linux-next/kernel/time/timekeeping.c
Thomas Gleixner 76031d9536 clocksource: Make negative motion detection more robust
Guenter reported boot stalls on a emulated ARM 32-bit platform, which has a
24-bit wide clocksource.

It turns out that the calculated maximal idle time, which limits idle
sleeps to prevent clocksource wrap arounds, is close to the point where the
negative motion detection triggers.

  max_idle_ns:                    597268854 ns
  negative motion tripping point: 671088640 ns

If the idle wakeup is delayed beyond that point, the clocksource
advances far enough to trigger the negative motion detection. This
prevents the clock to advance and in the worst case the system stalls
completely if the consecutive sleeps based on the stale clock are
delayed as well.

Cure this by calculating a more robust cut-off value for negative motion,
which covers 87.5% of the actual clocksource counter width. Compare the
delta against this value to catch negative motion. This is specifically for
clock sources with a small counter width as their wrap around time is close
to the half counter width. For clock sources with wide counters this is not
a problem because the maximum idle time is far from the half counter width
due to the math overflow protection constraints.

For the case at hand this results in a tripping point of 1174405120ns.

Note, that this cannot prevent issues when the delay exceeds the 87.5%
margin, but that's not different from the previous unchecked version which
allowed arbitrary time jumps.

Systems with small counter width are prone to invalid results, but this
problem is unlikely to be seen on real hardware. If such a system
completely stalls for more than half a second, then there are other more
urgent problems than the counter wrapping around.

Fixes: c163e40af9b2 ("timekeeping: Always check for negative motion")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/all/8734j5ul4x.ffs@tglx
Closes: https://lore.kernel.org/all/387b120b-d68a-45e8-b6ab-768cd95d11c2@roeck-us.net
2024-12-05 16:03:24 +01:00

2637 lines
76 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Kernel timekeeping code and accessor functions. Based on code from
* timer.c, moved in commit 8524070b7982.
*/
#include <linux/timekeeper_internal.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/clock.h>
#include <linux/syscore_ops.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/tick.h>
#include <linux/stop_machine.h>
#include <linux/pvclock_gtod.h>
#include <linux/compiler.h>
#include <linux/audit.h>
#include <linux/random.h>
#include "tick-internal.h"
#include "ntp_internal.h"
#include "timekeeping_internal.h"
#define TK_CLEAR_NTP (1 << 0)
#define TK_CLOCK_WAS_SET (1 << 1)
#define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
enum timekeeping_adv_mode {
/* Update timekeeper when a tick has passed */
TK_ADV_TICK,
/* Update timekeeper on a direct frequency change */
TK_ADV_FREQ
};
/*
* The most important data for readout fits into a single 64 byte
* cache line.
*/
struct tk_data {
seqcount_raw_spinlock_t seq;
struct timekeeper timekeeper;
struct timekeeper shadow_timekeeper;
raw_spinlock_t lock;
} ____cacheline_aligned;
static struct tk_data tk_core;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
/**
* struct tk_fast - NMI safe timekeeper
* @seq: Sequence counter for protecting updates. The lowest bit
* is the index for the tk_read_base array
* @base: tk_read_base array. Access is indexed by the lowest bit of
* @seq.
*
* See @update_fast_timekeeper() below.
*/
struct tk_fast {
seqcount_latch_t seq;
struct tk_read_base base[2];
};
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;
static u64 dummy_clock_read(struct clocksource *cs)
{
if (timekeeping_suspended)
return cycles_at_suspend;
return local_clock();
}
static struct clocksource dummy_clock = {
.read = dummy_clock_read,
};
/*
* Boot time initialization which allows local_clock() to be utilized
* during early boot when clocksources are not available. local_clock()
* returns nanoseconds already so no conversion is required, hence mult=1
* and shift=0. When the first proper clocksource is installed then
* the fast time keepers are updated with the correct values.
*/
#define FAST_TK_INIT \
{ \
.clock = &dummy_clock, \
.mask = CLOCKSOURCE_MASK(64), \
.mult = 1, \
.shift = 0, \
}
static struct tk_fast tk_fast_mono ____cacheline_aligned = {
.seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
.base[0] = FAST_TK_INIT,
.base[1] = FAST_TK_INIT,
};
static struct tk_fast tk_fast_raw ____cacheline_aligned = {
.seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
.base[0] = FAST_TK_INIT,
.base[1] = FAST_TK_INIT,
};
unsigned long timekeeper_lock_irqsave(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&tk_core.lock, flags);
return flags;
}
void timekeeper_unlock_irqrestore(unsigned long flags)
{
raw_spin_unlock_irqrestore(&tk_core.lock, flags);
}
/*
* Multigrain timestamps require tracking the latest fine-grained timestamp
* that has been issued, and never returning a coarse-grained timestamp that is
* earlier than that value.
*
* mg_floor represents the latest fine-grained time that has been handed out as
* a file timestamp on the system. This is tracked as a monotonic ktime_t, and
* converted to a realtime clock value on an as-needed basis.
*
* Maintaining mg_floor ensures the multigrain interfaces never issue a
* timestamp earlier than one that has been previously issued.
*
* The exception to this rule is when there is a backward realtime clock jump. If
* such an event occurs, a timestamp can appear to be earlier than a previous one.
*/
static __cacheline_aligned_in_smp atomic64_t mg_floor;
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
tk->xtime_sec++;
}
while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
tk->raw_sec++;
}
}
static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
{
struct timespec64 ts;
ts.tv_sec = tk->xtime_sec;
ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
return ts;
}
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec = ts->tv_sec;
tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
}
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec += ts->tv_sec;
tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
tk_normalize_xtime(tk);
}
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
{
struct timespec64 tmp;
/*
* Verify consistency of: offset_real = -wall_to_monotonic
* before modifying anything
*/
set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
-tk->wall_to_monotonic.tv_nsec);
WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
tk->wall_to_monotonic = wtm;
set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
/* Paired with READ_ONCE() in ktime_mono_to_any() */
WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
}
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
/* Paired with READ_ONCE() in ktime_mono_to_any() */
WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
/*
* Timespec representation for VDSO update to avoid 64bit division
* on every update.
*/
tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
}
/*
* tk_clock_read - atomic clocksource read() helper
*
* This helper is necessary to use in the read paths because, while the
* seqcount ensures we don't return a bad value while structures are updated,
* it doesn't protect from potential crashes. There is the possibility that
* the tkr's clocksource may change between the read reference, and the
* clock reference passed to the read function. This can cause crashes if
* the wrong clocksource is passed to the wrong read function.
* This isn't necessary to use when holding the tk_core.lock or doing
* a read of the fast-timekeeper tkrs (which is protected by its own locking
* and update logic).
*/
static inline u64 tk_clock_read(const struct tk_read_base *tkr)
{
struct clocksource *clock = READ_ONCE(tkr->clock);
return clock->read(clock);
}
/**
* tk_setup_internals - Set up internals to use clocksource clock.
*
* @tk: The target timekeeper to setup.
* @clock: Pointer to clocksource.
*
* Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
* pair and interval request.
*
* Unless you're the timekeeping code, you should not be using this!
*/
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
{
u64 interval;
u64 tmp, ntpinterval;
struct clocksource *old_clock;
++tk->cs_was_changed_seq;
old_clock = tk->tkr_mono.clock;
tk->tkr_mono.clock = clock;
tk->tkr_mono.mask = clock->mask;
tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
tk->tkr_raw.clock = clock;
tk->tkr_raw.mask = clock->mask;
tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
/* Do the ns -> cycle conversion first, using original mult */
tmp = NTP_INTERVAL_LENGTH;
tmp <<= clock->shift;
ntpinterval = tmp;
tmp += clock->mult/2;
do_div(tmp, clock->mult);
if (tmp == 0)
tmp = 1;
interval = (u64) tmp;
tk->cycle_interval = interval;
/* Go back from cycles -> shifted ns */
tk->xtime_interval = interval * clock->mult;
tk->xtime_remainder = ntpinterval - tk->xtime_interval;
tk->raw_interval = interval * clock->mult;
/* if changing clocks, convert xtime_nsec shift units */
if (old_clock) {
int shift_change = clock->shift - old_clock->shift;
if (shift_change < 0) {
tk->tkr_mono.xtime_nsec >>= -shift_change;
tk->tkr_raw.xtime_nsec >>= -shift_change;
} else {
tk->tkr_mono.xtime_nsec <<= shift_change;
tk->tkr_raw.xtime_nsec <<= shift_change;
}
}
tk->tkr_mono.shift = clock->shift;
tk->tkr_raw.shift = clock->shift;
tk->ntp_error = 0;
tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
/*
* The timekeeper keeps its own mult values for the currently
* active clocksource. These value will be adjusted via NTP
* to counteract clock drifting.
*/
tk->tkr_mono.mult = clock->mult;
tk->tkr_raw.mult = clock->mult;
tk->ntp_err_mult = 0;
tk->skip_second_overflow = 0;
}
/* Timekeeper helper functions. */
static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
{
return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
}
static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
{
/* Calculate the delta since the last update_wall_time() */
u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
/*
* This detects both negative motion and the case where the delta
* overflows the multiplication with tkr->mult.
*/
if (unlikely(delta > tkr->clock->max_cycles)) {
/*
* Handle clocksource inconsistency between CPUs to prevent
* time from going backwards by checking for the MSB of the
* mask being set in the delta.
*/
if (delta & ~(mask >> 1))
return tkr->xtime_nsec >> tkr->shift;
return delta_to_ns_safe(tkr, delta);
}
return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
}
static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
{
return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
}
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tkr: Timekeeping readout base from which we take the update
* @tkf: Pointer to NMI safe timekeeper
*
* We want to use this from any context including NMI and tracing /
* instrumenting the timekeeping code itself.
*
* Employ the latch technique; see @write_seqcount_latch.
*
* So if a NMI hits the update of base[0] then it will use base[1]
* which is still consistent. In the worst case this can result is a
* slightly wrong timestamp (a few nanoseconds). See
* @ktime_get_mono_fast_ns.
*/
static void update_fast_timekeeper(const struct tk_read_base *tkr,
struct tk_fast *tkf)
{
struct tk_read_base *base = tkf->base;
/* Force readers off to base[1] */
write_seqcount_latch_begin(&tkf->seq);
/* Update base[0] */
memcpy(base, tkr, sizeof(*base));
/* Force readers back to base[0] */
write_seqcount_latch(&tkf->seq);
/* Update base[1] */
memcpy(base + 1, base, sizeof(*base));
write_seqcount_latch_end(&tkf->seq);
}
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
{
struct tk_read_base *tkr;
unsigned int seq;
u64 now;
do {
seq = read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(tkr->base);
now += timekeeping_get_ns(tkr);
} while (read_seqcount_latch_retry(&tkf->seq, seq));
return now;
}
/**
* ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
*
* This timestamp is not guaranteed to be monotonic across an update.
* The timestamp is calculated by:
*
* now = base_mono + clock_delta * slope
*
* So if the update lowers the slope, readers who are forced to the
* not yet updated second array are still using the old steeper slope.
*
* tmono
* ^
* | o n
* | o n
* | u
* | o
* |o
* |12345678---> reader order
*
* o = old slope
* u = update
* n = new slope
*
* So reader 6 will observe time going backwards versus reader 5.
*
* While other CPUs are likely to be able to observe that, the only way
* for a CPU local observation is when an NMI hits in the middle of
* the update. Timestamps taken from that NMI context might be ahead
* of the following timestamps. Callers need to be aware of that and
* deal with it.
*/
u64 notrace ktime_get_mono_fast_ns(void)
{
return __ktime_get_fast_ns(&tk_fast_mono);
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
/**
* ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
*
* Contrary to ktime_get_mono_fast_ns() this is always correct because the
* conversion factor is not affected by NTP/PTP correction.
*/
u64 notrace ktime_get_raw_fast_ns(void)
{
return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
/**
* ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
*
* To keep it NMI safe since we're accessing from tracing, we're not using a
* separate timekeeper with updates to monotonic clock and boot offset
* protected with seqcounts. This has the following minor side effects:
*
* (1) Its possible that a timestamp be taken after the boot offset is updated
* but before the timekeeper is updated. If this happens, the new boot offset
* is added to the old timekeeping making the clock appear to update slightly
* earlier:
* CPU 0 CPU 1
* timekeeping_inject_sleeptime64()
* __timekeeping_inject_sleeptime(tk, delta);
* timestamp();
* timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
*
* (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
* partially updated. Since the tk->offs_boot update is a rare event, this
* should be a rare occurrence which postprocessing should be able to handle.
*
* The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
* apply as well.
*/
u64 notrace ktime_get_boot_fast_ns(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
/**
* ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
*
* The same limitations as described for ktime_get_boot_fast_ns() apply. The
* mono time and the TAI offset are not read atomically which may yield wrong
* readouts. However, an update of the TAI offset is an rare event e.g., caused
* by settime or adjtimex with an offset. The user of this function has to deal
* with the possibility of wrong timestamps in post processing.
*/
u64 notrace ktime_get_tai_fast_ns(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
}
EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
{
struct tk_read_base *tkr;
u64 basem, baser, delta;
unsigned int seq;
do {
seq = raw_read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
basem = ktime_to_ns(tkr->base);
baser = ktime_to_ns(tkr->base_real);
delta = timekeeping_get_ns(tkr);
} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
if (mono)
*mono = basem + delta;
return baser + delta;
}
/**
* ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
*
* See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
*/
u64 ktime_get_real_fast_ns(void)
{
return __ktime_get_real_fast(&tk_fast_mono, NULL);
}
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
/**
* ktime_get_fast_timestamps: - NMI safe timestamps
* @snapshot: Pointer to timestamp storage
*
* Stores clock monotonic, boottime and realtime timestamps.
*
* Boot time is a racy access on 32bit systems if the sleep time injection
* happens late during resume and not in timekeeping_resume(). That could
* be avoided by expanding struct tk_read_base with boot offset for 32bit
* and adding more overhead to the update. As this is a hard to observe
* once per resume event which can be filtered with reasonable effort using
* the accurate mono/real timestamps, it's probably not worth the trouble.
*
* Aside of that it might be possible on 32 and 64 bit to observe the
* following when the sleep time injection happens late:
*
* CPU 0 CPU 1
* timekeeping_resume()
* ktime_get_fast_timestamps()
* mono, real = __ktime_get_real_fast()
* inject_sleep_time()
* update boot offset
* boot = mono + bootoffset;
*
* That means that boot time already has the sleep time adjustment, but
* real time does not. On the next readout both are in sync again.
*
* Preventing this for 64bit is not really feasible without destroying the
* careful cache layout of the timekeeper because the sequence count and
* struct tk_read_base would then need two cache lines instead of one.
*
* Access to the time keeper clock source is disabled across the innermost
* steps of suspend/resume. The accessors still work, but the timestamps
* are frozen until time keeping is resumed which happens very early.
*
* For regular suspend/resume there is no observable difference vs. sched
* clock, but it might affect some of the nasty low level debug printks.
*
* OTOH, access to sched clock is not guaranteed across suspend/resume on
* all systems either so it depends on the hardware in use.
*
* If that turns out to be a real problem then this could be mitigated by
* using sched clock in a similar way as during early boot. But it's not as
* trivial as on early boot because it needs some careful protection
* against the clock monotonic timestamp jumping backwards on resume.
*/
void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
{
struct timekeeper *tk = &tk_core.timekeeper;
snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
}
/**
* halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
* @tk: Timekeeper to snapshot.
*
* It generally is unsafe to access the clocksource after timekeeping has been
* suspended, so take a snapshot of the readout base of @tk and use it as the
* fast timekeeper's readout base while suspended. It will return the same
* number of cycles every time until timekeeping is resumed at which time the
* proper readout base for the fast timekeeper will be restored automatically.
*/
static void halt_fast_timekeeper(const struct timekeeper *tk)
{
static struct tk_read_base tkr_dummy;
const struct tk_read_base *tkr = &tk->tkr_mono;
memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
cycles_at_suspend = tk_clock_read(tkr);
tkr_dummy.clock = &dummy_clock;
tkr_dummy.base_real = tkr->base + tk->offs_real;
update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
tkr = &tk->tkr_raw;
memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
tkr_dummy.clock = &dummy_clock;
update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
}
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
{
raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
}
/**
* pvclock_gtod_register_notifier - register a pvclock timedata update listener
* @nb: Pointer to the notifier block to register
*/
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
struct timekeeper *tk = &tk_core.timekeeper;
int ret;
guard(raw_spinlock_irqsave)(&tk_core.lock);
ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
update_pvclock_gtod(tk, true);
return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
/**
* pvclock_gtod_unregister_notifier - unregister a pvclock
* timedata update listener
* @nb: Pointer to the notifier block to unregister
*/
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
guard(raw_spinlock_irqsave)(&tk_core.lock);
return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
/*
* tk_update_leap_state - helper to update the next_leap_ktime
*/
static inline void tk_update_leap_state(struct timekeeper *tk)
{
tk->next_leap_ktime = ntp_get_next_leap();
if (tk->next_leap_ktime != KTIME_MAX)
/* Convert to monotonic time */
tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}
/*
* Leap state update for both shadow and the real timekeeper
* Separate to spare a full memcpy() of the timekeeper.
*/
static void tk_update_leap_state_all(struct tk_data *tkd)
{
write_seqcount_begin(&tkd->seq);
tk_update_leap_state(&tkd->shadow_timekeeper);
tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
write_seqcount_end(&tkd->seq);
}
/*
* Update the ktime_t based scalar nsec members of the timekeeper
*/
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
u64 seconds;
u32 nsec;
/*
* The xtime based monotonic readout is:
* nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
* The ktime based monotonic readout is:
* nsec = base_mono + now();
* ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
*/
seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
nsec = (u32) tk->wall_to_monotonic.tv_nsec;
tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
/*
* The sum of the nanoseconds portions of xtime and
* wall_to_monotonic can be greater/equal one second. Take
* this into account before updating tk->ktime_sec.
*/
nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
if (nsec >= NSEC_PER_SEC)
seconds++;
tk->ktime_sec = seconds;
/* Update the monotonic raw base */
tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
}
/*
* Restore the shadow timekeeper from the real timekeeper.
*/
static void timekeeping_restore_shadow(struct tk_data *tkd)
{
lockdep_assert_held(&tkd->lock);
memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
}
static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
{
struct timekeeper *tk = &tk_core.shadow_timekeeper;
lockdep_assert_held(&tkd->lock);
/*
* Block out readers before running the updates below because that
* updates VDSO and other time related infrastructure. Not blocking
* the readers might let a reader see time going backwards when
* reading from the VDSO after the VDSO update and then reading in
* the kernel from the timekeeper before that got updated.
*/
write_seqcount_begin(&tkd->seq);
if (action & TK_CLEAR_NTP) {
tk->ntp_error = 0;
ntp_clear();
}
tk_update_leap_state(tk);
tk_update_ktime_data(tk);
update_vsyscall(tk);
update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
if (action & TK_CLOCK_WAS_SET)
tk->clock_was_set_seq++;
/*
* Update the real timekeeper.
*
* We could avoid this memcpy() by switching pointers, but that has
* the downside that the reader side does not longer benefit from
* the cacheline optimized data layout of the timekeeper and requires
* another indirection.
*/
memcpy(&tkd->timekeeper, tk, sizeof(*tk));
write_seqcount_end(&tkd->seq);
}
/**
* timekeeping_forward_now - update clock to the current time
* @tk: Pointer to the timekeeper to update
*
* Forward the current clock to update its state since the last call to
* update_wall_time(). This is useful before significant clock changes,
* as it avoids having to deal with this time offset explicitly.
*/
static void timekeeping_forward_now(struct timekeeper *tk)
{
u64 cycle_now, delta;
cycle_now = tk_clock_read(&tk->tkr_mono);
delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
tk->tkr_mono.clock->max_raw_delta);
tk->tkr_mono.cycle_last = cycle_now;
tk->tkr_raw.cycle_last = cycle_now;
while (delta > 0) {
u64 max = tk->tkr_mono.clock->max_cycles;
u64 incr = delta < max ? delta : max;
tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
tk_normalize_xtime(tk);
delta -= incr;
}
}
/**
* ktime_get_real_ts64 - Returns the time of day in a timespec64.
* @ts: pointer to the timespec to be set
*
* Returns the time of day in a timespec64 (WARN if suspended).
*/
void ktime_get_real_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(ktime_get_real_ts64);
ktime_t ktime_get(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_mono.base;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);
u32 ktime_get_resolution_ns(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u32 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
} while (read_seqcount_retry(&tk_core.seq, seq));
return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
static ktime_t *offsets[TK_OFFS_MAX] = {
[TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
[TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
[TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
};
ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base, *offset = offsets[offs];
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = ktime_add(tk->tkr_mono.base, *offset);
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base, *offset = offsets[offs];
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = ktime_add(tk->tkr_mono.base, *offset);
nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
/**
* ktime_mono_to_any() - convert monotonic time to any other time
* @tmono: time to convert.
* @offs: which offset to use
*/
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
ktime_t *offset = offsets[offs];
unsigned int seq;
ktime_t tconv;
if (IS_ENABLED(CONFIG_64BIT)) {
/*
* Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
* tk_update_sleep_time().
*/
return ktime_add(tmono, READ_ONCE(*offset));
}
do {
seq = read_seqcount_begin(&tk_core.seq);
tconv = ktime_add(tmono, *offset);
} while (read_seqcount_retry(&tk_core.seq, seq));
return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);
/**
* ktime_get_raw - Returns the raw monotonic time in ktime_t format
*/
ktime_t ktime_get_raw(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_raw.base;
nsecs = timekeeping_get_ns(&tk->tkr_raw);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);
/**
* ktime_get_ts64 - get the monotonic clock in timespec64 format
* @ts: pointer to timespec variable
*
* The function calculates the monotonic clock from the realtime
* clock and the wall_to_monotonic offset and stores the result
* in normalized timespec64 format in the variable pointed to by @ts.
*/
void ktime_get_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 tomono;
unsigned int seq;
u64 nsec;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsec = timekeeping_get_ns(&tk->tkr_mono);
tomono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_sec += tomono.tv_sec;
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts64);
/**
* ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
*
* Returns the seconds portion of CLOCK_MONOTONIC with a single non
* serialized read. tk->ktime_sec is of type 'unsigned long' so this
* works on both 32 and 64 bit systems. On 32 bit systems the readout
* covers ~136 years of uptime which should be enough to prevent
* premature wrap arounds.
*/
time64_t ktime_get_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
WARN_ON(timekeeping_suspended);
return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);
/**
* ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
*
* Returns the wall clock seconds since 1970.
*
* For 64bit systems the fast access to tk->xtime_sec is preserved. On
* 32bit systems the access must be protected with the sequence
* counter to provide "atomic" access to the 64bit tk->xtime_sec
* value.
*/
time64_t ktime_get_real_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
time64_t seconds;
unsigned int seq;
if (IS_ENABLED(CONFIG_64BIT))
return tk->xtime_sec;
do {
seq = read_seqcount_begin(&tk_core.seq);
seconds = tk->xtime_sec;
} while (read_seqcount_retry(&tk_core.seq, seq));
return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
/**
* __ktime_get_real_seconds - The same as ktime_get_real_seconds
* but without the sequence counter protect. This internal function
* is called just when timekeeping lock is already held.
*/
noinstr time64_t __ktime_get_real_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return tk->xtime_sec;
}
/**
* ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
* @systime_snapshot: pointer to struct receiving the system time snapshot
*/
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base_raw;
ktime_t base_real;
ktime_t base_boot;
u64 nsec_raw;
u64 nsec_real;
u64 now;
WARN_ON_ONCE(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_clock_read(&tk->tkr_mono);
systime_snapshot->cs_id = tk->tkr_mono.clock->id;
systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
base_boot = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_boot);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
} while (read_seqcount_retry(&tk_core.seq, seq));
systime_snapshot->cycles = now;
systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
u64 tmp, rem;
tmp = div64_u64_rem(*base, div, &rem);
if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
return -EOVERFLOW;
tmp *= mult;
rem = div64_u64(rem * mult, div);
*base = tmp + rem;
return 0;
}
/**
* adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
* @history: Snapshot representing start of history
* @partial_history_cycles: Cycle offset into history (fractional part)
* @total_history_cycles: Total history length in cycles
* @discontinuity: True indicates clock was set on history period
* @ts: Cross timestamp that should be adjusted using
* partial/total ratio
*
* Helper function used by get_device_system_crosststamp() to correct the
* crosstimestamp corresponding to the start of the current interval to the
* system counter value (timestamp point) provided by the driver. The
* total_history_* quantities are the total history starting at the provided
* reference point and ending at the start of the current interval. The cycle
* count between the driver timestamp point and the start of the current
* interval is partial_history_cycles.
*/
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
u64 partial_history_cycles,
u64 total_history_cycles,
bool discontinuity,
struct system_device_crosststamp *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
u64 corr_raw, corr_real;
bool interp_forward;
int ret;
if (total_history_cycles == 0 || partial_history_cycles == 0)
return 0;
/* Interpolate shortest distance from beginning or end of history */
interp_forward = partial_history_cycles > total_history_cycles / 2;
partial_history_cycles = interp_forward ?
total_history_cycles - partial_history_cycles :
partial_history_cycles;
/*
* Scale the monotonic raw time delta by:
* partial_history_cycles / total_history_cycles
*/
corr_raw = (u64)ktime_to_ns(
ktime_sub(ts->sys_monoraw, history->raw));
ret = scale64_check_overflow(partial_history_cycles,
total_history_cycles, &corr_raw);
if (ret)
return ret;
/*
* If there is a discontinuity in the history, scale monotonic raw
* correction by:
* mult(real)/mult(raw) yielding the realtime correction
* Otherwise, calculate the realtime correction similar to monotonic
* raw calculation
*/
if (discontinuity) {
corr_real = mul_u64_u32_div
(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
} else {
corr_real = (u64)ktime_to_ns(
ktime_sub(ts->sys_realtime, history->real));
ret = scale64_check_overflow(partial_history_cycles,
total_history_cycles, &corr_real);
if (ret)
return ret;
}
/* Fixup monotonic raw and real time time values */
if (interp_forward) {
ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
ts->sys_realtime = ktime_add_ns(history->real, corr_real);
} else {
ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
}
return 0;
}
/*
* timestamp_in_interval - true if ts is chronologically in [start, end]
*
* True if ts occurs chronologically at or after start, and before or at end.
*/
static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
{
if (ts >= start && ts <= end)
return true;
if (start > end && (ts >= start || ts <= end))
return true;
return false;
}
static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
{
u64 rem, res;
if (!numerator || !denominator)
return false;
res = div64_u64_rem(*val, denominator, &rem) * numerator;
*val = res + div_u64(rem * numerator, denominator);
return true;
}
static bool convert_base_to_cs(struct system_counterval_t *scv)
{
struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
struct clocksource_base *base;
u32 num, den;
/* The timestamp was taken from the time keeper clock source */
if (cs->id == scv->cs_id)
return true;
/*
* Check whether cs_id matches the base clock. Prevent the compiler from
* re-evaluating @base as the clocksource might change concurrently.
*/
base = READ_ONCE(cs->base);
if (!base || base->id != scv->cs_id)
return false;
num = scv->use_nsecs ? cs->freq_khz : base->numerator;
den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
if (!convert_clock(&scv->cycles, num, den))
return false;
scv->cycles += base->offset;
return true;
}
static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
{
struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
struct clocksource_base *base;
/*
* Check whether base_id matches the base clock. Prevent the compiler from
* re-evaluating @base as the clocksource might change concurrently.
*/
base = READ_ONCE(cs->base);
if (!base || base->id != base_id)
return false;
*cycles -= base->offset;
if (!convert_clock(cycles, base->denominator, base->numerator))
return false;
return true;
}
static bool convert_ns_to_cs(u64 *delta)
{
struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
return false;
*delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
return true;
}
/**
* ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
* @treal: CLOCK_REALTIME timestamp to convert
* @base_id: base clocksource id
* @cycles: pointer to store the converted base clock timestamp
*
* Converts a supplied, future realtime clock value to the corresponding base clock value.
*
* Return: true if the conversion is successful, false otherwise.
*/
bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 delta;
do {
seq = read_seqcount_begin(&tk_core.seq);
if ((u64)treal < tk->tkr_mono.base_real)
return false;
delta = (u64)treal - tk->tkr_mono.base_real;
if (!convert_ns_to_cs(&delta))
return false;
*cycles = tk->tkr_mono.cycle_last + delta;
if (!convert_cs_to_base(cycles, base_id))
return false;
} while (read_seqcount_retry(&tk_core.seq, seq));
return true;
}
EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
/**
* get_device_system_crosststamp - Synchronously capture system/device timestamp
* @get_time_fn: Callback to get simultaneous device time and
* system counter from the device driver
* @ctx: Context passed to get_time_fn()
* @history_begin: Historical reference point used to interpolate system
* time when counter provided by the driver is before the current interval
* @xtstamp: Receives simultaneously captured system and device time
*
* Reads a timestamp from a device and correlates it to system time
*/
int get_device_system_crosststamp(int (*get_time_fn)
(ktime_t *device_time,
struct system_counterval_t *sys_counterval,
void *ctx),
void *ctx,
struct system_time_snapshot *history_begin,
struct system_device_crosststamp *xtstamp)
{
struct system_counterval_t system_counterval;
struct timekeeper *tk = &tk_core.timekeeper;
u64 cycles, now, interval_start;
unsigned int clock_was_set_seq = 0;
ktime_t base_real, base_raw;
u64 nsec_real, nsec_raw;
u8 cs_was_changed_seq;
unsigned int seq;
bool do_interp;
int ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
/*
* Try to synchronously capture device time and a system
* counter value calling back into the device driver
*/
ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
if (ret)
return ret;
/*
* Verify that the clocksource ID associated with the captured
* system counter value is the same as for the currently
* installed timekeeper clocksource
*/
if (system_counterval.cs_id == CSID_GENERIC ||
!convert_base_to_cs(&system_counterval))
return -ENODEV;
cycles = system_counterval.cycles;
/*
* Check whether the system counter value provided by the
* device driver is on the current timekeeping interval.
*/
now = tk_clock_read(&tk->tkr_mono);
interval_start = tk->tkr_mono.cycle_last;
if (!timestamp_in_interval(interval_start, now, cycles)) {
clock_was_set_seq = tk->clock_was_set_seq;
cs_was_changed_seq = tk->cs_was_changed_seq;
cycles = interval_start;
do_interp = true;
} else {
do_interp = false;
}
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
} while (read_seqcount_retry(&tk_core.seq, seq));
xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
/*
* Interpolate if necessary, adjusting back from the start of the
* current interval
*/
if (do_interp) {
u64 partial_history_cycles, total_history_cycles;
bool discontinuity;
/*
* Check that the counter value is not before the provided
* history reference and that the history doesn't cross a
* clocksource change
*/
if (!history_begin ||
!timestamp_in_interval(history_begin->cycles,
cycles, system_counterval.cycles) ||
history_begin->cs_was_changed_seq != cs_was_changed_seq)
return -EINVAL;
partial_history_cycles = cycles - system_counterval.cycles;
total_history_cycles = cycles - history_begin->cycles;
discontinuity =
history_begin->clock_was_set_seq != clock_was_set_seq;
ret = adjust_historical_crosststamp(history_begin,
partial_history_cycles,
total_history_cycles,
discontinuity, xtstamp);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
/**
* timekeeping_clocksource_has_base - Check whether the current clocksource
* is based on given a base clock
* @id: base clocksource ID
*
* Note: The return value is a snapshot which can become invalid right
* after the function returns.
*
* Return: true if the timekeeper clocksource has a base clock with @id,
* false otherwise
*/
bool timekeeping_clocksource_has_base(enum clocksource_ids id)
{
/*
* This is a snapshot, so no point in using the sequence
* count. Just prevent the compiler from re-evaluating @base as the
* clocksource might change concurrently.
*/
struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
return base ? base->id == id : false;
}
EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
/**
* do_settimeofday64 - Sets the time of day.
* @ts: pointer to the timespec64 variable containing the new time
*
* Sets the time of day to the new time and update NTP and notify hrtimers
*/
int do_settimeofday64(const struct timespec64 *ts)
{
struct timespec64 ts_delta, xt;
if (!timespec64_valid_settod(ts))
return -EINVAL;
scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
struct timekeeper *tks = &tk_core.shadow_timekeeper;
timekeeping_forward_now(tks);
xt = tk_xtime(tks);
ts_delta = timespec64_sub(*ts, xt);
if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
timekeeping_restore_shadow(&tk_core);
return -EINVAL;
}
tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
tk_set_xtime(tks, ts);
timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
}
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL);
audit_tk_injoffset(ts_delta);
add_device_randomness(ts, sizeof(*ts));
return 0;
}
EXPORT_SYMBOL(do_settimeofday64);
/**
* timekeeping_inject_offset - Adds or subtracts from the current time.
* @ts: Pointer to the timespec variable containing the offset
*
* Adds or subtracts an offset value from the current time.
*/
static int timekeeping_inject_offset(const struct timespec64 *ts)
{
if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
struct timekeeper *tks = &tk_core.shadow_timekeeper;
struct timespec64 tmp;
timekeeping_forward_now(tks);
/* Make sure the proposed value is valid */
tmp = timespec64_add(tk_xtime(tks), *ts);
if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
!timespec64_valid_settod(&tmp)) {
timekeeping_restore_shadow(&tk_core);
return -EINVAL;
}
tk_xtime_add(tks, ts);
tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
}
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL);
return 0;
}
/*
* Indicates if there is an offset between the system clock and the hardware
* clock/persistent clock/rtc.
*/
int persistent_clock_is_local;
/*
* Adjust the time obtained from the CMOS to be UTC time instead of
* local time.
*
* This is ugly, but preferable to the alternatives. Otherwise we
* would either need to write a program to do it in /etc/rc (and risk
* confusion if the program gets run more than once; it would also be
* hard to make the program warp the clock precisely n hours) or
* compile in the timezone information into the kernel. Bad, bad....
*
* - TYT, 1992-01-01
*
* The best thing to do is to keep the CMOS clock in universal time (UTC)
* as real UNIX machines always do it. This avoids all headaches about
* daylight saving times and warping kernel clocks.
*/
void timekeeping_warp_clock(void)
{
if (sys_tz.tz_minuteswest != 0) {
struct timespec64 adjust;
persistent_clock_is_local = 1;
adjust.tv_sec = sys_tz.tz_minuteswest * 60;
adjust.tv_nsec = 0;
timekeeping_inject_offset(&adjust);
}
}
/*
* __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
*/
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
{
tk->tai_offset = tai_offset;
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
}
/*
* change_clocksource - Swaps clocksources if a new one is available
*
* Accumulates current time interval and initializes new clocksource
*/
static int change_clocksource(void *data)
{
struct clocksource *new = data, *old = NULL;
/*
* If the clocksource is in a module, get a module reference.
* Succeeds for built-in code (owner == NULL) as well. Abort if the
* reference can't be acquired.
*/
if (!try_module_get(new->owner))
return 0;
/* Abort if the device can't be enabled */
if (new->enable && new->enable(new) != 0) {
module_put(new->owner);
return 0;
}
scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
struct timekeeper *tks = &tk_core.shadow_timekeeper;
timekeeping_forward_now(tks);
old = tks->tkr_mono.clock;
tk_setup_internals(tks, new);
timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
}
if (old) {
if (old->disable)
old->disable(old);
module_put(old->owner);
}
return 0;
}
/**
* timekeeping_notify - Install a new clock source
* @clock: pointer to the clock source
*
* This function is called from clocksource.c after a new, better clock
* source has been registered. The caller holds the clocksource_mutex.
*/
int timekeeping_notify(struct clocksource *clock)
{
struct timekeeper *tk = &tk_core.timekeeper;
if (tk->tkr_mono.clock == clock)
return 0;
stop_machine(change_clocksource, clock, NULL);
tick_clock_notify();
return tk->tkr_mono.clock == clock ? 0 : -1;
}
/**
* ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
* @ts: pointer to the timespec64 to be set
*
* Returns the raw monotonic time (completely un-modified by ntp)
*/
void ktime_get_raw_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->raw_sec;
nsecs = timekeeping_get_ns(&tk->tkr_raw);
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(ktime_get_raw_ts64);
/**
* timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
*/
int timekeeping_valid_for_hres(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
int ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ret;
}
/**
* timekeeping_max_deferment - Returns max time the clocksource can be deferred
*/
u64 timekeeping_max_deferment(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
ret = tk->tkr_mono.clock->max_idle_ns;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ret;
}
/**
* read_persistent_clock64 - Return time from the persistent clock.
* @ts: Pointer to the storage for the readout value
*
* Weak dummy function for arches that do not yet support it.
* Reads the time from the battery backed persistent clock.
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
*
* XXX - Do be sure to remove it once all arches implement it.
*/
void __weak read_persistent_clock64(struct timespec64 *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
/**
* read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
* from the boot.
* @wall_time: current time as returned by persistent clock
* @boot_offset: offset that is defined as wall_time - boot_time
*
* Weak dummy function for arches that do not yet support it.
*
* The default function calculates offset based on the current value of
* local_clock(). This way architectures that support sched_clock() but don't
* support dedicated boot time clock will provide the best estimate of the
* boot time.
*/
void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
struct timespec64 *boot_offset)
{
read_persistent_clock64(wall_time);
*boot_offset = ns_to_timespec64(local_clock());
}
static __init void tkd_basic_setup(struct tk_data *tkd)
{
raw_spin_lock_init(&tkd->lock);
seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
}
/*
* Flag reflecting whether timekeeping_resume() has injected sleeptime.
*
* The flag starts of false and is only set when a suspend reaches
* timekeeping_suspend(), timekeeping_resume() sets it to false when the
* timekeeper clocksource is not stopping across suspend and has been
* used to update sleep time. If the timekeeper clocksource has stopped
* then the flag stays true and is used by the RTC resume code to decide
* whether sleeptime must be injected and if so the flag gets false then.
*
* If a suspend fails before reaching timekeeping_resume() then the flag
* stays false and prevents erroneous sleeptime injection.
*/
static bool suspend_timing_needed;
/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;
/*
* timekeeping_init - Initializes the clocksource and common timekeeping values
*/
void __init timekeeping_init(void)
{
struct timespec64 wall_time, boot_offset, wall_to_mono;
struct timekeeper *tks = &tk_core.shadow_timekeeper;
struct clocksource *clock;
tkd_basic_setup(&tk_core);
read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
if (timespec64_valid_settod(&wall_time) &&
timespec64_to_ns(&wall_time) > 0) {
persistent_clock_exists = true;
} else if (timespec64_to_ns(&wall_time) != 0) {
pr_warn("Persistent clock returned invalid value");
wall_time = (struct timespec64){0};
}
if (timespec64_compare(&wall_time, &boot_offset) < 0)
boot_offset = (struct timespec64){0};
/*
* We want set wall_to_mono, so the following is true:
* wall time + wall_to_mono = boot time
*/
wall_to_mono = timespec64_sub(boot_offset, wall_time);
guard(raw_spinlock_irqsave)(&tk_core.lock);
ntp_init();
clock = clocksource_default_clock();
if (clock->enable)
clock->enable(clock);
tk_setup_internals(tks, clock);
tk_set_xtime(tks, &wall_time);
tks->raw_sec = 0;
tk_set_wall_to_mono(tks, wall_to_mono);
timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
}
/* time in seconds when suspend began for persistent clock */
static struct timespec64 timekeeping_suspend_time;
/**
* __timekeeping_inject_sleeptime - Internal function to add sleep interval
* @tk: Pointer to the timekeeper to be updated
* @delta: Pointer to the delta value in timespec64 format
*
* Takes a timespec offset measuring a suspend interval and properly
* adds the sleep offset to the timekeeping variables.
*/
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
const struct timespec64 *delta)
{
if (!timespec64_valid_strict(delta)) {
printk_deferred(KERN_WARNING
"__timekeeping_inject_sleeptime: Invalid "
"sleep delta value!\n");
return;
}
tk_xtime_add(tk, delta);
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
tk_debug_account_sleep_time(delta);
}
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
/*
* We have three kinds of time sources to use for sleep time
* injection, the preference order is:
* 1) non-stop clocksource
* 2) persistent clock (ie: RTC accessible when irqs are off)
* 3) RTC
*
* 1) and 2) are used by timekeeping, 3) by RTC subsystem.
* If system has neither 1) nor 2), 3) will be used finally.
*
*
* If timekeeping has injected sleeptime via either 1) or 2),
* 3) becomes needless, so in this case we don't need to call
* rtc_resume(), and this is what timekeeping_rtc_skipresume()
* means.
*/
bool timekeeping_rtc_skipresume(void)
{
return !suspend_timing_needed;
}
/*
* 1) can be determined whether to use or not only when doing
* timekeeping_resume() which is invoked after rtc_suspend(),
* so we can't skip rtc_suspend() surely if system has 1).
*
* But if system has 2), 2) will definitely be used, so in this
* case we don't need to call rtc_suspend(), and this is what
* timekeeping_rtc_skipsuspend() means.
*/
bool timekeeping_rtc_skipsuspend(void)
{
return persistent_clock_exists;
}
/**
* timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
* @delta: pointer to a timespec64 delta value
*
* This hook is for architectures that cannot support read_persistent_clock64
* because their RTC/persistent clock is only accessible when irqs are enabled.
* and also don't have an effective nonstop clocksource.
*
* This function should only be called by rtc_resume(), and allows
* a suspend offset to be injected into the timekeeping values.
*/
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
{
scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
struct timekeeper *tks = &tk_core.shadow_timekeeper;
suspend_timing_needed = false;
timekeeping_forward_now(tks);
__timekeeping_inject_sleeptime(tks, delta);
timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
}
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
}
#endif
/**
* timekeeping_resume - Resumes the generic timekeeping subsystem.
*/
void timekeeping_resume(void)
{
struct timekeeper *tks = &tk_core.shadow_timekeeper;
struct clocksource *clock = tks->tkr_mono.clock;
struct timespec64 ts_new, ts_delta;
bool inject_sleeptime = false;
u64 cycle_now, nsec;
unsigned long flags;
read_persistent_clock64(&ts_new);
clockevents_resume();
clocksource_resume();
raw_spin_lock_irqsave(&tk_core.lock, flags);
/*
* After system resumes, we need to calculate the suspended time and
* compensate it for the OS time. There are 3 sources that could be
* used: Nonstop clocksource during suspend, persistent clock and rtc
* device.
*
* One specific platform may have 1 or 2 or all of them, and the
* preference will be:
* suspend-nonstop clocksource -> persistent clock -> rtc
* The less preferred source will only be tried if there is no better
* usable source. The rtc part is handled separately in rtc core code.
*/
cycle_now = tk_clock_read(&tks->tkr_mono);
nsec = clocksource_stop_suspend_timing(clock, cycle_now);
if (nsec > 0) {
ts_delta = ns_to_timespec64(nsec);
inject_sleeptime = true;
} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
inject_sleeptime = true;
}
if (inject_sleeptime) {
suspend_timing_needed = false;
__timekeeping_inject_sleeptime(tks, &ts_delta);
}
/* Re-base the last cycle value */
tks->tkr_mono.cycle_last = cycle_now;
tks->tkr_raw.cycle_last = cycle_now;
tks->ntp_error = 0;
timekeeping_suspended = 0;
timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
raw_spin_unlock_irqrestore(&tk_core.lock, flags);
touch_softlockup_watchdog();
/* Resume the clockevent device(s) and hrtimers */
tick_resume();
/* Notify timerfd as resume is equivalent to clock_was_set() */
timerfd_resume();
}
int timekeeping_suspend(void)
{
struct timekeeper *tks = &tk_core.shadow_timekeeper;
struct timespec64 delta, delta_delta;
static struct timespec64 old_delta;
struct clocksource *curr_clock;
unsigned long flags;
u64 cycle_now;
read_persistent_clock64(&timekeeping_suspend_time);
/*
* On some systems the persistent_clock can not be detected at
* timekeeping_init by its return value, so if we see a valid
* value returned, update the persistent_clock_exists flag.
*/
if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
persistent_clock_exists = true;
suspend_timing_needed = true;
raw_spin_lock_irqsave(&tk_core.lock, flags);
timekeeping_forward_now(tks);
timekeeping_suspended = 1;
/*
* Since we've called forward_now, cycle_last stores the value
* just read from the current clocksource. Save this to potentially
* use in suspend timing.
*/
curr_clock = tks->tkr_mono.clock;
cycle_now = tks->tkr_mono.cycle_last;
clocksource_start_suspend_timing(curr_clock, cycle_now);
if (persistent_clock_exists) {
/*
* To avoid drift caused by repeated suspend/resumes,
* which each can add ~1 second drift error,
* try to compensate so the difference in system time
* and persistent_clock time stays close to constant.
*/
delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
delta_delta = timespec64_sub(delta, old_delta);
if (abs(delta_delta.tv_sec) >= 2) {
/*
* if delta_delta is too large, assume time correction
* has occurred and set old_delta to the current delta.
*/
old_delta = delta;
} else {
/* Otherwise try to adjust old_system to compensate */
timekeeping_suspend_time =
timespec64_add(timekeeping_suspend_time, delta_delta);
}
}
timekeeping_update_from_shadow(&tk_core, 0);
halt_fast_timekeeper(tks);
raw_spin_unlock_irqrestore(&tk_core.lock, flags);
tick_suspend();
clocksource_suspend();
clockevents_suspend();
return 0;
}
/* sysfs resume/suspend bits for timekeeping */
static struct syscore_ops timekeeping_syscore_ops = {
.resume = timekeeping_resume,
.suspend = timekeeping_suspend,
};
static int __init timekeeping_init_ops(void)
{
register_syscore_ops(&timekeeping_syscore_ops);
return 0;
}
device_initcall(timekeeping_init_ops);
/*
* Apply a multiplier adjustment to the timekeeper
*/
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
s64 offset,
s32 mult_adj)
{
s64 interval = tk->cycle_interval;
if (mult_adj == 0) {
return;
} else if (mult_adj == -1) {
interval = -interval;
offset = -offset;
} else if (mult_adj != 1) {
interval *= mult_adj;
offset *= mult_adj;
}
/*
* So the following can be confusing.
*
* To keep things simple, lets assume mult_adj == 1 for now.
*
* When mult_adj != 1, remember that the interval and offset values
* have been appropriately scaled so the math is the same.
*
* The basic idea here is that we're increasing the multiplier
* by one, this causes the xtime_interval to be incremented by
* one cycle_interval. This is because:
* xtime_interval = cycle_interval * mult
* So if mult is being incremented by one:
* xtime_interval = cycle_interval * (mult + 1)
* Its the same as:
* xtime_interval = (cycle_interval * mult) + cycle_interval
* Which can be shortened to:
* xtime_interval += cycle_interval
*
* So offset stores the non-accumulated cycles. Thus the current
* time (in shifted nanoseconds) is:
* now = (offset * adj) + xtime_nsec
* Now, even though we're adjusting the clock frequency, we have
* to keep time consistent. In other words, we can't jump back
* in time, and we also want to avoid jumping forward in time.
*
* So given the same offset value, we need the time to be the same
* both before and after the freq adjustment.
* now = (offset * adj_1) + xtime_nsec_1
* now = (offset * adj_2) + xtime_nsec_2
* So:
* (offset * adj_1) + xtime_nsec_1 =
* (offset * adj_2) + xtime_nsec_2
* And we know:
* adj_2 = adj_1 + 1
* So:
* (offset * adj_1) + xtime_nsec_1 =
* (offset * (adj_1+1)) + xtime_nsec_2
* (offset * adj_1) + xtime_nsec_1 =
* (offset * adj_1) + offset + xtime_nsec_2
* Canceling the sides:
* xtime_nsec_1 = offset + xtime_nsec_2
* Which gives us:
* xtime_nsec_2 = xtime_nsec_1 - offset
* Which simplifies to:
* xtime_nsec -= offset
*/
if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
/* NTP adjustment caused clocksource mult overflow */
WARN_ON_ONCE(1);
return;
}
tk->tkr_mono.mult += mult_adj;
tk->xtime_interval += interval;
tk->tkr_mono.xtime_nsec -= offset;
}
/*
* Adjust the timekeeper's multiplier to the correct frequency
* and also to reduce the accumulated error value.
*/
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
u64 ntp_tl = ntp_tick_length();
u32 mult;
/*
* Determine the multiplier from the current NTP tick length.
* Avoid expensive division when the tick length doesn't change.
*/
if (likely(tk->ntp_tick == ntp_tl)) {
mult = tk->tkr_mono.mult - tk->ntp_err_mult;
} else {
tk->ntp_tick = ntp_tl;
mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
tk->xtime_remainder, tk->cycle_interval);
}
/*
* If the clock is behind the NTP time, increase the multiplier by 1
* to catch up with it. If it's ahead and there was a remainder in the
* tick division, the clock will slow down. Otherwise it will stay
* ahead until the tick length changes to a non-divisible value.
*/
tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
mult += tk->ntp_err_mult;
timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
if (unlikely(tk->tkr_mono.clock->maxadj &&
(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
> tk->tkr_mono.clock->maxadj))) {
printk_once(KERN_WARNING
"Adjusting %s more than 11%% (%ld vs %ld)\n",
tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
}
/*
* It may be possible that when we entered this function, xtime_nsec
* was very small. Further, if we're slightly speeding the clocksource
* in the code above, its possible the required corrective factor to
* xtime_nsec could cause it to underflow.
*
* Now, since we have already accumulated the second and the NTP
* subsystem has been notified via second_overflow(), we need to skip
* the next update.
*/
if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
tk->tkr_mono.shift;
tk->xtime_sec--;
tk->skip_second_overflow = 1;
}
}
/*
* accumulate_nsecs_to_secs - Accumulates nsecs into secs
*
* Helper function that accumulates the nsecs greater than a second
* from the xtime_nsec field to the xtime_secs field.
* It also calls into the NTP code to handle leapsecond processing.
*/
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
{
u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
unsigned int clock_set = 0;
while (tk->tkr_mono.xtime_nsec >= nsecps) {
int leap;
tk->tkr_mono.xtime_nsec -= nsecps;
tk->xtime_sec++;
/*
* Skip NTP update if this second was accumulated before,
* i.e. xtime_nsec underflowed in timekeeping_adjust()
*/
if (unlikely(tk->skip_second_overflow)) {
tk->skip_second_overflow = 0;
continue;
}
/* Figure out if its a leap sec and apply if needed */
leap = second_overflow(tk->xtime_sec);
if (unlikely(leap)) {
struct timespec64 ts;
tk->xtime_sec += leap;
ts.tv_sec = leap;
ts.tv_nsec = 0;
tk_set_wall_to_mono(tk,
timespec64_sub(tk->wall_to_monotonic, ts));
__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
clock_set = TK_CLOCK_WAS_SET;
}
}
return clock_set;
}
/*
* logarithmic_accumulation - shifted accumulation of cycles
*
* This functions accumulates a shifted interval of cycles into
* a shifted interval nanoseconds. Allows for O(log) accumulation
* loop.
*
* Returns the unconsumed cycles.
*/
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
u32 shift, unsigned int *clock_set)
{
u64 interval = tk->cycle_interval << shift;
u64 snsec_per_sec;
/* If the offset is smaller than a shifted interval, do nothing */
if (offset < interval)
return offset;
/* Accumulate one shifted interval */
offset -= interval;
tk->tkr_mono.cycle_last += interval;
tk->tkr_raw.cycle_last += interval;
tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
*clock_set |= accumulate_nsecs_to_secs(tk);
/* Accumulate raw time */
tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
tk->tkr_raw.xtime_nsec -= snsec_per_sec;
tk->raw_sec++;
}
/* Accumulate error between NTP and clock interval */
tk->ntp_error += tk->ntp_tick << shift;
tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
(tk->ntp_error_shift + shift);
return offset;
}
/*
* timekeeping_advance - Updates the timekeeper to the current time and
* current NTP tick length
*/
static bool timekeeping_advance(enum timekeeping_adv_mode mode)
{
struct timekeeper *tk = &tk_core.shadow_timekeeper;
struct timekeeper *real_tk = &tk_core.timekeeper;
unsigned int clock_set = 0;
int shift = 0, maxshift;
u64 offset;
guard(raw_spinlock_irqsave)(&tk_core.lock);
/* Make sure we're fully resumed: */
if (unlikely(timekeeping_suspended))
return false;
offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
tk->tkr_mono.clock->max_raw_delta);
/* Check if there's really nothing to do */
if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
return false;
/*
* With NO_HZ we may have to accumulate many cycle_intervals
* (think "ticks") worth of time at once. To do this efficiently,
* we calculate the largest doubling multiple of cycle_intervals
* that is smaller than the offset. We then accumulate that
* chunk in one go, and then try to consume the next smaller
* doubled multiple.
*/
shift = ilog2(offset) - ilog2(tk->cycle_interval);
shift = max(0, shift);
/* Bound shift to one less than what overflows tick_length */
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
shift = min(shift, maxshift);
while (offset >= tk->cycle_interval) {
offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
if (offset < tk->cycle_interval<<shift)
shift--;
}
/* Adjust the multiplier to correct NTP error */
timekeeping_adjust(tk, offset);
/*
* Finally, make sure that after the rounding
* xtime_nsec isn't larger than NSEC_PER_SEC
*/
clock_set |= accumulate_nsecs_to_secs(tk);
timekeeping_update_from_shadow(&tk_core, clock_set);
return !!clock_set;
}
/**
* update_wall_time - Uses the current clocksource to increment the wall time
*
*/
void update_wall_time(void)
{
if (timekeeping_advance(TK_ADV_TICK))
clock_was_set_delayed();
}
/**
* getboottime64 - Return the real time of system boot.
* @ts: pointer to the timespec64 to be set
*
* Returns the wall-time of boot in a timespec64.
*
* This is based on the wall_to_monotonic offset and the total suspend
* time. Calls to settimeofday will affect the value returned (which
* basically means that however wrong your real time clock is at boot time,
* you get the right time here).
*/
void getboottime64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
*ts = ktime_to_timespec64(t);
}
EXPORT_SYMBOL_GPL(getboottime64);
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
do {
seq = read_seqcount_begin(&tk_core.seq);
*ts = tk_xtime(tk);
} while (read_seqcount_retry(&tk_core.seq, seq));
}
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
/**
* ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
* @ts: timespec64 to be filled
*
* Fetch the global mg_floor value, convert it to realtime and compare it
* to the current coarse-grained time. Fill @ts with whichever is
* latest. Note that this is a filesystem-specific interface and should be
* avoided outside of that context.
*/
void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
u64 floor = atomic64_read(&mg_floor);
ktime_t f_real, offset, coarse;
unsigned int seq;
do {
seq = read_seqcount_begin(&tk_core.seq);
*ts = tk_xtime(tk);
offset = tk_core.timekeeper.offs_real;
} while (read_seqcount_retry(&tk_core.seq, seq));
coarse = timespec64_to_ktime(*ts);
f_real = ktime_add(floor, offset);
if (ktime_after(f_real, coarse))
*ts = ktime_to_timespec64(f_real);
}
/**
* ktime_get_real_ts64_mg - attempt to update floor value and return result
* @ts: pointer to the timespec to be set
*
* Get a monotonic fine-grained time value and attempt to swap it into
* mg_floor. If that succeeds then accept the new floor value. If it fails
* then another task raced in during the interim time and updated the
* floor. Since any update to the floor must be later than the previous
* floor, either outcome is acceptable.
*
* Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
* and determining that the resulting coarse-grained timestamp did not effect
* a change in ctime. Any more recent floor value would effect a change to
* ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
*
* @ts will be filled with the latest floor value, regardless of the outcome of
* the cmpxchg. Note that this is a filesystem specific interface and should be
* avoided outside of that context.
*/
void ktime_get_real_ts64_mg(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
ktime_t old = atomic64_read(&mg_floor);
ktime_t offset, mono;
unsigned int seq;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
mono = tk->tkr_mono.base;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
offset = tk_core.timekeeper.offs_real;
} while (read_seqcount_retry(&tk_core.seq, seq));
mono = ktime_add_ns(mono, nsecs);
/*
* Attempt to update the floor with the new time value. As any
* update must be later then the existing floor, and would effect
* a change to ctime from the perspective of the current task,
* accept the resulting floor value regardless of the outcome of
* the swap.
*/
if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsecs);
timekeeping_inc_mg_floor_swaps();
} else {
/*
* Another task changed mg_floor since "old" was fetched.
* "old" has been updated with the latest value of "mg_floor".
* That value is newer than the previous floor value, which
* is enough to effect a change to ctime. Accept it.
*/
*ts = ktime_to_timespec64(ktime_add(old, offset));
}
}
void ktime_get_coarse_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 now, mono;
unsigned int seq;
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_xtime(tk);
mono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
now.tv_nsec + mono.tv_nsec);
}
EXPORT_SYMBOL(ktime_get_coarse_ts64);
/*
* Must hold jiffies_lock
*/
void do_timer(unsigned long ticks)
{
jiffies_64 += ticks;
calc_global_load();
}
/**
* ktime_get_update_offsets_now - hrtimer helper
* @cwsseq: pointer to check and store the clock was set sequence number
* @offs_real: pointer to storage for monotonic -> realtime offset
* @offs_boot: pointer to storage for monotonic -> boottime offset
* @offs_tai: pointer to storage for monotonic -> clock tai offset
*
* Returns current monotonic time and updates the offsets if the
* sequence number in @cwsseq and timekeeper.clock_was_set_seq are
* different.
*
* Called from hrtimer_interrupt() or retrigger_next_event()
*/
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
ktime_t *offs_boot, ktime_t *offs_tai)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_mono.base;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
base = ktime_add_ns(base, nsecs);
if (*cwsseq != tk->clock_was_set_seq) {
*cwsseq = tk->clock_was_set_seq;
*offs_real = tk->offs_real;
*offs_boot = tk->offs_boot;
*offs_tai = tk->offs_tai;
}
/* Handle leapsecond insertion adjustments */
if (unlikely(base >= tk->next_leap_ktime))
*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
} while (read_seqcount_retry(&tk_core.seq, seq));
return base;
}
/*
* timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
*/
static int timekeeping_validate_timex(const struct __kernel_timex *txc)
{
if (txc->modes & ADJ_ADJTIME) {
/* singleshot must not be used with any other mode bits */
if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
return -EINVAL;
if (!(txc->modes & ADJ_OFFSET_READONLY) &&
!capable(CAP_SYS_TIME))
return -EPERM;
} else {
/* In order to modify anything, you gotta be super-user! */
if (txc->modes && !capable(CAP_SYS_TIME))
return -EPERM;
/*
* if the quartz is off by more than 10% then
* something is VERY wrong!
*/
if (txc->modes & ADJ_TICK &&
(txc->tick < 900000/USER_HZ ||
txc->tick > 1100000/USER_HZ))
return -EINVAL;
}
if (txc->modes & ADJ_SETOFFSET) {
/* In order to inject time, you gotta be super-user! */
if (!capable(CAP_SYS_TIME))
return -EPERM;
/*
* Validate if a timespec/timeval used to inject a time
* offset is valid. Offsets can be positive or negative, so
* we don't check tv_sec. The value of the timeval/timespec
* is the sum of its fields,but *NOTE*:
* The field tv_usec/tv_nsec must always be non-negative and
* we can't have more nanoseconds/microseconds than a second.
*/
if (txc->time.tv_usec < 0)
return -EINVAL;
if (txc->modes & ADJ_NANO) {
if (txc->time.tv_usec >= NSEC_PER_SEC)
return -EINVAL;
} else {
if (txc->time.tv_usec >= USEC_PER_SEC)
return -EINVAL;
}
}
/*
* Check for potential multiplication overflows that can
* only happen on 64-bit systems:
*/
if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
if (LLONG_MIN / PPM_SCALE > txc->freq)
return -EINVAL;
if (LLONG_MAX / PPM_SCALE < txc->freq)
return -EINVAL;
}
return 0;
}
/**
* random_get_entropy_fallback - Returns the raw clock source value,
* used by random.c for platforms with no valid random_get_entropy().
*/
unsigned long random_get_entropy_fallback(void)
{
struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
struct clocksource *clock = READ_ONCE(tkr->clock);
if (unlikely(timekeeping_suspended || !clock))
return 0;
return clock->read(clock);
}
EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
/**
* do_adjtimex() - Accessor function to NTP __do_adjtimex function
* @txc: Pointer to kernel_timex structure containing NTP parameters
*/
int do_adjtimex(struct __kernel_timex *txc)
{
struct audit_ntp_data ad;
bool offset_set = false;
bool clock_set = false;
struct timespec64 ts;
int ret;
/* Validate the data before disabling interrupts */
ret = timekeeping_validate_timex(txc);
if (ret)
return ret;
add_device_randomness(txc, sizeof(*txc));
if (txc->modes & ADJ_SETOFFSET) {
struct timespec64 delta;
delta.tv_sec = txc->time.tv_sec;
delta.tv_nsec = txc->time.tv_usec;
if (!(txc->modes & ADJ_NANO))
delta.tv_nsec *= 1000;
ret = timekeeping_inject_offset(&delta);
if (ret)
return ret;
offset_set = delta.tv_sec != 0;
audit_tk_injoffset(delta);
}
audit_ntp_init(&ad);
ktime_get_real_ts64(&ts);
add_device_randomness(&ts, sizeof(ts));
scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
struct timekeeper *tks = &tk_core.shadow_timekeeper;
s32 orig_tai, tai;
orig_tai = tai = tks->tai_offset;
ret = __do_adjtimex(txc, &ts, &tai, &ad);
if (tai != orig_tai) {
__timekeeping_set_tai_offset(tks, tai);
timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
clock_set = true;
} else {
tk_update_leap_state_all(&tk_core);
}
}
audit_ntp_log(&ad);
/* Update the multiplier immediately if frequency was set directly */
if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
clock_set |= timekeeping_advance(TK_ADV_FREQ);
if (clock_set)
clock_was_set(CLOCK_SET_WALL);
ntp_notify_cmos_timer(offset_set);
return ret;
}
#ifdef CONFIG_NTP_PPS
/**
* hardpps() - Accessor function to NTP __hardpps function
* @phase_ts: Pointer to timespec64 structure representing phase timestamp
* @raw_ts: Pointer to timespec64 structure representing raw timestamp
*/
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
guard(raw_spinlock_irqsave)(&tk_core.lock);
__hardpps(phase_ts, raw_ts);
}
EXPORT_SYMBOL(hardpps);
#endif /* CONFIG_NTP_PPS */