linux-next/net/rxrpc/input.c
David Howells 7c48266593 rxrpc: Implement RACK/TLP to deal with transmission stalls [RFC8985]
When an rxrpc call is in its transmission phase and is sending a lot of
packets, stalls occasionally occur that cause severe performance
degradation (eg. increasing the transmission time for a 256MiB payload from
0.7s to 2.5s over a 10G link).

rxrpc already implements TCP-style congestion control [RFC5681] and this
helps mitigate the effects, but occasionally we're missing a time event
that deals with a missing ACK, leading to a stall until the RTO expires.

Fix this by implementing RACK/TLP in rxrpc.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-12-09 13:48:33 -08:00

1294 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Processing of received RxRPC packets
*
* Copyright (C) 2020 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "ar-internal.h"
/* Override priority when generating ACKs for received DATA */
static const u8 rxrpc_ack_priority[RXRPC_ACK__INVALID] = {
[RXRPC_ACK_IDLE] = 1,
[RXRPC_ACK_DELAY] = 2,
[RXRPC_ACK_REQUESTED] = 3,
[RXRPC_ACK_DUPLICATE] = 4,
[RXRPC_ACK_EXCEEDS_WINDOW] = 5,
[RXRPC_ACK_NOSPACE] = 6,
[RXRPC_ACK_OUT_OF_SEQUENCE] = 7,
};
static void rxrpc_proto_abort(struct rxrpc_call *call, rxrpc_seq_t seq,
enum rxrpc_abort_reason why)
{
rxrpc_abort_call(call, seq, RX_PROTOCOL_ERROR, -EBADMSG, why);
}
/*
* Do TCP-style congestion management [RFC5681].
*/
static void rxrpc_congestion_management(struct rxrpc_call *call,
struct rxrpc_ack_summary *summary)
{
summary->change = rxrpc_cong_no_change;
summary->in_flight = rxrpc_tx_in_flight(call);
if (test_and_clear_bit(RXRPC_CALL_RETRANS_TIMEOUT, &call->flags)) {
summary->retrans_timeo = true;
call->cong_ssthresh = umax(summary->in_flight / 2, 2);
call->cong_cwnd = 1;
if (call->cong_cwnd >= call->cong_ssthresh &&
call->cong_ca_state == RXRPC_CA_SLOW_START) {
call->cong_ca_state = RXRPC_CA_CONGEST_AVOIDANCE;
call->cong_tstamp = call->acks_latest_ts;
call->cong_cumul_acks = 0;
}
}
call->cong_cumul_acks += summary->nr_new_sacks;
call->cong_cumul_acks += summary->nr_new_hacks;
if (call->cong_cumul_acks > 255)
call->cong_cumul_acks = 255;
switch (call->cong_ca_state) {
case RXRPC_CA_SLOW_START:
if (call->acks_nr_snacks > 0)
goto packet_loss_detected;
if (call->cong_cumul_acks > 0)
call->cong_cwnd += 1;
if (call->cong_cwnd >= call->cong_ssthresh) {
call->cong_ca_state = RXRPC_CA_CONGEST_AVOIDANCE;
call->cong_tstamp = call->acks_latest_ts;
}
goto out;
case RXRPC_CA_CONGEST_AVOIDANCE:
if (call->acks_nr_snacks > 0)
goto packet_loss_detected;
/* We analyse the number of packets that get ACK'd per RTT
* period and increase the window if we managed to fill it.
*/
if (call->rtt_count == 0)
goto out;
if (ktime_before(call->acks_latest_ts,
ktime_add_us(call->cong_tstamp,
call->srtt_us >> 3)))
goto out_no_clear_ca;
summary->change = rxrpc_cong_rtt_window_end;
call->cong_tstamp = call->acks_latest_ts;
if (call->cong_cumul_acks >= call->cong_cwnd)
call->cong_cwnd++;
goto out;
case RXRPC_CA_PACKET_LOSS:
if (call->acks_nr_snacks == 0)
goto resume_normality;
if (summary->new_low_snack) {
summary->change = rxrpc_cong_new_low_nack;
call->cong_dup_acks = 1;
if (call->cong_extra > 1)
call->cong_extra = 1;
goto send_extra_data;
}
call->cong_dup_acks++;
if (call->cong_dup_acks < 3)
goto send_extra_data;
summary->change = rxrpc_cong_begin_retransmission;
call->cong_ca_state = RXRPC_CA_FAST_RETRANSMIT;
call->cong_ssthresh = umax(summary->in_flight / 2, 2);
call->cong_cwnd = call->cong_ssthresh + 3;
call->cong_extra = 0;
call->cong_dup_acks = 0;
summary->need_retransmit = true;
summary->in_fast_or_rto_recovery = true;
goto out;
case RXRPC_CA_FAST_RETRANSMIT:
rxrpc_tlp_init(call);
summary->in_fast_or_rto_recovery = true;
if (!summary->new_low_snack) {
if (summary->nr_new_sacks == 0)
call->cong_cwnd += 1;
call->cong_dup_acks++;
if (call->cong_dup_acks == 2) {
summary->change = rxrpc_cong_retransmit_again;
call->cong_dup_acks = 0;
summary->need_retransmit = true;
}
} else {
summary->change = rxrpc_cong_progress;
call->cong_cwnd = call->cong_ssthresh;
if (call->acks_nr_snacks == 0) {
summary->exiting_fast_or_rto_recovery = true;
goto resume_normality;
}
}
goto out;
default:
BUG();
goto out;
}
resume_normality:
summary->change = rxrpc_cong_cleared_nacks;
call->cong_dup_acks = 0;
call->cong_extra = 0;
call->cong_tstamp = call->acks_latest_ts;
if (call->cong_cwnd < call->cong_ssthresh)
call->cong_ca_state = RXRPC_CA_SLOW_START;
else
call->cong_ca_state = RXRPC_CA_CONGEST_AVOIDANCE;
out:
call->cong_cumul_acks = 0;
out_no_clear_ca:
if (call->cong_cwnd >= RXRPC_TX_MAX_WINDOW)
call->cong_cwnd = RXRPC_TX_MAX_WINDOW;
trace_rxrpc_congest(call, summary);
return;
packet_loss_detected:
summary->change = rxrpc_cong_saw_nack;
call->cong_ca_state = RXRPC_CA_PACKET_LOSS;
call->cong_dup_acks = 0;
goto send_extra_data;
send_extra_data:
/* Send some previously unsent DATA if we have some to advance the ACK
* state.
*/
if (test_bit(RXRPC_CALL_TX_LAST, &call->flags) ||
call->acks_nr_sacks != call->tx_top - call->tx_bottom) {
call->cong_extra++;
wake_up(&call->waitq);
}
goto out_no_clear_ca;
}
/*
* Degrade the congestion window if we haven't transmitted a packet for >1RTT.
*/
void rxrpc_congestion_degrade(struct rxrpc_call *call)
{
ktime_t rtt, now, time_since;
if (call->cong_ca_state != RXRPC_CA_SLOW_START &&
call->cong_ca_state != RXRPC_CA_CONGEST_AVOIDANCE)
return;
if (__rxrpc_call_state(call) == RXRPC_CALL_CLIENT_AWAIT_REPLY)
return;
rtt = ns_to_ktime(call->srtt_us * (NSEC_PER_USEC / 8));
now = ktime_get_real();
time_since = ktime_sub(now, call->tx_last_sent);
if (ktime_before(time_since, rtt))
return;
trace_rxrpc_reset_cwnd(call, time_since, rtt);
rxrpc_inc_stat(call->rxnet, stat_tx_data_cwnd_reset);
call->tx_last_sent = now;
call->cong_ca_state = RXRPC_CA_SLOW_START;
call->cong_ssthresh = umax(call->cong_ssthresh, call->cong_cwnd * 3 / 4);
call->cong_cwnd = umax(call->cong_cwnd / 2, RXRPC_MIN_CWND);
}
/*
* Add an RTT sample derived from an ACK'd DATA packet.
*/
static void rxrpc_add_data_rtt_sample(struct rxrpc_call *call,
struct rxrpc_ack_summary *summary,
struct rxrpc_txqueue *tq,
int ix)
{
ktime_t xmit_ts = ktime_add_us(tq->xmit_ts_base, tq->segment_xmit_ts[ix]);
rxrpc_call_add_rtt(call, rxrpc_rtt_rx_data_ack, -1,
summary->acked_serial, summary->ack_serial,
xmit_ts, call->acks_latest_ts);
__clear_bit(ix, &tq->rtt_samples); /* Prevent repeat RTT sample */
}
/*
* Apply a hard ACK by advancing the Tx window.
*/
static bool rxrpc_rotate_tx_window(struct rxrpc_call *call, rxrpc_seq_t to,
struct rxrpc_ack_summary *summary)
{
struct rxrpc_txqueue *tq = call->tx_queue;
rxrpc_seq_t seq = call->tx_bottom + 1;
bool rot_last = false, trace = false;
_enter("%x,%x", call->tx_bottom, to);
trace_rxrpc_tx_rotate(call, seq, to);
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate);
if (call->acks_lowest_nak == call->tx_bottom) {
call->acks_lowest_nak = to;
} else if (after(to, call->acks_lowest_nak)) {
summary->new_low_snack = true;
call->acks_lowest_nak = to;
}
/* We may have a left over fully-consumed buffer at the front that we
* couldn't drop before (rotate_and_keep below).
*/
if (seq == call->tx_qbase + RXRPC_NR_TXQUEUE) {
call->tx_qbase += RXRPC_NR_TXQUEUE;
call->tx_queue = tq->next;
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_free);
kfree(tq);
tq = call->tx_queue;
}
do {
unsigned int ix = seq - call->tx_qbase;
_debug("tq=%x seq=%x i=%d f=%x", tq->qbase, seq, ix, tq->bufs[ix]->flags);
if (tq->bufs[ix]->flags & RXRPC_LAST_PACKET) {
set_bit(RXRPC_CALL_TX_LAST, &call->flags);
rot_last = true;
}
if (summary->acked_serial == tq->segment_serial[ix] &&
test_bit(ix, &tq->rtt_samples))
rxrpc_add_data_rtt_sample(call, summary, tq, ix);
if (ix == tq->nr_reported_acks) {
/* Packet directly hard ACK'd. */
tq->nr_reported_acks++;
rxrpc_input_rack_one(call, summary, tq, ix);
if (seq == call->tlp_seq)
summary->tlp_probe_acked = true;
summary->nr_new_hacks++;
__set_bit(ix, &tq->segment_acked);
trace_rxrpc_rotate(call, tq, summary, seq, rxrpc_rotate_trace_hack);
} else if (test_bit(ix, &tq->segment_acked)) {
/* Soft ACK -> hard ACK. */
call->acks_nr_sacks--;
trace_rxrpc_rotate(call, tq, summary, seq, rxrpc_rotate_trace_sack);
} else {
/* Soft NAK -> hard ACK. */
call->acks_nr_snacks--;
rxrpc_input_rack_one(call, summary, tq, ix);
if (seq == call->tlp_seq)
summary->tlp_probe_acked = true;
summary->nr_new_hacks++;
__set_bit(ix, &tq->segment_acked);
trace_rxrpc_rotate(call, tq, summary, seq, rxrpc_rotate_trace_snak);
}
call->tx_nr_sent--;
if (__test_and_clear_bit(ix, &tq->segment_lost))
call->tx_nr_lost--;
if (__test_and_clear_bit(ix, &tq->segment_retransmitted))
call->tx_nr_resent--;
__clear_bit(ix, &tq->ever_retransmitted);
rxrpc_put_txbuf(tq->bufs[ix], rxrpc_txbuf_put_rotated);
tq->bufs[ix] = NULL;
WRITE_ONCE(call->tx_bottom, seq);
trace_rxrpc_txqueue(call, (rot_last ?
rxrpc_txqueue_rotate_last :
rxrpc_txqueue_rotate));
seq++;
trace = true;
if (!(seq & RXRPC_TXQ_MASK)) {
trace_rxrpc_rack_update(call, summary);
trace = false;
prefetch(tq->next);
if (tq != call->tx_qtail) {
call->tx_qbase += RXRPC_NR_TXQUEUE;
call->tx_queue = tq->next;
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_free);
kfree(tq);
tq = call->tx_queue;
} else {
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_keep);
tq = NULL;
break;
}
}
} while (before_eq(seq, to));
if (trace)
trace_rxrpc_rack_update(call, summary);
if (rot_last) {
set_bit(RXRPC_CALL_TX_ALL_ACKED, &call->flags);
if (tq) {
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_free);
kfree(tq);
call->tx_queue = NULL;
}
}
_debug("%x,%x,%x,%d", to, call->tx_bottom, call->tx_top, rot_last);
wake_up(&call->waitq);
return rot_last;
}
/*
* End the transmission phase of a call.
*
* This occurs when we get an ACKALL packet, the first DATA packet of a reply,
* or a final ACK packet.
*/
static void rxrpc_end_tx_phase(struct rxrpc_call *call, bool reply_begun,
enum rxrpc_abort_reason abort_why)
{
ASSERT(test_bit(RXRPC_CALL_TX_LAST, &call->flags));
call->rack_timer_mode = RXRPC_CALL_RACKTIMER_OFF;
call->rack_timo_at = KTIME_MAX;
trace_rxrpc_rack_timer(call, 0, false);
trace_rxrpc_timer_can(call, rxrpc_timer_trace_rack_off + call->rack_timer_mode);
switch (__rxrpc_call_state(call)) {
case RXRPC_CALL_CLIENT_SEND_REQUEST:
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
if (reply_begun) {
rxrpc_set_call_state(call, RXRPC_CALL_CLIENT_RECV_REPLY);
trace_rxrpc_txqueue(call, rxrpc_txqueue_end);
break;
}
rxrpc_set_call_state(call, RXRPC_CALL_CLIENT_AWAIT_REPLY);
trace_rxrpc_txqueue(call, rxrpc_txqueue_await_reply);
break;
case RXRPC_CALL_SERVER_AWAIT_ACK:
rxrpc_call_completed(call);
trace_rxrpc_txqueue(call, rxrpc_txqueue_end);
break;
default:
kdebug("end_tx %s", rxrpc_call_states[__rxrpc_call_state(call)]);
rxrpc_proto_abort(call, call->tx_top, abort_why);
break;
}
}
/*
* Begin the reply reception phase of a call.
*/
static bool rxrpc_receiving_reply(struct rxrpc_call *call)
{
struct rxrpc_ack_summary summary = { 0 };
rxrpc_seq_t top = READ_ONCE(call->tx_top);
if (call->ackr_reason) {
call->delay_ack_at = KTIME_MAX;
trace_rxrpc_timer_can(call, rxrpc_timer_trace_delayed_ack);
}
if (!test_bit(RXRPC_CALL_TX_LAST, &call->flags)) {
if (!rxrpc_rotate_tx_window(call, top, &summary)) {
rxrpc_proto_abort(call, top, rxrpc_eproto_early_reply);
return false;
}
}
rxrpc_end_tx_phase(call, true, rxrpc_eproto_unexpected_reply);
return true;
}
/*
* End the packet reception phase.
*/
static void rxrpc_end_rx_phase(struct rxrpc_call *call, rxrpc_serial_t serial)
{
rxrpc_seq_t whigh = READ_ONCE(call->rx_highest_seq);
_enter("%d,%s", call->debug_id, rxrpc_call_states[__rxrpc_call_state(call)]);
trace_rxrpc_receive(call, rxrpc_receive_end, 0, whigh);
switch (__rxrpc_call_state(call)) {
case RXRPC_CALL_CLIENT_RECV_REPLY:
rxrpc_propose_delay_ACK(call, serial, rxrpc_propose_ack_terminal_ack);
rxrpc_call_completed(call);
break;
case RXRPC_CALL_SERVER_RECV_REQUEST:
rxrpc_set_call_state(call, RXRPC_CALL_SERVER_ACK_REQUEST);
call->expect_req_by = KTIME_MAX;
rxrpc_propose_delay_ACK(call, serial, rxrpc_propose_ack_processing_op);
break;
default:
break;
}
}
static void rxrpc_input_update_ack_window(struct rxrpc_call *call,
rxrpc_seq_t window, rxrpc_seq_t wtop)
{
call->ackr_window = window;
call->ackr_wtop = wtop;
}
/*
* Push a DATA packet onto the Rx queue.
*/
static void rxrpc_input_queue_data(struct rxrpc_call *call, struct sk_buff *skb,
rxrpc_seq_t window, rxrpc_seq_t wtop,
enum rxrpc_receive_trace why)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
bool last = sp->hdr.flags & RXRPC_LAST_PACKET;
skb_queue_tail(&call->recvmsg_queue, skb);
rxrpc_input_update_ack_window(call, window, wtop);
trace_rxrpc_receive(call, last ? why + 1 : why, sp->hdr.serial, sp->hdr.seq);
if (last)
rxrpc_end_rx_phase(call, sp->hdr.serial);
}
/*
* Process a DATA packet.
*/
static void rxrpc_input_data_one(struct rxrpc_call *call, struct sk_buff *skb,
bool *_notify, rxrpc_serial_t *_ack_serial, int *_ack_reason)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct sk_buff *oos;
rxrpc_serial_t serial = sp->hdr.serial;
unsigned int sack = call->ackr_sack_base;
rxrpc_seq_t window = call->ackr_window;
rxrpc_seq_t wtop = call->ackr_wtop;
rxrpc_seq_t wlimit = window + call->rx_winsize - 1;
rxrpc_seq_t seq = sp->hdr.seq;
bool last = sp->hdr.flags & RXRPC_LAST_PACKET;
int ack_reason = -1;
rxrpc_inc_stat(call->rxnet, stat_rx_data);
if (sp->hdr.flags & RXRPC_REQUEST_ACK)
rxrpc_inc_stat(call->rxnet, stat_rx_data_reqack);
if (sp->hdr.flags & RXRPC_JUMBO_PACKET)
rxrpc_inc_stat(call->rxnet, stat_rx_data_jumbo);
if (last) {
if (test_and_set_bit(RXRPC_CALL_RX_LAST, &call->flags) &&
seq + 1 != wtop)
return rxrpc_proto_abort(call, seq, rxrpc_eproto_different_last);
} else {
if (test_bit(RXRPC_CALL_RX_LAST, &call->flags) &&
after_eq(seq, wtop)) {
pr_warn("Packet beyond last: c=%x q=%x window=%x-%x wlimit=%x\n",
call->debug_id, seq, window, wtop, wlimit);
return rxrpc_proto_abort(call, seq, rxrpc_eproto_data_after_last);
}
}
if (after(seq, call->rx_highest_seq))
call->rx_highest_seq = seq;
trace_rxrpc_rx_data(call->debug_id, seq, serial, sp->hdr.flags);
if (before(seq, window)) {
ack_reason = RXRPC_ACK_DUPLICATE;
goto send_ack;
}
if (after(seq, wlimit)) {
ack_reason = RXRPC_ACK_EXCEEDS_WINDOW;
goto send_ack;
}
/* Queue the packet. */
if (seq == window) {
if (sp->hdr.flags & RXRPC_REQUEST_ACK)
ack_reason = RXRPC_ACK_REQUESTED;
/* Send an immediate ACK if we fill in a hole */
else if (!skb_queue_empty(&call->rx_oos_queue))
ack_reason = RXRPC_ACK_DELAY;
window++;
if (after(window, wtop)) {
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_none);
wtop = window;
} else {
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_advance);
sack = (sack + 1) % RXRPC_SACK_SIZE;
}
rxrpc_get_skb(skb, rxrpc_skb_get_to_recvmsg);
rxrpc_input_queue_data(call, skb, window, wtop, rxrpc_receive_queue);
*_notify = true;
while ((oos = skb_peek(&call->rx_oos_queue))) {
struct rxrpc_skb_priv *osp = rxrpc_skb(oos);
if (after(osp->hdr.seq, window))
break;
__skb_unlink(oos, &call->rx_oos_queue);
last = osp->hdr.flags & RXRPC_LAST_PACKET;
seq = osp->hdr.seq;
call->ackr_sack_table[sack] = 0;
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_fill);
sack = (sack + 1) % RXRPC_SACK_SIZE;
window++;
rxrpc_input_queue_data(call, oos, window, wtop,
rxrpc_receive_queue_oos);
}
call->ackr_sack_base = sack;
} else {
unsigned int slot;
ack_reason = RXRPC_ACK_OUT_OF_SEQUENCE;
slot = seq - window;
sack = (sack + slot) % RXRPC_SACK_SIZE;
if (call->ackr_sack_table[sack % RXRPC_SACK_SIZE]) {
ack_reason = RXRPC_ACK_DUPLICATE;
goto send_ack;
}
call->ackr_sack_table[sack % RXRPC_SACK_SIZE] |= 1;
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_oos);
if (after(seq + 1, wtop)) {
wtop = seq + 1;
rxrpc_input_update_ack_window(call, window, wtop);
}
skb_queue_walk(&call->rx_oos_queue, oos) {
struct rxrpc_skb_priv *osp = rxrpc_skb(oos);
if (after(osp->hdr.seq, seq)) {
rxrpc_get_skb(skb, rxrpc_skb_get_to_recvmsg_oos);
__skb_queue_before(&call->rx_oos_queue, oos, skb);
goto oos_queued;
}
}
rxrpc_get_skb(skb, rxrpc_skb_get_to_recvmsg_oos);
__skb_queue_tail(&call->rx_oos_queue, skb);
oos_queued:
trace_rxrpc_receive(call, last ? rxrpc_receive_oos_last : rxrpc_receive_oos,
sp->hdr.serial, sp->hdr.seq);
}
send_ack:
if (ack_reason >= 0) {
if (rxrpc_ack_priority[ack_reason] > rxrpc_ack_priority[*_ack_reason]) {
*_ack_serial = serial;
*_ack_reason = ack_reason;
} else if (rxrpc_ack_priority[ack_reason] == rxrpc_ack_priority[*_ack_reason] &&
ack_reason == RXRPC_ACK_REQUESTED) {
*_ack_serial = serial;
*_ack_reason = ack_reason;
}
}
}
/*
* Split a jumbo packet and file the bits separately.
*/
static bool rxrpc_input_split_jumbo(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_jumbo_header jhdr;
struct rxrpc_skb_priv *sp = rxrpc_skb(skb), *jsp;
struct sk_buff *jskb;
rxrpc_serial_t ack_serial = 0;
unsigned int offset = sizeof(struct rxrpc_wire_header);
unsigned int len = skb->len - offset;
bool notify = false;
int ack_reason = 0, count = 1, stat_ix;
while (sp->hdr.flags & RXRPC_JUMBO_PACKET) {
if (len < RXRPC_JUMBO_SUBPKTLEN)
goto protocol_error;
if (sp->hdr.flags & RXRPC_LAST_PACKET)
goto protocol_error;
if (skb_copy_bits(skb, offset + RXRPC_JUMBO_DATALEN,
&jhdr, sizeof(jhdr)) < 0)
goto protocol_error;
jskb = skb_clone(skb, GFP_NOFS);
if (!jskb) {
kdebug("couldn't clone");
return false;
}
rxrpc_new_skb(jskb, rxrpc_skb_new_jumbo_subpacket);
jsp = rxrpc_skb(jskb);
jsp->offset = offset;
jsp->len = RXRPC_JUMBO_DATALEN;
rxrpc_input_data_one(call, jskb, &notify, &ack_serial, &ack_reason);
rxrpc_free_skb(jskb, rxrpc_skb_put_jumbo_subpacket);
sp->hdr.flags = jhdr.flags;
sp->hdr._rsvd = ntohs(jhdr._rsvd);
sp->hdr.seq++;
sp->hdr.serial++;
offset += RXRPC_JUMBO_SUBPKTLEN;
len -= RXRPC_JUMBO_SUBPKTLEN;
count++;
}
sp->offset = offset;
sp->len = len;
rxrpc_input_data_one(call, skb, &notify, &ack_serial, &ack_reason);
stat_ix = umin(count, ARRAY_SIZE(call->rxnet->stat_rx_jumbo)) - 1;
atomic_inc(&call->rxnet->stat_rx_jumbo[stat_ix]);
if (ack_reason > 0) {
rxrpc_send_ACK(call, ack_reason, ack_serial,
rxrpc_propose_ack_input_data);
} else {
call->ackr_nr_unacked++;
rxrpc_propose_delay_ACK(call, sp->hdr.serial,
rxrpc_propose_ack_input_data);
}
if (notify) {
trace_rxrpc_notify_socket(call->debug_id, sp->hdr.serial);
rxrpc_notify_socket(call);
}
return true;
protocol_error:
return false;
}
/*
* Process a DATA packet, adding the packet to the Rx ring. The caller's
* packet ref must be passed on or discarded.
*/
static void rxrpc_input_data(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
rxrpc_serial_t serial = sp->hdr.serial;
rxrpc_seq_t seq0 = sp->hdr.seq;
_enter("{%x,%x,%x},{%u,%x}",
call->ackr_window, call->ackr_wtop, call->rx_highest_seq,
skb->len, seq0);
if (__rxrpc_call_is_complete(call))
return;
switch (__rxrpc_call_state(call)) {
case RXRPC_CALL_CLIENT_SEND_REQUEST:
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
/* Received data implicitly ACKs all of the request
* packets we sent when we're acting as a client.
*/
if (!rxrpc_receiving_reply(call))
goto out_notify;
break;
case RXRPC_CALL_SERVER_RECV_REQUEST: {
unsigned long timo = READ_ONCE(call->next_req_timo);
if (timo) {
ktime_t delay = ms_to_ktime(timo);
call->expect_req_by = ktime_add(ktime_get_real(), delay);
trace_rxrpc_timer_set(call, delay, rxrpc_timer_trace_idle);
}
break;
}
default:
break;
}
if (!rxrpc_input_split_jumbo(call, skb)) {
rxrpc_proto_abort(call, sp->hdr.seq, rxrpc_badmsg_bad_jumbo);
goto out_notify;
}
return;
out_notify:
trace_rxrpc_notify_socket(call->debug_id, serial);
rxrpc_notify_socket(call);
_leave(" [queued]");
}
/*
* See if there's a cached RTT probe to complete.
*/
static void rxrpc_complete_rtt_probe(struct rxrpc_call *call,
ktime_t resp_time,
rxrpc_serial_t acked_serial,
rxrpc_serial_t ack_serial,
enum rxrpc_rtt_rx_trace type)
{
rxrpc_serial_t orig_serial;
unsigned long avail;
ktime_t sent_at;
bool matched = false;
int i;
avail = READ_ONCE(call->rtt_avail);
smp_rmb(); /* Read avail bits before accessing data. */
for (i = 0; i < ARRAY_SIZE(call->rtt_serial); i++) {
if (!test_bit(i + RXRPC_CALL_RTT_PEND_SHIFT, &avail))
continue;
sent_at = call->rtt_sent_at[i];
orig_serial = call->rtt_serial[i];
if (orig_serial == acked_serial) {
clear_bit(i + RXRPC_CALL_RTT_PEND_SHIFT, &call->rtt_avail);
smp_mb(); /* Read data before setting avail bit */
set_bit(i, &call->rtt_avail);
rxrpc_call_add_rtt(call, type, i, acked_serial, ack_serial,
sent_at, resp_time);
matched = true;
}
/* If a later serial is being acked, then mark this slot as
* being available.
*/
if (after(acked_serial, orig_serial)) {
trace_rxrpc_rtt_rx(call, rxrpc_rtt_rx_obsolete, i,
orig_serial, acked_serial, 0, 0, 0);
clear_bit(i + RXRPC_CALL_RTT_PEND_SHIFT, &call->rtt_avail);
smp_wmb();
set_bit(i, &call->rtt_avail);
}
}
if (!matched)
trace_rxrpc_rtt_rx(call, rxrpc_rtt_rx_lost, 9, 0, acked_serial, 0, 0, 0);
}
/*
* Process the extra information that may be appended to an ACK packet
*/
static void rxrpc_input_ack_trailer(struct rxrpc_call *call, struct sk_buff *skb,
struct rxrpc_acktrailer *trailer)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_peer *peer = call->peer;
unsigned int max_data, capacity;
bool wake = false;
u32 max_mtu = ntohl(trailer->maxMTU);
//u32 if_mtu = ntohl(trailer->ifMTU);
u32 rwind = ntohl(trailer->rwind);
u32 jumbo_max = ntohl(trailer->jumbo_max);
if (rwind > RXRPC_TX_MAX_WINDOW)
rwind = RXRPC_TX_MAX_WINDOW;
if (call->tx_winsize != rwind) {
if (rwind > call->tx_winsize)
wake = true;
trace_rxrpc_rx_rwind_change(call, sp->hdr.serial, rwind, wake);
call->tx_winsize = rwind;
}
max_mtu = clamp(max_mtu, 500, 65535);
peer->ackr_max_data = max_mtu;
if (max_mtu < peer->max_data) {
trace_rxrpc_pmtud_reduce(peer, sp->hdr.serial, max_mtu,
rxrpc_pmtud_reduce_ack);
write_seqcount_begin(&peer->mtu_lock);
peer->max_data = max_mtu;
write_seqcount_end(&peer->mtu_lock);
}
max_data = umin(max_mtu, peer->max_data);
capacity = max_data;
capacity += sizeof(struct rxrpc_jumbo_header); /* First subpacket has main hdr, not jumbo */
capacity /= sizeof(struct rxrpc_jumbo_header) + RXRPC_JUMBO_DATALEN;
if (jumbo_max == 0) {
/* The peer says it supports pmtu discovery */
peer->ackr_adv_pmtud = true;
} else {
peer->ackr_adv_pmtud = false;
capacity = clamp(capacity, 1, jumbo_max);
}
call->tx_jumbo_max = capacity;
if (wake)
wake_up(&call->waitq);
}
#if defined(CONFIG_X86) && __GNUC__ && !defined(__clang__)
/* Clang doesn't support the %z constraint modifier */
#define shiftr_adv_rotr(shift_from, rotate_into) ({ \
asm(" shr%z1 %1\n" \
" inc %0\n" \
" rcr%z2 %2\n" \
: "+d"(shift_from), "+m"(*(shift_from)), "+rm"(rotate_into) \
); \
})
#else
#define shiftr_adv_rotr(shift_from, rotate_into) ({ \
typeof(rotate_into) __bit0 = *(shift_from) & 1; \
*(shift_from) >>= 1; \
shift_from++; \
rotate_into >>= 1; \
rotate_into |= __bit0 << (sizeof(rotate_into) * 8 - 1); \
})
#endif
/*
* Deal with RTT samples from soft ACKs.
*/
static void rxrpc_input_soft_rtt(struct rxrpc_call *call,
struct rxrpc_ack_summary *summary,
struct rxrpc_txqueue *tq)
{
for (int ix = 0; ix < RXRPC_NR_TXQUEUE; ix++)
if (summary->acked_serial == tq->segment_serial[ix])
return rxrpc_add_data_rtt_sample(call, summary, tq, ix);
}
/*
* Process a batch of soft ACKs specific to a transmission queue segment.
*/
static void rxrpc_input_soft_ack_tq(struct rxrpc_call *call,
struct rxrpc_ack_summary *summary,
struct rxrpc_txqueue *tq,
unsigned long extracted_acks,
int nr_reported,
rxrpc_seq_t seq,
rxrpc_seq_t *lowest_nak)
{
unsigned long old_reported = 0, flipped, new_acks = 0;
unsigned long a_to_n, n_to_a = 0;
int new, a, n;
if (tq->nr_reported_acks > 0)
old_reported = ~0UL >> (RXRPC_NR_TXQUEUE - tq->nr_reported_acks);
_enter("{%x,%lx,%d},%lx,%d,%x",
tq->qbase, tq->segment_acked, tq->nr_reported_acks,
extracted_acks, nr_reported, seq);
_debug("[%x]", tq->qbase);
_debug("tq %16lx %u", tq->segment_acked, tq->nr_reported_acks);
_debug("sack %16lx %u", extracted_acks, nr_reported);
/* See how many previously logged ACKs/NAKs have flipped. */
flipped = (tq->segment_acked ^ extracted_acks) & old_reported;
if (flipped) {
n_to_a = ~tq->segment_acked & flipped; /* Old NAK -> ACK */
a_to_n = tq->segment_acked & flipped; /* Old ACK -> NAK */
a = hweight_long(n_to_a);
n = hweight_long(a_to_n);
_debug("flip %16lx", flipped);
_debug("ntoa %16lx %d", n_to_a, a);
_debug("aton %16lx %d", a_to_n, n);
call->acks_nr_sacks += a - n;
call->acks_nr_snacks += n - a;
summary->nr_new_sacks += a;
summary->nr_new_snacks += n;
}
/* See how many new ACKs/NAKs have been acquired. */
new = nr_reported - tq->nr_reported_acks;
if (new > 0) {
new_acks = extracted_acks & ~old_reported;
if (new_acks) {
a = hweight_long(new_acks);
n = new - a;
_debug("new_a %16lx new=%d a=%d n=%d", new_acks, new, a, n);
call->acks_nr_sacks += a;
call->acks_nr_snacks += n;
summary->nr_new_sacks += a;
summary->nr_new_snacks += n;
} else {
call->acks_nr_snacks += new;
summary->nr_new_snacks += new;
}
}
tq->nr_reported_acks = nr_reported;
tq->segment_acked = extracted_acks;
trace_rxrpc_apply_acks(call, tq);
if (extracted_acks != ~0UL) {
rxrpc_seq_t lowest = seq + ffz(extracted_acks);
if (before(lowest, *lowest_nak))
*lowest_nak = lowest;
}
if (summary->acked_serial)
rxrpc_input_soft_rtt(call, summary, tq);
new_acks |= n_to_a;
if (new_acks)
rxrpc_input_rack(call, summary, tq, new_acks);
if (call->tlp_serial &&
rxrpc_seq_in_txq(tq, call->tlp_seq) &&
test_bit(call->tlp_seq - tq->qbase, &new_acks))
summary->tlp_probe_acked = true;
}
/*
* Process individual soft ACKs.
*
* Each ACK in the array corresponds to one packet and can be either an ACK or
* a NAK. If we get find an explicitly NAK'd packet we resend immediately;
* packets that lie beyond the end of the ACK list are scheduled for resend by
* the timer on the basis that the peer might just not have processed them at
* the time the ACK was sent.
*/
static void rxrpc_input_soft_acks(struct rxrpc_call *call,
struct rxrpc_ack_summary *summary,
struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_txqueue *tq = call->tx_queue;
unsigned long extracted = ~0UL;
unsigned int nr = 0;
rxrpc_seq_t seq = call->acks_hard_ack + 1;
rxrpc_seq_t lowest_nak = seq + sp->ack.nr_acks;
u8 *acks = skb->data + sizeof(struct rxrpc_wire_header) + sizeof(struct rxrpc_ackpacket);
_enter("%x,%x,%u", tq->qbase, seq, sp->ack.nr_acks);
while (after(seq, tq->qbase + RXRPC_NR_TXQUEUE - 1))
tq = tq->next;
for (unsigned int i = 0; i < sp->ack.nr_acks; i++) {
/* Decant ACKs until we hit a txqueue boundary. */
shiftr_adv_rotr(acks, extracted);
if (i == 256) {
acks -= i;
i = 0;
}
seq++;
nr++;
if ((seq & RXRPC_TXQ_MASK) != 0)
continue;
_debug("bound %16lx %u", extracted, nr);
rxrpc_input_soft_ack_tq(call, summary, tq, extracted, RXRPC_NR_TXQUEUE,
seq - RXRPC_NR_TXQUEUE, &lowest_nak);
extracted = ~0UL;
nr = 0;
tq = tq->next;
prefetch(tq);
}
if (nr) {
unsigned int nr_reported = seq & RXRPC_TXQ_MASK;
extracted >>= RXRPC_NR_TXQUEUE - nr_reported;
_debug("tail %16lx %u", extracted, nr_reported);
rxrpc_input_soft_ack_tq(call, summary, tq, extracted, nr_reported,
seq & ~RXRPC_TXQ_MASK, &lowest_nak);
}
/* We *can* have more nacks than we did - the peer is permitted to drop
* packets it has soft-acked and re-request them. Further, it is
* possible for the nack distribution to change whilst the number of
* nacks stays the same or goes down.
*/
if (lowest_nak != call->acks_lowest_nak) {
call->acks_lowest_nak = lowest_nak;
summary->new_low_snack = true;
}
_debug("summary A=%d+%d N=%d+%d",
call->acks_nr_sacks, summary->nr_new_sacks,
call->acks_nr_snacks, summary->nr_new_snacks);
}
/*
* Return true if the ACK is valid - ie. it doesn't appear to have regressed
* with respect to the ack state conveyed by preceding ACKs.
*/
static bool rxrpc_is_ack_valid(struct rxrpc_call *call,
rxrpc_seq_t hard_ack, rxrpc_seq_t prev_pkt)
{
rxrpc_seq_t base = READ_ONCE(call->acks_hard_ack);
if (after(hard_ack, base))
return true; /* The window advanced */
if (before(hard_ack, base))
return false; /* firstPacket regressed */
if (after_eq(prev_pkt, call->acks_prev_seq))
return true; /* previousPacket hasn't regressed. */
/* Some rx implementations put a serial number in previousPacket. */
if (after(prev_pkt, base + call->tx_winsize))
return false;
return true;
}
/*
* Process an ACK packet.
*
* ack.firstPacket is the sequence number of the first soft-ACK'd/NAK'd packet
* in the ACK array. Anything before that is hard-ACK'd and may be discarded.
*
* A hard-ACK means that a packet has been processed and may be discarded; a
* soft-ACK means that the packet may be discarded and retransmission
* requested. A phase is complete when all packets are hard-ACK'd.
*/
static void rxrpc_input_ack(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_ack_summary summary = { 0 };
struct rxrpc_acktrailer trailer;
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
rxrpc_seq_t first_soft_ack, hard_ack, prev_pkt;
int nr_acks, offset, ioffset;
_enter("");
offset = sizeof(struct rxrpc_wire_header) + sizeof(struct rxrpc_ackpacket);
summary.ack_serial = sp->hdr.serial;
first_soft_ack = sp->ack.first_ack;
prev_pkt = sp->ack.prev_ack;
nr_acks = sp->ack.nr_acks;
hard_ack = first_soft_ack - 1;
summary.acked_serial = sp->ack.acked_serial;
summary.ack_reason = (sp->ack.reason < RXRPC_ACK__INVALID ?
sp->ack.reason : RXRPC_ACK__INVALID);
trace_rxrpc_rx_ack(call, sp);
rxrpc_inc_stat(call->rxnet, stat_rx_acks[summary.ack_reason]);
prefetch(call->tx_queue);
/* If we get an EXCEEDS_WINDOW ACK from the server, it probably
* indicates that the client address changed due to NAT. The server
* lost the call because it switched to a different peer.
*/
if (unlikely(summary.ack_reason == RXRPC_ACK_EXCEEDS_WINDOW) &&
hard_ack == 0 &&
prev_pkt == 0 &&
rxrpc_is_client_call(call)) {
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
0, -ENETRESET);
goto send_response;
}
/* If we get an OUT_OF_SEQUENCE ACK from the server, that can also
* indicate a change of address. However, we can retransmit the call
* if we still have it buffered to the beginning.
*/
if (unlikely(summary.ack_reason == RXRPC_ACK_OUT_OF_SEQUENCE) &&
hard_ack == 0 &&
prev_pkt == 0 &&
call->tx_bottom == 0 &&
rxrpc_is_client_call(call)) {
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
0, -ENETRESET);
goto send_response;
}
/* Discard any out-of-order or duplicate ACKs (outside lock). */
if (!rxrpc_is_ack_valid(call, hard_ack, prev_pkt)) {
trace_rxrpc_rx_discard_ack(call, summary.ack_serial, hard_ack, prev_pkt);
goto send_response; /* Still respond if requested. */
}
trailer.maxMTU = 0;
ioffset = offset + nr_acks + 3;
if (skb->len >= ioffset + sizeof(trailer) &&
skb_copy_bits(skb, ioffset, &trailer, sizeof(trailer)) < 0)
return rxrpc_proto_abort(call, 0, rxrpc_badmsg_short_ack_trailer);
if (nr_acks > 0)
skb_condense(skb);
call->acks_latest_ts = ktime_get_real();
call->acks_hard_ack = hard_ack;
call->acks_prev_seq = prev_pkt;
if (summary.acked_serial) {
switch (summary.ack_reason) {
case RXRPC_ACK_PING_RESPONSE:
rxrpc_complete_rtt_probe(call, call->acks_latest_ts,
summary.acked_serial, summary.ack_serial,
rxrpc_rtt_rx_ping_response);
break;
default:
if (after(summary.acked_serial, call->acks_highest_serial))
call->acks_highest_serial = summary.acked_serial;
summary.rtt_sample_avail = true;
break;
}
}
/* Parse rwind and mtu sizes if provided. */
if (trailer.maxMTU)
rxrpc_input_ack_trailer(call, skb, &trailer);
if (hard_ack + 1 == 0)
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_zero);
/* Ignore ACKs unless we are or have just been transmitting. */
switch (__rxrpc_call_state(call)) {
case RXRPC_CALL_CLIENT_SEND_REQUEST:
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
case RXRPC_CALL_SERVER_SEND_REPLY:
case RXRPC_CALL_SERVER_AWAIT_ACK:
break;
default:
goto send_response;
}
if (before(hard_ack, call->tx_bottom) ||
after(hard_ack, call->tx_top))
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_outside_window);
if (nr_acks > call->tx_top - hard_ack)
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_sack_overflow);
if (after(hard_ack, call->tx_bottom)) {
if (rxrpc_rotate_tx_window(call, hard_ack, &summary)) {
rxrpc_end_tx_phase(call, false, rxrpc_eproto_unexpected_ack);
goto send_response;
}
}
if (nr_acks > 0) {
if (offset > (int)skb->len - nr_acks)
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_short_sack);
rxrpc_input_soft_acks(call, &summary, skb);
}
if (test_bit(RXRPC_CALL_TX_LAST, &call->flags) &&
call->acks_nr_sacks == call->tx_top - hard_ack &&
rxrpc_is_client_call(call))
rxrpc_propose_ping(call, summary.ack_serial,
rxrpc_propose_ack_ping_for_lost_reply);
/* Drive the congestion management algorithm first and then RACK-TLP as
* the latter depends on the state/change in state in the former.
*/
rxrpc_congestion_management(call, &summary);
rxrpc_rack_detect_loss_and_arm_timer(call, &summary);
rxrpc_tlp_process_ack(call, &summary);
if (call->tlp_serial && after_eq(summary.acked_serial, call->tlp_serial))
call->tlp_serial = 0;
send_response:
if (summary.ack_reason == RXRPC_ACK_PING)
rxrpc_send_ACK(call, RXRPC_ACK_PING_RESPONSE, summary.ack_serial,
rxrpc_propose_ack_respond_to_ping);
else if (sp->hdr.flags & RXRPC_REQUEST_ACK)
rxrpc_send_ACK(call, RXRPC_ACK_REQUESTED, summary.ack_serial,
rxrpc_propose_ack_respond_to_ack);
}
/*
* Process an ACKALL packet.
*/
static void rxrpc_input_ackall(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_ack_summary summary = { 0 };
if (rxrpc_rotate_tx_window(call, call->tx_top, &summary))
rxrpc_end_tx_phase(call, false, rxrpc_eproto_unexpected_ackall);
}
/*
* Process an ABORT packet directed at a call.
*/
static void rxrpc_input_abort(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
trace_rxrpc_rx_abort(call, sp->hdr.serial, skb->priority);
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
skb->priority, -ECONNABORTED);
}
/*
* Process an incoming call packet.
*/
void rxrpc_input_call_packet(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
unsigned long timo;
_enter("%p,%p", call, skb);
if (sp->hdr.serviceId != call->dest_srx.srx_service)
call->dest_srx.srx_service = sp->hdr.serviceId;
if ((int)sp->hdr.serial - (int)call->rx_serial > 0)
call->rx_serial = sp->hdr.serial;
if (!test_bit(RXRPC_CALL_RX_HEARD, &call->flags))
set_bit(RXRPC_CALL_RX_HEARD, &call->flags);
timo = READ_ONCE(call->next_rx_timo);
if (timo) {
ktime_t delay = ms_to_ktime(timo);
call->expect_rx_by = ktime_add(ktime_get_real(), delay);
trace_rxrpc_timer_set(call, delay, rxrpc_timer_trace_expect_rx);
}
switch (sp->hdr.type) {
case RXRPC_PACKET_TYPE_DATA:
return rxrpc_input_data(call, skb);
case RXRPC_PACKET_TYPE_ACK:
return rxrpc_input_ack(call, skb);
case RXRPC_PACKET_TYPE_BUSY:
/* Just ignore BUSY packets from the server; the retry and
* lifespan timers will take care of business. BUSY packets
* from the client don't make sense.
*/
return;
case RXRPC_PACKET_TYPE_ABORT:
return rxrpc_input_abort(call, skb);
case RXRPC_PACKET_TYPE_ACKALL:
return rxrpc_input_ackall(call, skb);
default:
break;
}
}
/*
* Handle a new service call on a channel implicitly completing the preceding
* call on that channel. This does not apply to client conns.
*
* TODO: If callNumber > call_id + 1, renegotiate security.
*/
void rxrpc_implicit_end_call(struct rxrpc_call *call, struct sk_buff *skb)
{
switch (__rxrpc_call_state(call)) {
case RXRPC_CALL_SERVER_AWAIT_ACK:
rxrpc_call_completed(call);
fallthrough;
case RXRPC_CALL_COMPLETE:
break;
default:
rxrpc_abort_call(call, 0, RX_CALL_DEAD, -ESHUTDOWN,
rxrpc_eproto_improper_term);
trace_rxrpc_improper_term(call);
break;
}
rxrpc_input_call_event(call);
}