM;
goto out;
}
if (rds_destroy_pending(cp->cp_conn)) {
release_in_xmit(cp);
ret = -ENETUNREACH; /* dont requeue send work */
goto out;
}
/*
* we record the send generation after doing the xmit acquire.
* if someone else manages to jump in and do some work, we'll use
* this to avoid a goto restart farther down.
*
* The acquire_in_xmit() check above ensures that only one
* caller can increment c_send_gen at any time.
*/
send_gen = READ_ONCE(cp->cp_send_gen) + 1;
WRITE_ONCE(cp->cp_send_gen, send_gen);
/*
* rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
* we do the opposite to avoid races.
*/
if (!rds_conn_path_up(cp)) {
release_in_xmit(cp);
ret = 0;
goto out;
}
if (conn->c_trans->xmit_path_prepare)
conn->c_trans->xmit_path_prepare(cp);
/*
* spin trying to push headers and data down the connection until
* the connection doesn't make forward progress.
*/
while (1) {
rm = cp->cp_xmit_rm;
if (!rm) {
same_rm = 0;
} else {
same_rm++;
if (same_rm >= 4096) {
rds_stats_inc(s_send_stuck_rm);
ret = -EAGAIN;
break;
}
}
/*
* If between sending messages, we can send a pending congestion
* map update.
*/
if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
rm = rds_cong_update_alloc(conn);
if (IS_ERR(rm)) {
ret = PTR_ERR(rm);
break;
}
rm->data.op_active = 1;
rm->m_inc.i_conn_path = cp;
rm->m_inc.i_conn = cp->cp_conn;
cp->cp_xmit_rm = rm;
}
/*
* If not already working on one, grab the next message.
*
* cp_xmit_rm holds a ref while we're sending this message down
* the connction. We can use this ref while holding the
* send_sem.. rds_send_reset() is serialized with it.
*/
if (!rm) {
unsigned int len;
batch_count++;
/* we want to process as big a batch as we can, but
* we also want to avoid softlockups. If we've been
* through a lot of messages, lets back off and see
* if anyone else jumps in
*/
if (batch_count >= send_batch_count)
goto over_batch;
spin_lock_irqsave(&cp->cp_lock, flags);
if (!list_empty(&cp->cp_send_queue)) {
rm = list_entry(cp->cp_send_queue.next,
struct rds_message,
m_conn_item);
rds_message_addref(rm);
/*
* Move the message from the send queue to the retransmit
* list right away.
*/
list_move_tail(&rm->m_conn_item,
&cp->cp_retrans);
}
spin_unlock_irqrestore(&cp->cp_lock, flags);
if (!rm)
break;
/* Unfortunately, the way Infiniband deals with
* RDMA to a bad MR key is by moving the entire
* queue pair to error state. We could possibly
* recover from that, but right now we drop the
* connection.
* Therefore, we never retransmit messages with RDMA ops.
*/
if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
(rm->rdma.op_active &&
test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
spin_lock_irqsave(&cp->cp_lock, flags);
if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
list_move(&rm->m_conn_item, &to_be_dropped);
spin_unlock_irqrestore(&cp->cp_lock, flags);
continue;
}
/* Require an ACK every once in a while */
len = ntohl(rm->m_inc.i_hdr.h_len);
if (cp->cp_unacked_packets == 0 ||
cp->cp_unacked_bytes < len) {
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
cp->cp_unacked_packets =
rds_sysctl_max_unacked_packets;
cp->cp_unacked_bytes =
rds_sysctl_max_unacked_bytes;
rds_stats_inc(s_send_ack_required);
} else {
cp->cp_unacked_bytes -= len;
cp->cp_unacked_packets--;
}
cp->cp_xmit_rm = rm;
}
/* The transport either sends the whole rdma or none of it */
if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
rm->m_final_op = &rm->rdma;
/* The transport owns the mapped memory for now.
* You can't unmap it while it's on the send queue
*/
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
if (ret) {
clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
wake_up_interruptible(&rm->m_flush_wait);
break;
}
cp->cp_xmit_rdma_sent = 1;
}
if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
rm->m_final_op = &rm->atomic;
/* The transport owns the mapped memory for now.
* You can't unmap it while it's on the send queue
*/
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
if (ret) {
clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
wake_up_interruptible(&rm->m_flush_wait);
break;
}
cp->cp_xmit_atomic_sent = 1;
}
/*
* A number of cases require an RDS header to be sent
* even if there is no data.
* We permit 0-byte sends; rds-ping depends on this.
* However, if there are exclusively attached silent ops,
* we skip the hdr/data send, to enable silent operation.
*/
if (rm->data.op_nents == 0) {
int ops_present;
int all_ops_are_silent = 1;
ops_present = (rm->atomic.op_active || rm->rdma.op_active);
if (rm->atomic.op_active && !rm->atomic.op_silent)
all_ops_are_silent = 0;
if (rm->rdma.op_active && !rm->rdma.op_silent)
all_ops_are_silent = 0;
if (ops_present && all_ops_are_silent
&& !rm->m_rdma_cookie)
rm->data.op_active = 0;
}
if (rm->data.op_active && !cp->cp_xmit_data_sent) {
rm->m_final_op = &rm->data;
ret = conn->c_trans->xmit(conn, rm,
cp->cp_xmit_hdr_off,
cp->cp_xmit_sg,
cp->cp_xmit_data_off);
if (ret <= 0)
break;
if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
tmp = min_t(int, ret,
sizeof(struct rds_header) -
cp->cp_xmit_hdr_off);
cp->cp_xmit_hdr_off += tmp;
ret -= tmp;
}
sg = &rm->data.op_sg[cp->cp_xmit_sg];
while (ret) {
tmp = min_t(int, ret, sg->length -
cp->cp_xmit_data_off);
cp->cp_xmit_data_off += tmp;
ret -= tmp;
if (cp->cp_xmit_data_off == sg->length) {
cp->cp_xmit_data_off = 0;
sg++;
cp->cp_xmit_sg++;
BUG_ON(ret != 0 && cp->cp_xmit_sg ==
rm->data.op_nents);
}
}
if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
(cp->cp_xmit_sg == rm->data.op_nents))
cp->cp_xmit_data_sent = 1;
}
/*
* A rm will only take multiple times through this loop
* if there is a data op. Thus, if the data is sent (or there was
* none), then we're done with the rm.
*/
if (!rm->data.op_active || cp->cp_xmit_data_sent) {
cp->cp_xmit_rm = NULL;
cp->cp_xmit_sg = 0;
cp->cp_xmit_hdr_off = 0;
cp->cp_xmit_data_off = 0;
cp->cp_xmit_rdma_sent = 0;
cp->cp_xmit_atomic_sent = 0;
cp->cp_xmit_data_sent = 0;
rds_message_put(rm);
}
}
over_batch:
if (conn->c_trans->xmit_path_complete)
conn->c_trans->xmit_path_complete(cp);
release_in_xmit(cp);
/* Nuke any messages we decided not to retransmit. */
if (!list_empty(&to_be_dropped)) {
/* irqs on here, so we can put(), unlike above */
list_for_each_entry(rm, &to_be_dropped, m_conn_item)
rds_message_put(rm);
rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
}
/*
* Other senders can queue a message after we last test the send queue
* but before we clear RDS_IN_XMIT. In that case they'd back off and
* not try and send their newly queued message. We need to check the
* send queue after having cleared RDS_IN_XMIT so that their message
* doesn't get stuck on the send queue.
*
* If the transport cannot continue (i.e ret != 0), then it must
* call us when more room is available, such as from the tx
* completion handler.
*
* We have an extra generation check here so that if someone manages
* to jump in after our release_in_xmit, we'll see that they have done
* some work and we will skip our goto
*/
if (ret == 0) {
bool raced;
smp_mb();
raced = send_gen != READ_ONCE(cp->cp_send_gen);
if ((test_bit(0, &conn->c_map_queued) ||
!list_empty(&cp->cp_send_queue)) && !raced) {
if (batch_count < send_batch_count)
goto restart;
rcu_read_lock();
if (rds_destroy_pending(cp->cp_conn))
ret = -ENETUNREACH;
else
queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
rcu_read_unlock();
} else if (raced) {
rds_stats_inc(s_send_lock_queue_raced);
}
}
out:
return ret;
}
EXPORT_SYMBOL_GPL(rds_send_xmit);
static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
{
u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
assert_spin_locked(&rs->rs_lock);
BUG_ON(rs->rs_snd_bytes < len);
rs->rs_snd_bytes -= len;
if (rs->rs_snd_bytes == 0)
rds_stats_inc(s_send_queue_empty);
}
static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
is_acked_func is_acked)
{
if (is_acked)
return is_acked(rm, ack);
return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
}
/*
* This is pretty similar to what happens below in the ACK
* handling code - except that we call here as soon as we get
* the IB send completion on the RDMA op and the accompanying
* message.
*/
void rds_rdma_send_complete(struct rds_message *rm, int status)
{
struct rds_sock *rs = NULL;
struct rm_rdma_op *ro;
struct rds_notifier *notifier;
unsigned long flags;
spin_lock_irqsave(&rm->m_rs_lock, flags);
ro = &rm->rdma;
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
ro->op_active && ro->op_notify && ro->op_notifier) {
notifier = ro->op_notifier;
rs = rm->m_rs;
sock_hold(rds_rs_to_sk(rs));
notifier->n_status = status;
spin_lock(&rs->rs_lock);
list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
spin_unlock(&rs->rs_lock);
ro->op_notifier = NULL;
}
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
}
EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
/*
* Just like above, except looks at atomic op
*/
void rds_atomic_send_complete(struct rds_message *rm, int status)
{
struct rds_sock *rs = NULL;
struct rm_atomic_op *ao;
struct rds_notifier *notifier;
unsigned long flags;
spin_lock_irqsave(&rm->m_rs_lock, flags);
ao = &rm->atomic;
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
&& ao->op_active && ao->op_notify && ao->op_notifier) {
notifier = ao->op_notifier;
rs = rm->m_rs;
sock_hold(rds_rs_to_sk(rs));
notifier->n_status = status;
spin_lock(&rs->rs_lock);
list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
spin_unlock(&rs->rs_lock);
ao->op_notifier = NULL;
}
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
}
EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
/*
* This is the same as rds_rdma_send_complete except we
* don't do any locking - we have all the ingredients (message,
* socket, socket lock) and can just move the notifier.
*/
static inline void
__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
{
struct rm_rdma_op *ro;
struct rm_atomic_op *ao;
ro = &rm->rdma;
if (ro->op_active && ro->op_notify && ro->op_notifier) {
ro->op_notifier->n_status = status;
list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
ro->op_notifier = NULL;
}
ao = &rm->atomic;
if (ao->op_active && ao->op_notify && ao->op_notifier) {
ao->op_notifier->n_status = status;
list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
ao->op_notifier = NULL;
}
/* No need to wake the app - caller does this */
}
/*
* This removes messages from the socket's list if they're on it. The list
* argument must be private to the caller, we must be able to modify it
* without locks. The messages must have a reference held for their
* position on the list. This function will drop that reference after
* removing the messages from the 'messages' list regardless of if it found
* the messages on the socket list or not.
*/
static void rds_send_remove_from_sock(struct list_head *messages, int status)
{
unsigned long flags;
struct rds_sock *rs = NULL;
struct rds_message *rm;
while (!list_empty(messages)) {
int was_on_sock = 0;
rm = list_entry(messages->next, struct rds_message,
m_conn_item);
list_del_init(&rm->m_conn_item);
/*
* If we see this flag cleared then we're *sure* that someone
* else beat us to removing it from the sock. If we race
* with their flag update we'll get the lock and then really
* see that the flag has been cleared.
*
* The message spinlock makes sure nobody clears rm->m_rs
* while we're messing with it. It does not prevent the
* message from being removed from the socket, though.
*/
spin_lock_irqsave(&rm->m_rs_lock, flags);
if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
goto unlock_and_drop;
if (rs != rm->m_rs) {
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
rs = rm->m_rs;
if (rs)
sock_hold(rds_rs_to_sk(rs));
}
if (!rs)
goto unlock_and_drop;
spin_lock(&rs->rs_lock);
if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
struct rm_rdma_op *ro = &rm->rdma;
struct rds_notifier *notifier;
list_del_init(&rm->m_sock_item);
rds_send_sndbuf_remove(rs, rm);
if (ro->op_active && ro->op_notifier &&
(ro->op_notify || (ro->op_recverr && status))) {
notifier = ro->op_notifier;
list_add_tail(&notifier->n_list,
&rs->rs_notify_queue);
if (!notifier->n_status)
notifier->n_status = status;
rm->rdma.op_notifier = NULL;
}
was_on_sock = 1;
}
spin_unlock(&rs->rs_lock);
unlock_and_drop:
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
rds_message_put(rm);
if (was_on_sock)
rds_message_put(rm);
}
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
}
/*
* Transports call here when they've determined that the receiver queued
* messages up to, and including, the given sequence number. Messages are
* moved to the retrans queue when rds_send_xmit picks them off the send
* queue. This means that in the TCP case, the message may not have been
* assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
* checks the RDS_MSG_HAS_ACK_SEQ bit.
*/
void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
is_acked_func is_acked)
{
struct rds_message *rm, *tmp;
unsigned long flags;
LIST_HEAD(list);
spin_lock_irqsave(&cp->cp_lock, flags);
list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
if (!rds_send_is_acked(rm, ack, is_acked))
break;
list_move(&rm->m_conn_item, &list);
clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
}
/* order flag updates with spin locks */
if (!list_empty(&list))
smp_mb__after_atomic();
spin_unlock_irqrestore(&cp->cp_lock, flags);
/* now remove the messages from the sock list as needed */
rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
}
EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
is_acked_func is_acked)
{
WARN_ON(conn->c_trans->t_mp_capable);
rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
}
EXPORT_SYMBOL_GPL(rds_send_drop_acked);
void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
{
struct rds_message *rm, *tmp;
struct rds_connection *conn;
struct rds_conn_path *cp;
unsigned long flags;
LIST_HEAD(list);
/* get all the messages we're dropping under the rs lock */
spin_lock_irqsave(&rs->rs_lock, flags);
list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
if (dest &&
(!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
dest->sin6_port != rm->m_inc.i_hdr.h_dport))
continue;
list_move(&rm->m_sock_item, &list);
rds_send_sndbuf_remove(rs, rm);
clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
}
/* order flag updates with the rs lock */
smp_mb__after_atomic();
spin_unlock_irqrestore(&rs->rs_lock, flags);
if (list_empty(&list))
return;
/* Remove the messages from the conn */
list_for_each_entry(rm, &list, m_sock_item) {
conn = rm->m_inc.i_conn;
if (conn->c_trans->t_mp_capable)
cp = rm->m_inc.i_conn_path;
else
cp = &conn->c_path[0];
spin_lock_irqsave(&cp->cp_lock, flags);
/*
* Maybe someone else beat us to removing rm from the conn.
* If we race with their flag update we'll get the lock and
* then really see that the flag has been cleared.
*/
if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
spin_unlock_irqrestore(&cp->cp_lock, flags);
continue;
}
list_del_init(&rm->m_conn_item);
spin_unlock_irqrestore(&cp->cp_lock, flags);
/*
* Couldn't grab m_rs_lock in top loop (lock ordering),
* but we can now.
*/
spin_lock_irqsave(&rm->m_rs_lock, flags);
spin_lock(&rs->rs_lock);
__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
spin_unlock(&rs->rs_lock);
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
rds_message_put(rm);
}
rds_wake_sk_sleep(rs);
while (!list_empty(&list)) {
rm = list_entry(list.next, struct rds_message, m_sock_item);
list_del_init(&rm->m_sock_item);
rds_message_wait(rm);
/* just in case the code above skipped this message
* because RDS_MSG_ON_CONN wasn't set, run it again here
* taking m_rs_lock is the only thing that keeps us
* from racing with ack processing.
*/
spin_lock_irqsave(&rm->m_rs_lock, flags);
spin_lock(&rs->rs_lock);
__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
spin_unlock(&rs->rs_lock);
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
rds_message_put(rm);
}
}
/*
* we only want this to fire once so we use the callers 'queued'. It's
* possible that another thread can race with us and remove the
* message from the flow with RDS_CANCEL_SENT_TO.
*/
static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
struct rds_conn_path *cp,
struct rds_message *rm, __be16 sport,
__be16 dport, int *queued)
{
unsigned long flags;
u32 len;
if (*queued)
goto out;
len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
/* this is the only place which holds both the socket's rs_lock
* and the connection's c_lock */
spin_lock_irqsave(&rs->rs_lock, flags);
/*
* If there is a little space in sndbuf, we don't queue anything,
* and userspace gets -EAGAIN. But poll() indicates there's send
* room. This can lead to bad behavior (spinning) if snd_bytes isn't
* freed up by incoming acks. So we check the *old* value of
* rs_snd_bytes here to allow the last msg to exceed the buffer,
* and poll() now knows no more data can be sent.
*/
if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
rs->rs_snd_bytes += len;
/* let recv side know we are close to send space exhaustion.
* This is probably not the optimal way to do it, as this
* means we set the flag on *all* messages as soon as our
* throughput hits a certain threshold.
*/
if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
rds_message_addref(rm);
sock_hold(rds_rs_to_sk(rs));
rm->m_rs = rs;
/* The code ordering is a little weird, but we're
trying to minimize the time we hold c_lock */
rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
rm->m_inc.i_conn = conn;
rm->m_inc.i_conn_path = cp;
rds_message_addref(rm);
spin_lock(&cp->cp_lock);
rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
spin_unlock(&cp->cp_lock);
rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
rm, len, rs, rs->rs_snd_bytes,
(unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
*queued = 1;
}
spin_unlock_irqrestore(&rs->rs_lock, flags);
out:
return *queued;
}
/*
* rds_message is getting to be quite complicated, and we'd like to allocate
* it all in one go. This figures out how big it needs to be up front.
*/
static int rds_rm_size(struct msghdr *msg, int num_sgs,
struct rds_iov_vector_arr *vct)
{
struct cmsghdr *cmsg;
int size = 0;
int cmsg_groups = 0;
int retval;
bool zcopy_cookie = false;
struct rds_iov_vector *iov, *tmp_iov;
if (num_sgs < 0)
return -EINVAL;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_RDS)
continue;
switch (cmsg->cmsg_type) {
case RDS_CMSG_RDMA_ARGS:
if (vct->indx >= vct->len) {
vct->len += vct->incr;
tmp_iov =
krealloc(vct->vec,
vct->len *
sizeof(struct rds_iov_vector),
GFP_KERNEL);
if (!tmp_iov) {
vct->len -= vct->incr;
return -ENOMEM;
}
vct->vec = tmp_iov;
}
iov = &vct->vec[vct->indx];
memset(iov, 0, sizeof(struct rds_iov_vector));
vct->indx++;
cmsg_groups |= 1;
retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
if (retval < 0)
return retval;
size += retval;
break;
case RDS_CMSG_ZCOPY_COOKIE:
zcopy_cookie = true;
fallthrough;
case RDS_CMSG_RDMA_DEST:
case RDS_CMSG_RDMA_MAP:
cmsg_groups |= 2;
/* these are valid but do no add any size */
break;
case RDS_CMSG_ATOMIC_CSWP:
case RDS_CMSG_ATOMIC_FADD:
case RDS_CMSG_MASKED_ATOMIC_CSWP:
case RDS_CMSG_MASKED_ATOMIC_FADD:
cmsg_groups |= 1;
size += sizeof(struct scatterlist);
break;
default:
return -EINVAL;
}
}
if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
return -EINVAL;
size += num_sgs * sizeof(struct scatterlist);
/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
if (cmsg_groups == 3)
return -EINVAL;
return size;
}
static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
u32 *cookie;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
!rm->data.op_mmp_znotifier)
return -EINVAL;
cookie = CMSG_DATA(cmsg);
rm->data.op_mmp_znotifier->z_cookie = *cookie;
return 0;
}
static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
struct msghdr *msg, int *allocated_mr,
struct rds_iov_vector_arr *vct)
{
struct cmsghdr *cmsg;
int ret = 0, ind = 0;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_RDS)
continue;
/* As a side effect, RDMA_DEST and RDMA_MAP will set
* rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
*/
switch (cmsg->cmsg_type) {
case RDS_CMSG_RDMA_ARGS:
if (ind >= vct->indx)
return -ENOMEM;
ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
ind++;
break;
case RDS_CMSG_RDMA_DEST:
ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
break;
case RDS_CMSG_RDMA_MAP:
ret = rds_cmsg_rdma_map(rs, rm, cmsg);
if (!ret)
*allocated_mr = 1;
else if (ret == -ENODEV)
/* Accommodate the get_mr() case which can fail
* if connection isn't established yet.
*/
ret = -EAGAIN;
break;
case RDS_CMSG_ATOMIC_CSWP:
case RDS_CMSG_ATOMIC_FADD:
case RDS_CMSG_MASKED_ATOMIC_CSWP:
case RDS_CMSG_MASKED_ATOMIC_FADD:
ret = rds_cmsg_atomic(rs, rm, cmsg);
break;
case RDS_CMSG_ZCOPY_COOKIE:
ret = rds_cmsg_zcopy(rs, rm, cmsg);
break;
default:
return -EINVAL;
}
if (ret)
break;
}
return ret;
}
static int rds_send_mprds_hash(struct rds_sock *rs,
struct rds_connection *conn, int nonblock)
{
int hash;
if (conn->c_npaths == 0)
hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
else
hash = RDS_MPATH_HASH(rs, conn->c_npaths);
if (conn->c_npaths == 0 && hash != 0) {
rds_send_ping(conn, 0);
/* The underlying connection is not up yet. Need to wait
* until it is up to be sure that the non-zero c_path can be
* used. But if we are interrupted, we have to use the zero
* c_path in case the connection ends up being non-MP capable.
*/
if (conn->c_npaths == 0) {
/* Cannot wait for the connection be made, so just use
* the base c_path.
*/
if (nonblock)
return 0;
if (wait_event_interruptible(conn->c_hs_waitq,
conn->c_npaths != 0))
hash = 0;
}
if (conn->c_npaths == 1)
hash = 0;
}
return hash;
}
static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
{
struct rds_rdma_args *args;
struct cmsghdr *cmsg;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_RDS)
continue;
if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
if (cmsg->cmsg_len <
CMSG_LEN(sizeof(struct rds_rdma_args)))
return -EINVAL;
args = CMSG_DATA(cmsg);
*rdma_bytes += args->remote_vec.bytes;
}
}
return 0;
}
int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
{
struct sock *sk = sock->sk;
struct rds_sock *rs = rds_sk_to_rs(sk);
DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
__be16 dport;
struct rds_message *rm = NULL;
struct rds_connection *conn;
int ret = 0;
int queued = 0, allocated_mr = 0;
int nonblock = msg->msg_flags & MSG_DONTWAIT;
long timeo = sock_sndtimeo(sk, nonblock);
struct rds_conn_path *cpath;
struct in6_addr daddr;
__u32 scope_id = 0;
size_t rdma_payload_len = 0;
bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
int namelen;
struct rds_iov_vector_arr vct;
int ind;
memset(&vct, 0, sizeof(vct));
/* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
vct.incr = 1;
/* Mirror Linux UDP mirror of BSD error message compatibility */
/* XXX: Perhaps MSG_MORE someday */
if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
ret = -EOPNOTSUPP;
goto out;
}
namelen = msg->msg_namelen;
if (namelen != 0) {
if (namelen < sizeof(*usin)) {
ret = -EINVAL;
goto out;
}
switch (usin->sin_family) {
case AF_INET:
if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
ipv4_is_multicast(usin->sin_addr.s_addr)) {
ret = -EINVAL;
goto out;
}
ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
dport = usin->sin_port;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6: {
int addr_type;
if (namelen < sizeof(*sin6)) {
ret = -EINVAL;
goto out;
}
addr_type = ipv6_addr_type(&sin6->sin6_addr);
if (!(addr_type & IPV6_ADDR_UNICAST)) {
__be32 addr4;
if (!(addr_type & IPV6_ADDR_MAPPED)) {
ret = -EINVAL;
goto out;
}
/* It is a mapped address. Need to do some
* sanity checks.
*/
addr4 = sin6->sin6_addr.s6_addr32[3];
if (addr4 == htonl(INADDR_ANY) ||
addr4 == htonl(INADDR_BROADCAST) ||
ipv4_is_multicast(addr4)) {
ret = -EINVAL;
goto out;
}
}
if (addr_type & IPV6_ADDR_LINKLOCAL) {
if (sin6->sin6_scope_id == 0) {
ret = -EINVAL;
goto out;
}
scope_id = sin6->sin6_scope_id;
}
daddr = sin6->sin6_addr;
dport = sin6->sin6_port;
break;
}
#endif
default:
ret = -EINVAL;
goto out;
}
} else {
/* We only care about consistency with ->connect() */
lock_sock(sk);
daddr = rs->rs_conn_addr;
dport = rs->rs_conn_port;
scope_id = rs->rs_bound_scope_id;
release_sock(sk);
}
lock_sock(sk);
if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
release_sock(sk);
ret = -ENOTCONN;
goto out;
} else if (namelen != 0) {
/* Cannot send to an IPv4 address using an IPv6 source
* address and cannot send to an IPv6 address using an
* IPv4 source address.
*/
if (ipv6_addr_v4mapped(&daddr) ^
ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
release_sock(sk);
ret = -EOPNOTSUPP;
goto out;
}
/* If the socket is already bound to a link local address,
* it can only send to peers on the same link. But allow
* communicating between link local and non-link local address.
*/
if (scope_id != rs->rs_bound_scope_id) {
if (!scope_id) {
scope_id = rs->rs_bound_scope_id;
} else if (rs->rs_bound_scope_id) {
release_sock(sk);
ret = -EINVAL;
goto out;
}
}
}
release_sock(sk);
ret = rds_rdma_bytes(msg, &rdma_payload_len);
if (ret)
goto out;
if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
ret = -EMSGSIZE;
goto out;
}
if (payload_len > rds_sk_sndbuf(rs)) {
ret = -EMSGSIZE;
goto out;
}
if (zcopy) {
if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
ret = -EOPNOTSUPP;
goto out;
}
num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
}
/* size of rm including all sgs */
ret = rds_rm_size(msg, num_sgs, &vct);
if (ret < 0)
goto out;
rm = rds_message_alloc(ret, GFP_KERNEL);
if (!rm) {
ret = -ENOMEM;
goto out;
}
/* Attach data to the rm */
if (payload_len) {
rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
if (IS_ERR(rm->data.op_sg)) {
ret = PTR_ERR(rm->data.op_sg);
goto out;
}
ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
if (ret)
goto out;
}
rm->data.op_active = 1;
rm->m_daddr = daddr;
/* rds_conn_create has a spinlock that runs with IRQ off.
* Caching the conn in the socket helps a lot. */
if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
rs->rs_tos == rs->rs_conn->c_tos) {
conn = rs->rs_conn;
} else {
conn = rds_conn_create_outgoing(sock_net(sock->sk),
&rs->rs_bound_addr, &daddr,
rs->rs_transport, rs->rs_tos,
sock->sk->sk_allocation,
scope_id);
if (IS_ERR(conn)) {
ret = PTR_ERR(conn);
goto out;
}
rs->rs_conn = conn;
}
if (conn->c_trans->t_mp_capable)
cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
else
cpath = &conn->c_path[0];
rm->m_conn_path = cpath;
/* Parse any control messages the user may have included. */
ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
if (ret)
goto out;
if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
&rm->rdma, conn->c_trans->xmit_rdma);
ret = -EOPNOTSUPP;
goto out;
}
if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
&rm->atomic, conn->c_trans->xmit_atomic);
ret = -EOPNOTSUPP;
goto out;
}
if (rds_destroy_pending(conn)) {
ret = -EAGAIN;
goto out;
}
if (rds_conn_path_down(cpath))
rds_check_all_paths(conn);
ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
if (ret) {
rs->rs_seen_congestion = 1;
goto out;
}
while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
dport, &queued)) {
rds_stats_inc(s_send_queue_full);
if (nonblock) {
ret = -EAGAIN;
goto out;
}
timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
rds_send_queue_rm(rs, conn, cpath, rm,
rs->rs_bound_port,
dport,
&queued),
timeo);
rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
continue;
ret = timeo;
if (ret == 0)
ret = -ETIMEDOUT;
goto out;
}
/*
* By now we've committed to the send. We reuse rds_send_worker()
* to retry sends in the rds thread if the transport asks us to.
*/
rds_stats_inc(s_send_queued);
ret = rds_send_xmit(cpath);
if (ret == -ENOMEM || ret == -EAGAIN) {
ret = 0;
rcu_read_lock();
if (rds_destroy_pending(cpath->cp_conn))
ret = -ENETUNREACH;
else
queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
rcu_read_unlock();
}
if (ret)
goto out;
rds_message_put(rm);
for (ind = 0; ind < vct.indx; ind++)
kfree(vct.vec[ind].iov);
kfree(vct.vec);
return payload_len;
out:
for (ind = 0; ind < vct.indx; ind++)
kfree(vct.vec[ind].iov);
kfree(vct.vec);
/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
* If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
* or in any other way, we need to destroy the MR again */
if (allocated_mr)
rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
if (rm)
rds_message_put(rm);
return ret;
}
/*
* send out a probe. Can be shared by rds_send_ping,
* rds_send_pong, rds_send_hb.
* rds_send_hb should use h_flags
* RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
* or
* RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
*/
static int
rds_send_probe(struct rds_conn_path *cp, __be16 sport,
__be16 dport, u8 h_flags)
{
struct rds_message *rm;
unsigned long flags;
int ret = 0;
rm = rds_message_alloc(0, GFP_ATOMIC);
if (!rm) {
ret = -ENOMEM;
goto out;
}
rm->m_daddr = cp->cp_conn->c_faddr;
rm->data.op_active = 1;
rds_conn_path_connect_if_down(cp);
ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
if (ret)
goto out;
spin_lock_irqsave(&cp->cp_lock, flags);
list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
rds_message_addref(rm);
rm->m_inc.i_conn = cp->cp_conn;
rm->m_inc.i_conn_path = cp;
rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
cp->cp_next_tx_seq);
rm->m_inc.i_hdr.h_flags |= h_flags;
cp->cp_next_tx_seq++;
if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
cp->cp_conn->c_trans->t_mp_capable) {
u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
rds_message_add_extension(&rm->m_inc.i_hdr,
RDS_EXTHDR_NPATHS, &npaths,
sizeof(npaths));
rds_message_add_extension(&rm->m_inc.i_hdr,
RDS_EXTHDR_GEN_NUM,
&my_gen_num,
sizeof(u32));
}
spin_unlock_irqrestore(&cp->cp_lock, flags);
rds_stats_inc(s_send_queued);
rds_stats_inc(s_send_pong);
/* schedule the send work on rds_wq */
rcu_read_lock();
if (!rds_destroy_pending(cp->cp_conn))
queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
rcu_read_unlock();
rds_message_put(rm);
return 0;
out:
if (rm)
rds_message_put(rm);
return ret;
}
int
rds_send_pong(struct rds_conn_path *cp, __be16 dport)
{
return rds_send_probe(cp, 0, dport, 0);
}
void
rds_send_ping(struct rds_connection *conn, int cp_index)
{
unsigned long flags;
struct rds_conn_path *cp = &conn->c_path[cp_index];
spin_lock_irqsave(&cp->cp_lock, flags);
if (conn->c_ping_triggered) {
spin_unlock_irqrestore(&cp->cp_lock, flags);
return;
}
conn->c_ping_triggered = 1;
spin_unlock_irqrestore(&cp->cp_lock, flags);
rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
}
EXPORT_SYMBOL_GPL(rds_send_ping);