mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 02:05:33 +00:00
0360ed14d9
To handle posix timers which have their signal ignored via SIG_IGN properly it is required to requeue a ignored signal for delivery when SIG_IGN is lifted so the timer gets rearmed. Split the required code out of send_sigqueue() so it can be reused in context of sigaction(). While at it rename send_sigqueue() to posixtimer_send_sigqueue() so its clear what this is about. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/20241105064213.586453412@linutronix.de
4901 lines
126 KiB
C
4901 lines
126 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
|
|
*
|
|
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
|
|
* Changes to use preallocated sigqueue structures
|
|
* to allow signals to be sent reliably.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/user.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/coredump.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/signalfd.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/task_work.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/sysctl.h>
|
|
#include <uapi/linux/pidfd.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/signal.h>
|
|
|
|
#include <asm/param.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/siginfo.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/syscall.h> /* for syscall_get_* */
|
|
|
|
/*
|
|
* SLAB caches for signal bits.
|
|
*/
|
|
|
|
static struct kmem_cache *sigqueue_cachep;
|
|
|
|
int print_fatal_signals __read_mostly;
|
|
|
|
static void __user *sig_handler(struct task_struct *t, int sig)
|
|
{
|
|
return t->sighand->action[sig - 1].sa.sa_handler;
|
|
}
|
|
|
|
static inline bool sig_handler_ignored(void __user *handler, int sig)
|
|
{
|
|
/* Is it explicitly or implicitly ignored? */
|
|
return handler == SIG_IGN ||
|
|
(handler == SIG_DFL && sig_kernel_ignore(sig));
|
|
}
|
|
|
|
static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
|
|
{
|
|
void __user *handler;
|
|
|
|
handler = sig_handler(t, sig);
|
|
|
|
/* SIGKILL and SIGSTOP may not be sent to the global init */
|
|
if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
|
|
return true;
|
|
|
|
if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
|
|
handler == SIG_DFL && !(force && sig_kernel_only(sig)))
|
|
return true;
|
|
|
|
/* Only allow kernel generated signals to this kthread */
|
|
if (unlikely((t->flags & PF_KTHREAD) &&
|
|
(handler == SIG_KTHREAD_KERNEL) && !force))
|
|
return true;
|
|
|
|
return sig_handler_ignored(handler, sig);
|
|
}
|
|
|
|
static bool sig_ignored(struct task_struct *t, int sig, bool force)
|
|
{
|
|
/*
|
|
* Blocked signals are never ignored, since the
|
|
* signal handler may change by the time it is
|
|
* unblocked.
|
|
*/
|
|
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
|
|
return false;
|
|
|
|
/*
|
|
* Tracers may want to know about even ignored signal unless it
|
|
* is SIGKILL which can't be reported anyway but can be ignored
|
|
* by SIGNAL_UNKILLABLE task.
|
|
*/
|
|
if (t->ptrace && sig != SIGKILL)
|
|
return false;
|
|
|
|
return sig_task_ignored(t, sig, force);
|
|
}
|
|
|
|
/*
|
|
* Re-calculate pending state from the set of locally pending
|
|
* signals, globally pending signals, and blocked signals.
|
|
*/
|
|
static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
|
|
{
|
|
unsigned long ready;
|
|
long i;
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
|
|
ready |= signal->sig[i] &~ blocked->sig[i];
|
|
break;
|
|
|
|
case 4: ready = signal->sig[3] &~ blocked->sig[3];
|
|
ready |= signal->sig[2] &~ blocked->sig[2];
|
|
ready |= signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 2: ready = signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 1: ready = signal->sig[0] &~ blocked->sig[0];
|
|
}
|
|
return ready != 0;
|
|
}
|
|
|
|
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
|
|
|
|
static bool recalc_sigpending_tsk(struct task_struct *t)
|
|
{
|
|
if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
|
|
PENDING(&t->pending, &t->blocked) ||
|
|
PENDING(&t->signal->shared_pending, &t->blocked) ||
|
|
cgroup_task_frozen(t)) {
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We must never clear the flag in another thread, or in current
|
|
* when it's possible the current syscall is returning -ERESTART*.
|
|
* So we don't clear it here, and only callers who know they should do.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
void recalc_sigpending(void)
|
|
{
|
|
if (!recalc_sigpending_tsk(current) && !freezing(current))
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
|
|
}
|
|
EXPORT_SYMBOL(recalc_sigpending);
|
|
|
|
void calculate_sigpending(void)
|
|
{
|
|
/* Have any signals or users of TIF_SIGPENDING been delayed
|
|
* until after fork?
|
|
*/
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
set_tsk_thread_flag(current, TIF_SIGPENDING);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
/* Given the mask, find the first available signal that should be serviced. */
|
|
|
|
#define SYNCHRONOUS_MASK \
|
|
(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
|
|
sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
|
|
|
|
int next_signal(struct sigpending *pending, sigset_t *mask)
|
|
{
|
|
unsigned long i, *s, *m, x;
|
|
int sig = 0;
|
|
|
|
s = pending->signal.sig;
|
|
m = mask->sig;
|
|
|
|
/*
|
|
* Handle the first word specially: it contains the
|
|
* synchronous signals that need to be dequeued first.
|
|
*/
|
|
x = *s &~ *m;
|
|
if (x) {
|
|
if (x & SYNCHRONOUS_MASK)
|
|
x &= SYNCHRONOUS_MASK;
|
|
sig = ffz(~x) + 1;
|
|
return sig;
|
|
}
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = 1; i < _NSIG_WORDS; ++i) {
|
|
x = *++s &~ *++m;
|
|
if (!x)
|
|
continue;
|
|
sig = ffz(~x) + i*_NSIG_BPW + 1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
x = s[1] &~ m[1];
|
|
if (!x)
|
|
break;
|
|
sig = ffz(~x) + _NSIG_BPW + 1;
|
|
break;
|
|
|
|
case 1:
|
|
/* Nothing to do */
|
|
break;
|
|
}
|
|
|
|
return sig;
|
|
}
|
|
|
|
static inline void print_dropped_signal(int sig)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
|
|
|
|
if (!print_fatal_signals)
|
|
return;
|
|
|
|
if (!__ratelimit(&ratelimit_state))
|
|
return;
|
|
|
|
pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
|
|
current->comm, current->pid, sig);
|
|
}
|
|
|
|
/**
|
|
* task_set_jobctl_pending - set jobctl pending bits
|
|
* @task: target task
|
|
* @mask: pending bits to set
|
|
*
|
|
* Clear @mask from @task->jobctl. @mask must be subset of
|
|
* %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
|
|
* %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
|
|
* cleared. If @task is already being killed or exiting, this function
|
|
* becomes noop.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*
|
|
* RETURNS:
|
|
* %true if @mask is set, %false if made noop because @task was dying.
|
|
*/
|
|
bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
|
|
{
|
|
BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
|
|
JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
|
|
BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
|
|
|
|
if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
|
|
return false;
|
|
|
|
if (mask & JOBCTL_STOP_SIGMASK)
|
|
task->jobctl &= ~JOBCTL_STOP_SIGMASK;
|
|
|
|
task->jobctl |= mask;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* task_clear_jobctl_trapping - clear jobctl trapping bit
|
|
* @task: target task
|
|
*
|
|
* If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
|
|
* Clear it and wake up the ptracer. Note that we don't need any further
|
|
* locking. @task->siglock guarantees that @task->parent points to the
|
|
* ptracer.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
void task_clear_jobctl_trapping(struct task_struct *task)
|
|
{
|
|
if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
|
|
task->jobctl &= ~JOBCTL_TRAPPING;
|
|
smp_mb(); /* advised by wake_up_bit() */
|
|
wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* task_clear_jobctl_pending - clear jobctl pending bits
|
|
* @task: target task
|
|
* @mask: pending bits to clear
|
|
*
|
|
* Clear @mask from @task->jobctl. @mask must be subset of
|
|
* %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
|
|
* STOP bits are cleared together.
|
|
*
|
|
* If clearing of @mask leaves no stop or trap pending, this function calls
|
|
* task_clear_jobctl_trapping().
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
|
|
{
|
|
BUG_ON(mask & ~JOBCTL_PENDING_MASK);
|
|
|
|
if (mask & JOBCTL_STOP_PENDING)
|
|
mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
|
|
|
|
task->jobctl &= ~mask;
|
|
|
|
if (!(task->jobctl & JOBCTL_PENDING_MASK))
|
|
task_clear_jobctl_trapping(task);
|
|
}
|
|
|
|
/**
|
|
* task_participate_group_stop - participate in a group stop
|
|
* @task: task participating in a group stop
|
|
*
|
|
* @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
|
|
* Group stop states are cleared and the group stop count is consumed if
|
|
* %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
|
|
* stop, the appropriate `SIGNAL_*` flags are set.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*
|
|
* RETURNS:
|
|
* %true if group stop completion should be notified to the parent, %false
|
|
* otherwise.
|
|
*/
|
|
static bool task_participate_group_stop(struct task_struct *task)
|
|
{
|
|
struct signal_struct *sig = task->signal;
|
|
bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
|
|
|
|
WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
|
|
|
|
task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
|
|
|
|
if (!consume)
|
|
return false;
|
|
|
|
if (!WARN_ON_ONCE(sig->group_stop_count == 0))
|
|
sig->group_stop_count--;
|
|
|
|
/*
|
|
* Tell the caller to notify completion iff we are entering into a
|
|
* fresh group stop. Read comment in do_signal_stop() for details.
|
|
*/
|
|
if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
|
|
signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void task_join_group_stop(struct task_struct *task)
|
|
{
|
|
unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
if (sig->group_stop_count) {
|
|
sig->group_stop_count++;
|
|
mask |= JOBCTL_STOP_CONSUME;
|
|
} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
|
|
return;
|
|
|
|
/* Have the new thread join an on-going signal group stop */
|
|
task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
|
|
}
|
|
|
|
static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
|
|
int override_rlimit)
|
|
{
|
|
struct ucounts *ucounts;
|
|
long sigpending;
|
|
|
|
/*
|
|
* Protect access to @t credentials. This can go away when all
|
|
* callers hold rcu read lock.
|
|
*
|
|
* NOTE! A pending signal will hold on to the user refcount,
|
|
* and we get/put the refcount only when the sigpending count
|
|
* changes from/to zero.
|
|
*/
|
|
rcu_read_lock();
|
|
ucounts = task_ucounts(t);
|
|
sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
|
|
rcu_read_unlock();
|
|
if (!sigpending)
|
|
return NULL;
|
|
|
|
if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
|
|
dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
|
|
print_dropped_signal(sig);
|
|
return NULL;
|
|
}
|
|
|
|
return ucounts;
|
|
}
|
|
|
|
static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
|
|
const unsigned int sigqueue_flags)
|
|
{
|
|
INIT_LIST_HEAD(&q->list);
|
|
q->flags = sigqueue_flags;
|
|
q->ucounts = ucounts;
|
|
}
|
|
|
|
/*
|
|
* allocate a new signal queue record
|
|
* - this may be called without locks if and only if t == current, otherwise an
|
|
* appropriate lock must be held to stop the target task from exiting
|
|
*/
|
|
static struct sigqueue *__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
|
|
int override_rlimit, const unsigned int sigqueue_flags)
|
|
{
|
|
struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
|
|
struct sigqueue *q;
|
|
|
|
if (!ucounts)
|
|
return NULL;
|
|
|
|
q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
|
|
if (!q) {
|
|
dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
|
|
return NULL;
|
|
}
|
|
|
|
__sigqueue_init(q, ucounts, sigqueue_flags);
|
|
return q;
|
|
}
|
|
|
|
static void __sigqueue_free(struct sigqueue *q)
|
|
{
|
|
if (q->flags & SIGQUEUE_PREALLOC)
|
|
return;
|
|
if (q->ucounts) {
|
|
dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
|
|
q->ucounts = NULL;
|
|
}
|
|
kmem_cache_free(sigqueue_cachep, q);
|
|
}
|
|
|
|
void flush_sigqueue(struct sigpending *queue)
|
|
{
|
|
struct sigqueue *q;
|
|
|
|
sigemptyset(&queue->signal);
|
|
while (!list_empty(&queue->list)) {
|
|
q = list_entry(queue->list.next, struct sigqueue , list);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all pending signals for this kthread.
|
|
*/
|
|
void flush_signals(struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
clear_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
flush_sigqueue(&t->pending);
|
|
flush_sigqueue(&t->signal->shared_pending);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
}
|
|
EXPORT_SYMBOL(flush_signals);
|
|
|
|
void ignore_signals(struct task_struct *t)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < _NSIG; ++i)
|
|
t->sighand->action[i].sa.sa_handler = SIG_IGN;
|
|
|
|
flush_signals(t);
|
|
}
|
|
|
|
/*
|
|
* Flush all handlers for a task.
|
|
*/
|
|
|
|
void
|
|
flush_signal_handlers(struct task_struct *t, int force_default)
|
|
{
|
|
int i;
|
|
struct k_sigaction *ka = &t->sighand->action[0];
|
|
for (i = _NSIG ; i != 0 ; i--) {
|
|
if (force_default || ka->sa.sa_handler != SIG_IGN)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
ka->sa.sa_flags = 0;
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
ka->sa.sa_restorer = NULL;
|
|
#endif
|
|
sigemptyset(&ka->sa.sa_mask);
|
|
ka++;
|
|
}
|
|
}
|
|
|
|
bool unhandled_signal(struct task_struct *tsk, int sig)
|
|
{
|
|
void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
|
|
if (is_global_init(tsk))
|
|
return true;
|
|
|
|
if (handler != SIG_IGN && handler != SIG_DFL)
|
|
return false;
|
|
|
|
/* If dying, we handle all new signals by ignoring them */
|
|
if (fatal_signal_pending(tsk))
|
|
return false;
|
|
|
|
/* if ptraced, let the tracer determine */
|
|
return !tsk->ptrace;
|
|
}
|
|
|
|
static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
|
|
bool *resched_timer)
|
|
{
|
|
struct sigqueue *q, *first = NULL;
|
|
|
|
/*
|
|
* Collect the siginfo appropriate to this signal. Check if
|
|
* there is another siginfo for the same signal.
|
|
*/
|
|
list_for_each_entry(q, &list->list, list) {
|
|
if (q->info.si_signo == sig) {
|
|
if (first)
|
|
goto still_pending;
|
|
first = q;
|
|
}
|
|
}
|
|
|
|
sigdelset(&list->signal, sig);
|
|
|
|
if (first) {
|
|
still_pending:
|
|
list_del_init(&first->list);
|
|
copy_siginfo(info, &first->info);
|
|
|
|
*resched_timer = (first->flags & SIGQUEUE_PREALLOC) &&
|
|
(info->si_code == SI_TIMER);
|
|
|
|
__sigqueue_free(first);
|
|
} else {
|
|
/*
|
|
* Ok, it wasn't in the queue. This must be
|
|
* a fast-pathed signal or we must have been
|
|
* out of queue space. So zero out the info.
|
|
*/
|
|
clear_siginfo(info);
|
|
info->si_signo = sig;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
info->si_pid = 0;
|
|
info->si_uid = 0;
|
|
}
|
|
}
|
|
|
|
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
|
|
kernel_siginfo_t *info, bool *resched_timer)
|
|
{
|
|
int sig = next_signal(pending, mask);
|
|
|
|
if (sig)
|
|
collect_signal(sig, pending, info, resched_timer);
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* Try to dequeue a signal. If a deliverable signal is found fill in the
|
|
* caller provided siginfo and return the signal number. Otherwise return
|
|
* 0.
|
|
*/
|
|
int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
bool resched_timer = false;
|
|
int signr;
|
|
|
|
lockdep_assert_held(&tsk->sighand->siglock);
|
|
|
|
again:
|
|
*type = PIDTYPE_PID;
|
|
signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
|
|
if (!signr) {
|
|
*type = PIDTYPE_TGID;
|
|
signr = __dequeue_signal(&tsk->signal->shared_pending,
|
|
mask, info, &resched_timer);
|
|
|
|
if (unlikely(signr == SIGALRM))
|
|
posixtimer_rearm_itimer(tsk);
|
|
}
|
|
|
|
recalc_sigpending();
|
|
if (!signr)
|
|
return 0;
|
|
|
|
if (unlikely(sig_kernel_stop(signr))) {
|
|
/*
|
|
* Set a marker that we have dequeued a stop signal. Our
|
|
* caller might release the siglock and then the pending
|
|
* stop signal it is about to process is no longer in the
|
|
* pending bitmasks, but must still be cleared by a SIGCONT
|
|
* (and overruled by a SIGKILL). So those cases clear this
|
|
* shared flag after we've set it. Note that this flag may
|
|
* remain set after the signal we return is ignored or
|
|
* handled. That doesn't matter because its only purpose
|
|
* is to alert stop-signal processing code when another
|
|
* processor has come along and cleared the flag.
|
|
*/
|
|
current->jobctl |= JOBCTL_STOP_DEQUEUED;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(resched_timer)) {
|
|
if (!posixtimer_deliver_signal(info))
|
|
goto again;
|
|
}
|
|
|
|
return signr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dequeue_signal);
|
|
|
|
static int dequeue_synchronous_signal(kernel_siginfo_t *info)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct sigpending *pending = &tsk->pending;
|
|
struct sigqueue *q, *sync = NULL;
|
|
|
|
/*
|
|
* Might a synchronous signal be in the queue?
|
|
*/
|
|
if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
|
|
return 0;
|
|
|
|
/*
|
|
* Return the first synchronous signal in the queue.
|
|
*/
|
|
list_for_each_entry(q, &pending->list, list) {
|
|
/* Synchronous signals have a positive si_code */
|
|
if ((q->info.si_code > SI_USER) &&
|
|
(sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
|
|
sync = q;
|
|
goto next;
|
|
}
|
|
}
|
|
return 0;
|
|
next:
|
|
/*
|
|
* Check if there is another siginfo for the same signal.
|
|
*/
|
|
list_for_each_entry_continue(q, &pending->list, list) {
|
|
if (q->info.si_signo == sync->info.si_signo)
|
|
goto still_pending;
|
|
}
|
|
|
|
sigdelset(&pending->signal, sync->info.si_signo);
|
|
recalc_sigpending();
|
|
still_pending:
|
|
list_del_init(&sync->list);
|
|
copy_siginfo(info, &sync->info);
|
|
__sigqueue_free(sync);
|
|
return info->si_signo;
|
|
}
|
|
|
|
/*
|
|
* Tell a process that it has a new active signal..
|
|
*
|
|
* NOTE! we rely on the previous spin_lock to
|
|
* lock interrupts for us! We can only be called with
|
|
* "siglock" held, and the local interrupt must
|
|
* have been disabled when that got acquired!
|
|
*
|
|
* No need to set need_resched since signal event passing
|
|
* goes through ->blocked
|
|
*/
|
|
void signal_wake_up_state(struct task_struct *t, unsigned int state)
|
|
{
|
|
lockdep_assert_held(&t->sighand->siglock);
|
|
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
|
|
/*
|
|
* TASK_WAKEKILL also means wake it up in the stopped/traced/killable
|
|
* case. We don't check t->state here because there is a race with it
|
|
* executing another processor and just now entering stopped state.
|
|
* By using wake_up_state, we ensure the process will wake up and
|
|
* handle its death signal.
|
|
*/
|
|
if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
|
|
kick_process(t);
|
|
}
|
|
|
|
/* Remove signals in mask from the pending set and queue. */
|
|
static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
|
|
{
|
|
struct sigqueue *q, *n;
|
|
sigset_t m;
|
|
|
|
lockdep_assert_held(&p->sighand->siglock);
|
|
|
|
sigandsets(&m, mask, &s->signal);
|
|
if (sigisemptyset(&m))
|
|
return;
|
|
|
|
sigandnsets(&s->signal, &s->signal, mask);
|
|
list_for_each_entry_safe(q, n, &s->list, list) {
|
|
if (sigismember(mask, q->info.si_signo)) {
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int is_si_special(const struct kernel_siginfo *info)
|
|
{
|
|
return info <= SEND_SIG_PRIV;
|
|
}
|
|
|
|
static inline bool si_fromuser(const struct kernel_siginfo *info)
|
|
{
|
|
return info == SEND_SIG_NOINFO ||
|
|
(!is_si_special(info) && SI_FROMUSER(info));
|
|
}
|
|
|
|
/*
|
|
* called with RCU read lock from check_kill_permission()
|
|
*/
|
|
static bool kill_ok_by_cred(struct task_struct *t)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
const struct cred *tcred = __task_cred(t);
|
|
|
|
return uid_eq(cred->euid, tcred->suid) ||
|
|
uid_eq(cred->euid, tcred->uid) ||
|
|
uid_eq(cred->uid, tcred->suid) ||
|
|
uid_eq(cred->uid, tcred->uid) ||
|
|
ns_capable(tcred->user_ns, CAP_KILL);
|
|
}
|
|
|
|
/*
|
|
* Bad permissions for sending the signal
|
|
* - the caller must hold the RCU read lock
|
|
*/
|
|
static int check_kill_permission(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *t)
|
|
{
|
|
struct pid *sid;
|
|
int error;
|
|
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
if (!si_fromuser(info))
|
|
return 0;
|
|
|
|
error = audit_signal_info(sig, t); /* Let audit system see the signal */
|
|
if (error)
|
|
return error;
|
|
|
|
if (!same_thread_group(current, t) &&
|
|
!kill_ok_by_cred(t)) {
|
|
switch (sig) {
|
|
case SIGCONT:
|
|
sid = task_session(t);
|
|
/*
|
|
* We don't return the error if sid == NULL. The
|
|
* task was unhashed, the caller must notice this.
|
|
*/
|
|
if (!sid || sid == task_session(current))
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
return security_task_kill(t, info, sig, NULL);
|
|
}
|
|
|
|
/**
|
|
* ptrace_trap_notify - schedule trap to notify ptracer
|
|
* @t: tracee wanting to notify tracer
|
|
*
|
|
* This function schedules sticky ptrace trap which is cleared on the next
|
|
* TRAP_STOP to notify ptracer of an event. @t must have been seized by
|
|
* ptracer.
|
|
*
|
|
* If @t is running, STOP trap will be taken. If trapped for STOP and
|
|
* ptracer is listening for events, tracee is woken up so that it can
|
|
* re-trap for the new event. If trapped otherwise, STOP trap will be
|
|
* eventually taken without returning to userland after the existing traps
|
|
* are finished by PTRACE_CONT.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
static void ptrace_trap_notify(struct task_struct *t)
|
|
{
|
|
WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
|
|
lockdep_assert_held(&t->sighand->siglock);
|
|
|
|
task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
|
|
ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
|
|
}
|
|
|
|
/*
|
|
* Handle magic process-wide effects of stop/continue signals. Unlike
|
|
* the signal actions, these happen immediately at signal-generation
|
|
* time regardless of blocking, ignoring, or handling. This does the
|
|
* actual continuing for SIGCONT, but not the actual stopping for stop
|
|
* signals. The process stop is done as a signal action for SIG_DFL.
|
|
*
|
|
* Returns true if the signal should be actually delivered, otherwise
|
|
* it should be dropped.
|
|
*/
|
|
static bool prepare_signal(int sig, struct task_struct *p, bool force)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
sigset_t flush;
|
|
|
|
if (signal->flags & SIGNAL_GROUP_EXIT) {
|
|
if (signal->core_state)
|
|
return sig == SIGKILL;
|
|
/*
|
|
* The process is in the middle of dying, drop the signal.
|
|
*/
|
|
return false;
|
|
} else if (sig_kernel_stop(sig)) {
|
|
/*
|
|
* This is a stop signal. Remove SIGCONT from all queues.
|
|
*/
|
|
siginitset(&flush, sigmask(SIGCONT));
|
|
flush_sigqueue_mask(p, &flush, &signal->shared_pending);
|
|
for_each_thread(p, t)
|
|
flush_sigqueue_mask(p, &flush, &t->pending);
|
|
} else if (sig == SIGCONT) {
|
|
unsigned int why;
|
|
/*
|
|
* Remove all stop signals from all queues, wake all threads.
|
|
*/
|
|
siginitset(&flush, SIG_KERNEL_STOP_MASK);
|
|
flush_sigqueue_mask(p, &flush, &signal->shared_pending);
|
|
for_each_thread(p, t) {
|
|
flush_sigqueue_mask(p, &flush, &t->pending);
|
|
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
|
|
if (likely(!(t->ptrace & PT_SEIZED))) {
|
|
t->jobctl &= ~JOBCTL_STOPPED;
|
|
wake_up_state(t, __TASK_STOPPED);
|
|
} else
|
|
ptrace_trap_notify(t);
|
|
}
|
|
|
|
/*
|
|
* Notify the parent with CLD_CONTINUED if we were stopped.
|
|
*
|
|
* If we were in the middle of a group stop, we pretend it
|
|
* was already finished, and then continued. Since SIGCHLD
|
|
* doesn't queue we report only CLD_STOPPED, as if the next
|
|
* CLD_CONTINUED was dropped.
|
|
*/
|
|
why = 0;
|
|
if (signal->flags & SIGNAL_STOP_STOPPED)
|
|
why |= SIGNAL_CLD_CONTINUED;
|
|
else if (signal->group_stop_count)
|
|
why |= SIGNAL_CLD_STOPPED;
|
|
|
|
if (why) {
|
|
/*
|
|
* The first thread which returns from do_signal_stop()
|
|
* will take ->siglock, notice SIGNAL_CLD_MASK, and
|
|
* notify its parent. See get_signal().
|
|
*/
|
|
signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
|
|
signal->group_stop_count = 0;
|
|
signal->group_exit_code = 0;
|
|
}
|
|
}
|
|
|
|
return !sig_ignored(p, sig, force);
|
|
}
|
|
|
|
/*
|
|
* Test if P wants to take SIG. After we've checked all threads with this,
|
|
* it's equivalent to finding no threads not blocking SIG. Any threads not
|
|
* blocking SIG were ruled out because they are not running and already
|
|
* have pending signals. Such threads will dequeue from the shared queue
|
|
* as soon as they're available, so putting the signal on the shared queue
|
|
* will be equivalent to sending it to one such thread.
|
|
*/
|
|
static inline bool wants_signal(int sig, struct task_struct *p)
|
|
{
|
|
if (sigismember(&p->blocked, sig))
|
|
return false;
|
|
|
|
if (p->flags & PF_EXITING)
|
|
return false;
|
|
|
|
if (sig == SIGKILL)
|
|
return true;
|
|
|
|
if (task_is_stopped_or_traced(p))
|
|
return false;
|
|
|
|
return task_curr(p) || !task_sigpending(p);
|
|
}
|
|
|
|
static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
|
|
/*
|
|
* Now find a thread we can wake up to take the signal off the queue.
|
|
*
|
|
* Try the suggested task first (may or may not be the main thread).
|
|
*/
|
|
if (wants_signal(sig, p))
|
|
t = p;
|
|
else if ((type == PIDTYPE_PID) || thread_group_empty(p))
|
|
/*
|
|
* There is just one thread and it does not need to be woken.
|
|
* It will dequeue unblocked signals before it runs again.
|
|
*/
|
|
return;
|
|
else {
|
|
/*
|
|
* Otherwise try to find a suitable thread.
|
|
*/
|
|
t = signal->curr_target;
|
|
while (!wants_signal(sig, t)) {
|
|
t = next_thread(t);
|
|
if (t == signal->curr_target)
|
|
/*
|
|
* No thread needs to be woken.
|
|
* Any eligible threads will see
|
|
* the signal in the queue soon.
|
|
*/
|
|
return;
|
|
}
|
|
signal->curr_target = t;
|
|
}
|
|
|
|
/*
|
|
* Found a killable thread. If the signal will be fatal,
|
|
* then start taking the whole group down immediately.
|
|
*/
|
|
if (sig_fatal(p, sig) &&
|
|
(signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
|
|
!sigismember(&t->real_blocked, sig) &&
|
|
(sig == SIGKILL || !p->ptrace)) {
|
|
/*
|
|
* This signal will be fatal to the whole group.
|
|
*/
|
|
if (!sig_kernel_coredump(sig)) {
|
|
/*
|
|
* Start a group exit and wake everybody up.
|
|
* This way we don't have other threads
|
|
* running and doing things after a slower
|
|
* thread has the fatal signal pending.
|
|
*/
|
|
signal->flags = SIGNAL_GROUP_EXIT;
|
|
signal->group_exit_code = sig;
|
|
signal->group_stop_count = 0;
|
|
__for_each_thread(signal, t) {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The signal is already in the shared-pending queue.
|
|
* Tell the chosen thread to wake up and dequeue it.
|
|
*/
|
|
signal_wake_up(t, sig == SIGKILL);
|
|
return;
|
|
}
|
|
|
|
static inline bool legacy_queue(struct sigpending *signals, int sig)
|
|
{
|
|
return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
|
|
}
|
|
|
|
static int __send_signal_locked(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *t, enum pid_type type, bool force)
|
|
{
|
|
struct sigpending *pending;
|
|
struct sigqueue *q;
|
|
int override_rlimit;
|
|
int ret = 0, result;
|
|
|
|
lockdep_assert_held(&t->sighand->siglock);
|
|
|
|
result = TRACE_SIGNAL_IGNORED;
|
|
if (!prepare_signal(sig, t, force))
|
|
goto ret;
|
|
|
|
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
|
|
/*
|
|
* Short-circuit ignored signals and support queuing
|
|
* exactly one non-rt signal, so that we can get more
|
|
* detailed information about the cause of the signal.
|
|
*/
|
|
result = TRACE_SIGNAL_ALREADY_PENDING;
|
|
if (legacy_queue(pending, sig))
|
|
goto ret;
|
|
|
|
result = TRACE_SIGNAL_DELIVERED;
|
|
/*
|
|
* Skip useless siginfo allocation for SIGKILL and kernel threads.
|
|
*/
|
|
if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
|
|
goto out_set;
|
|
|
|
/*
|
|
* Real-time signals must be queued if sent by sigqueue, or
|
|
* some other real-time mechanism. It is implementation
|
|
* defined whether kill() does so. We attempt to do so, on
|
|
* the principle of least surprise, but since kill is not
|
|
* allowed to fail with EAGAIN when low on memory we just
|
|
* make sure at least one signal gets delivered and don't
|
|
* pass on the info struct.
|
|
*/
|
|
if (sig < SIGRTMIN)
|
|
override_rlimit = (is_si_special(info) || info->si_code >= 0);
|
|
else
|
|
override_rlimit = 0;
|
|
|
|
q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
|
|
|
|
if (q) {
|
|
list_add_tail(&q->list, &pending->list);
|
|
switch ((unsigned long) info) {
|
|
case (unsigned long) SEND_SIG_NOINFO:
|
|
clear_siginfo(&q->info);
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_USER;
|
|
q->info.si_pid = task_tgid_nr_ns(current,
|
|
task_active_pid_ns(t));
|
|
rcu_read_lock();
|
|
q->info.si_uid =
|
|
from_kuid_munged(task_cred_xxx(t, user_ns),
|
|
current_uid());
|
|
rcu_read_unlock();
|
|
break;
|
|
case (unsigned long) SEND_SIG_PRIV:
|
|
clear_siginfo(&q->info);
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_KERNEL;
|
|
q->info.si_pid = 0;
|
|
q->info.si_uid = 0;
|
|
break;
|
|
default:
|
|
copy_siginfo(&q->info, info);
|
|
break;
|
|
}
|
|
} else if (!is_si_special(info) &&
|
|
sig >= SIGRTMIN && info->si_code != SI_USER) {
|
|
/*
|
|
* Queue overflow, abort. We may abort if the
|
|
* signal was rt and sent by user using something
|
|
* other than kill().
|
|
*/
|
|
result = TRACE_SIGNAL_OVERFLOW_FAIL;
|
|
ret = -EAGAIN;
|
|
goto ret;
|
|
} else {
|
|
/*
|
|
* This is a silent loss of information. We still
|
|
* send the signal, but the *info bits are lost.
|
|
*/
|
|
result = TRACE_SIGNAL_LOSE_INFO;
|
|
}
|
|
|
|
out_set:
|
|
signalfd_notify(t, sig);
|
|
sigaddset(&pending->signal, sig);
|
|
|
|
/* Let multiprocess signals appear after on-going forks */
|
|
if (type > PIDTYPE_TGID) {
|
|
struct multiprocess_signals *delayed;
|
|
hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
|
|
sigset_t *signal = &delayed->signal;
|
|
/* Can't queue both a stop and a continue signal */
|
|
if (sig == SIGCONT)
|
|
sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
|
|
else if (sig_kernel_stop(sig))
|
|
sigdelset(signal, SIGCONT);
|
|
sigaddset(signal, sig);
|
|
}
|
|
}
|
|
|
|
complete_signal(sig, t, type);
|
|
ret:
|
|
trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
|
|
return ret;
|
|
}
|
|
|
|
static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
|
|
{
|
|
bool ret = false;
|
|
switch (siginfo_layout(info->si_signo, info->si_code)) {
|
|
case SIL_KILL:
|
|
case SIL_CHLD:
|
|
case SIL_RT:
|
|
ret = true;
|
|
break;
|
|
case SIL_TIMER:
|
|
case SIL_POLL:
|
|
case SIL_FAULT:
|
|
case SIL_FAULT_TRAPNO:
|
|
case SIL_FAULT_MCEERR:
|
|
case SIL_FAULT_BNDERR:
|
|
case SIL_FAULT_PKUERR:
|
|
case SIL_FAULT_PERF_EVENT:
|
|
case SIL_SYS:
|
|
ret = false;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int send_signal_locked(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *t, enum pid_type type)
|
|
{
|
|
/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
|
|
bool force = false;
|
|
|
|
if (info == SEND_SIG_NOINFO) {
|
|
/* Force if sent from an ancestor pid namespace */
|
|
force = !task_pid_nr_ns(current, task_active_pid_ns(t));
|
|
} else if (info == SEND_SIG_PRIV) {
|
|
/* Don't ignore kernel generated signals */
|
|
force = true;
|
|
} else if (has_si_pid_and_uid(info)) {
|
|
/* SIGKILL and SIGSTOP is special or has ids */
|
|
struct user_namespace *t_user_ns;
|
|
|
|
rcu_read_lock();
|
|
t_user_ns = task_cred_xxx(t, user_ns);
|
|
if (current_user_ns() != t_user_ns) {
|
|
kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
|
|
info->si_uid = from_kuid_munged(t_user_ns, uid);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/* A kernel generated signal? */
|
|
force = (info->si_code == SI_KERNEL);
|
|
|
|
/* From an ancestor pid namespace? */
|
|
if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
|
|
info->si_pid = 0;
|
|
force = true;
|
|
}
|
|
}
|
|
return __send_signal_locked(sig, info, t, type, force);
|
|
}
|
|
|
|
static void print_fatal_signal(int signr)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(current);
|
|
struct file *exe_file;
|
|
|
|
exe_file = get_task_exe_file(current);
|
|
if (exe_file) {
|
|
pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
|
|
exe_file, current->comm, signr);
|
|
fput(exe_file);
|
|
} else {
|
|
pr_info("%s: potentially unexpected fatal signal %d.\n",
|
|
current->comm, signr);
|
|
}
|
|
|
|
#if defined(__i386__) && !defined(__arch_um__)
|
|
pr_info("code at %08lx: ", regs->ip);
|
|
{
|
|
int i;
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned char insn;
|
|
|
|
if (get_user(insn, (unsigned char *)(regs->ip + i)))
|
|
break;
|
|
pr_cont("%02x ", insn);
|
|
}
|
|
}
|
|
pr_cont("\n");
|
|
#endif
|
|
preempt_disable();
|
|
show_regs(regs);
|
|
preempt_enable();
|
|
}
|
|
|
|
static int __init setup_print_fatal_signals(char *str)
|
|
{
|
|
get_option (&str, &print_fatal_signals);
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("print-fatal-signals=", setup_print_fatal_signals);
|
|
|
|
int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
|
|
enum pid_type type)
|
|
{
|
|
unsigned long flags;
|
|
int ret = -ESRCH;
|
|
|
|
if (lock_task_sighand(p, &flags)) {
|
|
ret = send_signal_locked(sig, info, p, type);
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
enum sig_handler {
|
|
HANDLER_CURRENT, /* If reachable use the current handler */
|
|
HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
|
|
HANDLER_EXIT, /* Only visible as the process exit code */
|
|
};
|
|
|
|
/*
|
|
* Force a signal that the process can't ignore: if necessary
|
|
* we unblock the signal and change any SIG_IGN to SIG_DFL.
|
|
*
|
|
* Note: If we unblock the signal, we always reset it to SIG_DFL,
|
|
* since we do not want to have a signal handler that was blocked
|
|
* be invoked when user space had explicitly blocked it.
|
|
*
|
|
* We don't want to have recursive SIGSEGV's etc, for example,
|
|
* that is why we also clear SIGNAL_UNKILLABLE.
|
|
*/
|
|
static int
|
|
force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
|
|
enum sig_handler handler)
|
|
{
|
|
unsigned long int flags;
|
|
int ret, blocked, ignored;
|
|
struct k_sigaction *action;
|
|
int sig = info->si_signo;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
action = &t->sighand->action[sig-1];
|
|
ignored = action->sa.sa_handler == SIG_IGN;
|
|
blocked = sigismember(&t->blocked, sig);
|
|
if (blocked || ignored || (handler != HANDLER_CURRENT)) {
|
|
action->sa.sa_handler = SIG_DFL;
|
|
if (handler == HANDLER_EXIT)
|
|
action->sa.sa_flags |= SA_IMMUTABLE;
|
|
if (blocked)
|
|
sigdelset(&t->blocked, sig);
|
|
}
|
|
/*
|
|
* Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
|
|
* debugging to leave init killable. But HANDLER_EXIT is always fatal.
|
|
*/
|
|
if (action->sa.sa_handler == SIG_DFL &&
|
|
(!t->ptrace || (handler == HANDLER_EXIT)))
|
|
t->signal->flags &= ~SIGNAL_UNKILLABLE;
|
|
ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
|
|
/* This can happen if the signal was already pending and blocked */
|
|
if (!task_sigpending(t))
|
|
signal_wake_up(t, 0);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int force_sig_info(struct kernel_siginfo *info)
|
|
{
|
|
return force_sig_info_to_task(info, current, HANDLER_CURRENT);
|
|
}
|
|
|
|
/*
|
|
* Nuke all other threads in the group.
|
|
*/
|
|
int zap_other_threads(struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
int count = 0;
|
|
|
|
p->signal->group_stop_count = 0;
|
|
|
|
for_other_threads(p, t) {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
count++;
|
|
|
|
/* Don't bother with already dead threads */
|
|
if (t->exit_state)
|
|
continue;
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
|
|
unsigned long *flags)
|
|
{
|
|
struct sighand_struct *sighand;
|
|
|
|
rcu_read_lock();
|
|
for (;;) {
|
|
sighand = rcu_dereference(tsk->sighand);
|
|
if (unlikely(sighand == NULL))
|
|
break;
|
|
|
|
/*
|
|
* This sighand can be already freed and even reused, but
|
|
* we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
|
|
* initializes ->siglock: this slab can't go away, it has
|
|
* the same object type, ->siglock can't be reinitialized.
|
|
*
|
|
* We need to ensure that tsk->sighand is still the same
|
|
* after we take the lock, we can race with de_thread() or
|
|
* __exit_signal(). In the latter case the next iteration
|
|
* must see ->sighand == NULL.
|
|
*/
|
|
spin_lock_irqsave(&sighand->siglock, *flags);
|
|
if (likely(sighand == rcu_access_pointer(tsk->sighand)))
|
|
break;
|
|
spin_unlock_irqrestore(&sighand->siglock, *flags);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return sighand;
|
|
}
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
void lockdep_assert_task_sighand_held(struct task_struct *task)
|
|
{
|
|
struct sighand_struct *sighand;
|
|
|
|
rcu_read_lock();
|
|
sighand = rcu_dereference(task->sighand);
|
|
if (sighand)
|
|
lockdep_assert_held(&sighand->siglock);
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* send signal info to all the members of a thread group or to the
|
|
* individual thread if type == PIDTYPE_PID.
|
|
*/
|
|
int group_send_sig_info(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *p, enum pid_type type)
|
|
{
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
ret = check_kill_permission(sig, info, p);
|
|
rcu_read_unlock();
|
|
|
|
if (!ret && sig)
|
|
ret = do_send_sig_info(sig, info, p, type);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __kill_pgrp_info() sends a signal to a process group: this is what the tty
|
|
* control characters do (^C, ^Z etc)
|
|
* - the caller must hold at least a readlock on tasklist_lock
|
|
*/
|
|
int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
int ret = -ESRCH;
|
|
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
|
|
/*
|
|
* If group_send_sig_info() succeeds at least once ret
|
|
* becomes 0 and after that the code below has no effect.
|
|
* Otherwise we return the last err or -ESRCH if this
|
|
* process group is empty.
|
|
*/
|
|
if (ret)
|
|
ret = err;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
|
|
struct pid *pid, enum pid_type type)
|
|
{
|
|
int error = -ESRCH;
|
|
struct task_struct *p;
|
|
|
|
for (;;) {
|
|
rcu_read_lock();
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (p)
|
|
error = group_send_sig_info(sig, info, p, type);
|
|
rcu_read_unlock();
|
|
if (likely(!p || error != -ESRCH))
|
|
return error;
|
|
/*
|
|
* The task was unhashed in between, try again. If it
|
|
* is dead, pid_task() will return NULL, if we race with
|
|
* de_thread() it will find the new leader.
|
|
*/
|
|
}
|
|
}
|
|
|
|
int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
|
|
{
|
|
return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
|
|
}
|
|
|
|
static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
|
|
{
|
|
int error;
|
|
rcu_read_lock();
|
|
error = kill_pid_info(sig, info, find_vpid(pid));
|
|
rcu_read_unlock();
|
|
return error;
|
|
}
|
|
|
|
static inline bool kill_as_cred_perm(const struct cred *cred,
|
|
struct task_struct *target)
|
|
{
|
|
const struct cred *pcred = __task_cred(target);
|
|
|
|
return uid_eq(cred->euid, pcred->suid) ||
|
|
uid_eq(cred->euid, pcred->uid) ||
|
|
uid_eq(cred->uid, pcred->suid) ||
|
|
uid_eq(cred->uid, pcred->uid);
|
|
}
|
|
|
|
/*
|
|
* The usb asyncio usage of siginfo is wrong. The glibc support
|
|
* for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
|
|
* AKA after the generic fields:
|
|
* kernel_pid_t si_pid;
|
|
* kernel_uid32_t si_uid;
|
|
* sigval_t si_value;
|
|
*
|
|
* Unfortunately when usb generates SI_ASYNCIO it assumes the layout
|
|
* after the generic fields is:
|
|
* void __user *si_addr;
|
|
*
|
|
* This is a practical problem when there is a 64bit big endian kernel
|
|
* and a 32bit userspace. As the 32bit address will encoded in the low
|
|
* 32bits of the pointer. Those low 32bits will be stored at higher
|
|
* address than appear in a 32 bit pointer. So userspace will not
|
|
* see the address it was expecting for it's completions.
|
|
*
|
|
* There is nothing in the encoding that can allow
|
|
* copy_siginfo_to_user32 to detect this confusion of formats, so
|
|
* handle this by requiring the caller of kill_pid_usb_asyncio to
|
|
* notice when this situration takes place and to store the 32bit
|
|
* pointer in sival_int, instead of sival_addr of the sigval_t addr
|
|
* parameter.
|
|
*/
|
|
int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
|
|
struct pid *pid, const struct cred *cred)
|
|
{
|
|
struct kernel_siginfo info;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
int ret = -EINVAL;
|
|
|
|
if (!valid_signal(sig))
|
|
return ret;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = errno;
|
|
info.si_code = SI_ASYNCIO;
|
|
*((sigval_t *)&info.si_pid) = addr;
|
|
|
|
rcu_read_lock();
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (!p) {
|
|
ret = -ESRCH;
|
|
goto out_unlock;
|
|
}
|
|
if (!kill_as_cred_perm(cred, p)) {
|
|
ret = -EPERM;
|
|
goto out_unlock;
|
|
}
|
|
ret = security_task_kill(p, &info, sig, cred);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
if (sig) {
|
|
if (lock_task_sighand(p, &flags)) {
|
|
ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
|
|
unlock_task_sighand(p, &flags);
|
|
} else
|
|
ret = -ESRCH;
|
|
}
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
|
|
|
|
/*
|
|
* kill_something_info() interprets pid in interesting ways just like kill(2).
|
|
*
|
|
* POSIX specifies that kill(-1,sig) is unspecified, but what we have
|
|
* is probably wrong. Should make it like BSD or SYSV.
|
|
*/
|
|
|
|
static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
|
|
{
|
|
int ret;
|
|
|
|
if (pid > 0)
|
|
return kill_proc_info(sig, info, pid);
|
|
|
|
/* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
|
|
if (pid == INT_MIN)
|
|
return -ESRCH;
|
|
|
|
read_lock(&tasklist_lock);
|
|
if (pid != -1) {
|
|
ret = __kill_pgrp_info(sig, info,
|
|
pid ? find_vpid(-pid) : task_pgrp(current));
|
|
} else {
|
|
int retval = 0, count = 0;
|
|
struct task_struct * p;
|
|
|
|
for_each_process(p) {
|
|
if (task_pid_vnr(p) > 1 &&
|
|
!same_thread_group(p, current)) {
|
|
int err = group_send_sig_info(sig, info, p,
|
|
PIDTYPE_MAX);
|
|
++count;
|
|
if (err != -EPERM)
|
|
retval = err;
|
|
}
|
|
}
|
|
ret = count ? retval : -ESRCH;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These are for backward compatibility with the rest of the kernel source.
|
|
*/
|
|
|
|
int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
|
|
{
|
|
/*
|
|
* Make sure legacy kernel users don't send in bad values
|
|
* (normal paths check this in check_kill_permission).
|
|
*/
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
return do_send_sig_info(sig, info, p, PIDTYPE_PID);
|
|
}
|
|
EXPORT_SYMBOL(send_sig_info);
|
|
|
|
#define __si_special(priv) \
|
|
((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
|
|
|
|
int
|
|
send_sig(int sig, struct task_struct *p, int priv)
|
|
{
|
|
return send_sig_info(sig, __si_special(priv), p);
|
|
}
|
|
EXPORT_SYMBOL(send_sig);
|
|
|
|
void force_sig(int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_KERNEL;
|
|
info.si_pid = 0;
|
|
info.si_uid = 0;
|
|
force_sig_info(&info);
|
|
}
|
|
EXPORT_SYMBOL(force_sig);
|
|
|
|
void force_fatal_sig(int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_KERNEL;
|
|
info.si_pid = 0;
|
|
info.si_uid = 0;
|
|
force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
|
|
}
|
|
|
|
void force_exit_sig(int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_KERNEL;
|
|
info.si_pid = 0;
|
|
info.si_uid = 0;
|
|
force_sig_info_to_task(&info, current, HANDLER_EXIT);
|
|
}
|
|
|
|
/*
|
|
* When things go south during signal handling, we
|
|
* will force a SIGSEGV. And if the signal that caused
|
|
* the problem was already a SIGSEGV, we'll want to
|
|
* make sure we don't even try to deliver the signal..
|
|
*/
|
|
void force_sigsegv(int sig)
|
|
{
|
|
if (sig == SIGSEGV)
|
|
force_fatal_sig(SIGSEGV);
|
|
else
|
|
force_sig(SIGSEGV);
|
|
}
|
|
|
|
int force_sig_fault_to_task(int sig, int code, void __user *addr,
|
|
struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
|
|
}
|
|
|
|
int force_sig_fault(int sig, int code, void __user *addr)
|
|
{
|
|
return force_sig_fault_to_task(sig, code, addr, current);
|
|
}
|
|
|
|
int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
return send_sig_info(info.si_signo, &info, t);
|
|
}
|
|
|
|
int force_sig_mceerr(int code, void __user *addr, short lsb)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_addr_lsb = lsb;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_addr_lsb = lsb;
|
|
return send_sig_info(info.si_signo, &info, t);
|
|
}
|
|
EXPORT_SYMBOL(send_sig_mceerr);
|
|
|
|
int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_BNDERR;
|
|
info.si_addr = addr;
|
|
info.si_lower = lower;
|
|
info.si_upper = upper;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
#ifdef SEGV_PKUERR
|
|
int force_sig_pkuerr(void __user *addr, u32 pkey)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_PKUERR;
|
|
info.si_addr = addr;
|
|
info.si_pkey = pkey;
|
|
return force_sig_info(&info);
|
|
}
|
|
#endif
|
|
|
|
int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = 0;
|
|
info.si_code = TRAP_PERF;
|
|
info.si_addr = addr;
|
|
info.si_perf_data = sig_data;
|
|
info.si_perf_type = type;
|
|
|
|
/*
|
|
* Signals generated by perf events should not terminate the whole
|
|
* process if SIGTRAP is blocked, however, delivering the signal
|
|
* asynchronously is better than not delivering at all. But tell user
|
|
* space if the signal was asynchronous, so it can clearly be
|
|
* distinguished from normal synchronous ones.
|
|
*/
|
|
info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
|
|
TRAP_PERF_FLAG_ASYNC :
|
|
0;
|
|
|
|
return send_sig_info(info.si_signo, &info, current);
|
|
}
|
|
|
|
/**
|
|
* force_sig_seccomp - signals the task to allow in-process syscall emulation
|
|
* @syscall: syscall number to send to userland
|
|
* @reason: filter-supplied reason code to send to userland (via si_errno)
|
|
* @force_coredump: true to trigger a coredump
|
|
*
|
|
* Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
|
|
*/
|
|
int force_sig_seccomp(int syscall, int reason, bool force_coredump)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGSYS;
|
|
info.si_code = SYS_SECCOMP;
|
|
info.si_call_addr = (void __user *)KSTK_EIP(current);
|
|
info.si_errno = reason;
|
|
info.si_arch = syscall_get_arch(current);
|
|
info.si_syscall = syscall;
|
|
return force_sig_info_to_task(&info, current,
|
|
force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
|
|
}
|
|
|
|
/* For the crazy architectures that include trap information in
|
|
* the errno field, instead of an actual errno value.
|
|
*/
|
|
int force_sig_ptrace_errno_trap(int errno, void __user *addr)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = errno;
|
|
info.si_code = TRAP_HWBKPT;
|
|
info.si_addr = addr;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
/* For the rare architectures that include trap information using
|
|
* si_trapno.
|
|
*/
|
|
int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_trapno = trapno;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
/* For the rare architectures that include trap information using
|
|
* si_trapno.
|
|
*/
|
|
int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
|
|
struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_trapno = trapno;
|
|
return send_sig_info(info.si_signo, &info, t);
|
|
}
|
|
|
|
static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
|
|
{
|
|
int ret;
|
|
read_lock(&tasklist_lock);
|
|
ret = __kill_pgrp_info(sig, info, pgrp);
|
|
read_unlock(&tasklist_lock);
|
|
return ret;
|
|
}
|
|
|
|
int kill_pgrp(struct pid *pid, int sig, int priv)
|
|
{
|
|
return kill_pgrp_info(sig, __si_special(priv), pid);
|
|
}
|
|
EXPORT_SYMBOL(kill_pgrp);
|
|
|
|
int kill_pid(struct pid *pid, int sig, int priv)
|
|
{
|
|
return kill_pid_info(sig, __si_special(priv), pid);
|
|
}
|
|
EXPORT_SYMBOL(kill_pid);
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
/*
|
|
* These functions handle POSIX timer signals. POSIX timers use
|
|
* preallocated sigqueue structs for sending signals.
|
|
*/
|
|
static void __flush_itimer_signals(struct sigpending *pending)
|
|
{
|
|
sigset_t signal, retain;
|
|
struct sigqueue *q, *n;
|
|
|
|
signal = pending->signal;
|
|
sigemptyset(&retain);
|
|
|
|
list_for_each_entry_safe(q, n, &pending->list, list) {
|
|
int sig = q->info.si_signo;
|
|
|
|
if (likely(q->info.si_code != SI_TIMER)) {
|
|
sigaddset(&retain, sig);
|
|
} else {
|
|
sigdelset(&signal, sig);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
sigorsets(&pending->signal, &signal, &retain);
|
|
}
|
|
|
|
void flush_itimer_signals(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
guard(spinlock_irqsave)(&tsk->sighand->siglock);
|
|
__flush_itimer_signals(&tsk->pending);
|
|
__flush_itimer_signals(&tsk->signal->shared_pending);
|
|
}
|
|
|
|
bool posixtimer_init_sigqueue(struct sigqueue *q)
|
|
{
|
|
struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
|
|
|
|
if (!ucounts)
|
|
return false;
|
|
clear_siginfo(&q->info);
|
|
__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
|
|
return true;
|
|
}
|
|
|
|
struct sigqueue *sigqueue_alloc(void)
|
|
{
|
|
return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
|
|
}
|
|
|
|
void sigqueue_free(struct sigqueue *q)
|
|
{
|
|
spinlock_t *lock = ¤t->sighand->siglock;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
|
|
return;
|
|
/*
|
|
* We must hold ->siglock while testing q->list
|
|
* to serialize with collect_signal() or with
|
|
* __exit_signal()->flush_sigqueue().
|
|
*/
|
|
spin_lock_irqsave(lock, flags);
|
|
q->flags &= ~SIGQUEUE_PREALLOC;
|
|
/*
|
|
* If it is queued it will be freed when dequeued,
|
|
* like the "regular" sigqueue.
|
|
*/
|
|
if (!list_empty(&q->list))
|
|
q = NULL;
|
|
spin_unlock_irqrestore(lock, flags);
|
|
|
|
if (q)
|
|
__sigqueue_free(q);
|
|
}
|
|
|
|
static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
|
|
{
|
|
struct sigpending *pending;
|
|
int sig = q->info.si_signo;
|
|
|
|
signalfd_notify(t, sig);
|
|
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
|
|
list_add_tail(&q->list, &pending->list);
|
|
sigaddset(&pending->signal, sig);
|
|
complete_signal(sig, t, type);
|
|
}
|
|
|
|
/*
|
|
* This function is used by POSIX timers to deliver a timer signal.
|
|
* Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
|
|
* set), the signal must be delivered to the specific thread (queues
|
|
* into t->pending).
|
|
*
|
|
* Where type is not PIDTYPE_PID, signals must be delivered to the
|
|
* process. In this case, prefer to deliver to current if it is in
|
|
* the same thread group as the target process, which avoids
|
|
* unnecessarily waking up a potentially idle task.
|
|
*/
|
|
static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
|
|
{
|
|
struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
|
|
|
|
if (t && tmr->it_pid_type != PIDTYPE_PID && same_thread_group(t, current))
|
|
t = current;
|
|
return t;
|
|
}
|
|
|
|
int posixtimer_send_sigqueue(struct k_itimer *tmr)
|
|
{
|
|
struct sigqueue *q = tmr->sigq;
|
|
int sig = q->info.si_signo;
|
|
struct task_struct *t;
|
|
unsigned long flags;
|
|
int ret, result;
|
|
|
|
guard(rcu)();
|
|
|
|
t = posixtimer_get_target(tmr);
|
|
if (!t)
|
|
return -1;
|
|
|
|
if (!likely(lock_task_sighand(t, &flags)))
|
|
return -1;
|
|
|
|
/*
|
|
* Update @q::info::si_sys_private for posix timer signals with
|
|
* sighand locked to prevent a race against dequeue_signal() which
|
|
* decides based on si_sys_private whether to invoke
|
|
* posixtimer_rearm() or not.
|
|
*/
|
|
q->info.si_sys_private = tmr->it_signal_seq;
|
|
|
|
ret = 1; /* the signal is ignored */
|
|
if (!prepare_signal(sig, t, false)) {
|
|
result = TRACE_SIGNAL_IGNORED;
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
if (unlikely(!list_empty(&q->list))) {
|
|
result = TRACE_SIGNAL_ALREADY_PENDING;
|
|
goto out;
|
|
}
|
|
posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
|
|
result = TRACE_SIGNAL_DELIVERED;
|
|
out:
|
|
trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
|
|
unlock_task_sighand(t, &flags);
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_POSIX_TIMERS */
|
|
|
|
void do_notify_pidfd(struct task_struct *task)
|
|
{
|
|
struct pid *pid = task_pid(task);
|
|
|
|
WARN_ON(task->exit_state == 0);
|
|
|
|
__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
|
|
poll_to_key(EPOLLIN | EPOLLRDNORM));
|
|
}
|
|
|
|
/*
|
|
* Let a parent know about the death of a child.
|
|
* For a stopped/continued status change, use do_notify_parent_cldstop instead.
|
|
*
|
|
* Returns true if our parent ignored us and so we've switched to
|
|
* self-reaping.
|
|
*/
|
|
bool do_notify_parent(struct task_struct *tsk, int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
unsigned long flags;
|
|
struct sighand_struct *psig;
|
|
bool autoreap = false;
|
|
u64 utime, stime;
|
|
|
|
WARN_ON_ONCE(sig == -1);
|
|
|
|
/* do_notify_parent_cldstop should have been called instead. */
|
|
WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
|
|
|
|
WARN_ON_ONCE(!tsk->ptrace &&
|
|
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
|
|
/*
|
|
* tsk is a group leader and has no threads, wake up the
|
|
* non-PIDFD_THREAD waiters.
|
|
*/
|
|
if (thread_group_empty(tsk))
|
|
do_notify_pidfd(tsk);
|
|
|
|
if (sig != SIGCHLD) {
|
|
/*
|
|
* This is only possible if parent == real_parent.
|
|
* Check if it has changed security domain.
|
|
*/
|
|
if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
|
|
sig = SIGCHLD;
|
|
}
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
/*
|
|
* We are under tasklist_lock here so our parent is tied to
|
|
* us and cannot change.
|
|
*
|
|
* task_active_pid_ns will always return the same pid namespace
|
|
* until a task passes through release_task.
|
|
*
|
|
* write_lock() currently calls preempt_disable() which is the
|
|
* same as rcu_read_lock(), but according to Oleg, this is not
|
|
* correct to rely on this
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
|
|
info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
|
|
task_uid(tsk));
|
|
rcu_read_unlock();
|
|
|
|
task_cputime(tsk, &utime, &stime);
|
|
info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
|
|
info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
|
|
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
if (tsk->exit_code & 0x80)
|
|
info.si_code = CLD_DUMPED;
|
|
else if (tsk->exit_code & 0x7f)
|
|
info.si_code = CLD_KILLED;
|
|
else {
|
|
info.si_code = CLD_EXITED;
|
|
info.si_status = tsk->exit_code >> 8;
|
|
}
|
|
|
|
psig = tsk->parent->sighand;
|
|
spin_lock_irqsave(&psig->siglock, flags);
|
|
if (!tsk->ptrace && sig == SIGCHLD &&
|
|
(psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
|
|
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
|
|
/*
|
|
* We are exiting and our parent doesn't care. POSIX.1
|
|
* defines special semantics for setting SIGCHLD to SIG_IGN
|
|
* or setting the SA_NOCLDWAIT flag: we should be reaped
|
|
* automatically and not left for our parent's wait4 call.
|
|
* Rather than having the parent do it as a magic kind of
|
|
* signal handler, we just set this to tell do_exit that we
|
|
* can be cleaned up without becoming a zombie. Note that
|
|
* we still call __wake_up_parent in this case, because a
|
|
* blocked sys_wait4 might now return -ECHILD.
|
|
*
|
|
* Whether we send SIGCHLD or not for SA_NOCLDWAIT
|
|
* is implementation-defined: we do (if you don't want
|
|
* it, just use SIG_IGN instead).
|
|
*/
|
|
autoreap = true;
|
|
if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
|
|
sig = 0;
|
|
}
|
|
/*
|
|
* Send with __send_signal as si_pid and si_uid are in the
|
|
* parent's namespaces.
|
|
*/
|
|
if (valid_signal(sig) && sig)
|
|
__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
|
|
__wake_up_parent(tsk, tsk->parent);
|
|
spin_unlock_irqrestore(&psig->siglock, flags);
|
|
|
|
return autoreap;
|
|
}
|
|
|
|
/**
|
|
* do_notify_parent_cldstop - notify parent of stopped/continued state change
|
|
* @tsk: task reporting the state change
|
|
* @for_ptracer: the notification is for ptracer
|
|
* @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
|
|
*
|
|
* Notify @tsk's parent that the stopped/continued state has changed. If
|
|
* @for_ptracer is %false, @tsk's group leader notifies to its real parent.
|
|
* If %true, @tsk reports to @tsk->parent which should be the ptracer.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with tasklist_lock at least read locked.
|
|
*/
|
|
static void do_notify_parent_cldstop(struct task_struct *tsk,
|
|
bool for_ptracer, int why)
|
|
{
|
|
struct kernel_siginfo info;
|
|
unsigned long flags;
|
|
struct task_struct *parent;
|
|
struct sighand_struct *sighand;
|
|
u64 utime, stime;
|
|
|
|
if (for_ptracer) {
|
|
parent = tsk->parent;
|
|
} else {
|
|
tsk = tsk->group_leader;
|
|
parent = tsk->real_parent;
|
|
}
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGCHLD;
|
|
info.si_errno = 0;
|
|
/*
|
|
* see comment in do_notify_parent() about the following 4 lines
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
|
|
info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
|
|
rcu_read_unlock();
|
|
|
|
task_cputime(tsk, &utime, &stime);
|
|
info.si_utime = nsec_to_clock_t(utime);
|
|
info.si_stime = nsec_to_clock_t(stime);
|
|
|
|
info.si_code = why;
|
|
switch (why) {
|
|
case CLD_CONTINUED:
|
|
info.si_status = SIGCONT;
|
|
break;
|
|
case CLD_STOPPED:
|
|
info.si_status = tsk->signal->group_exit_code & 0x7f;
|
|
break;
|
|
case CLD_TRAPPED:
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
sighand = parent->sighand;
|
|
spin_lock_irqsave(&sighand->siglock, flags);
|
|
if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
|
|
!(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
|
|
send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
|
|
/*
|
|
* Even if SIGCHLD is not generated, we must wake up wait4 calls.
|
|
*/
|
|
__wake_up_parent(tsk, parent);
|
|
spin_unlock_irqrestore(&sighand->siglock, flags);
|
|
}
|
|
|
|
/*
|
|
* This must be called with current->sighand->siglock held.
|
|
*
|
|
* This should be the path for all ptrace stops.
|
|
* We always set current->last_siginfo while stopped here.
|
|
* That makes it a way to test a stopped process for
|
|
* being ptrace-stopped vs being job-control-stopped.
|
|
*
|
|
* Returns the signal the ptracer requested the code resume
|
|
* with. If the code did not stop because the tracer is gone,
|
|
* the stop signal remains unchanged unless clear_code.
|
|
*/
|
|
static int ptrace_stop(int exit_code, int why, unsigned long message,
|
|
kernel_siginfo_t *info)
|
|
__releases(¤t->sighand->siglock)
|
|
__acquires(¤t->sighand->siglock)
|
|
{
|
|
bool gstop_done = false;
|
|
|
|
if (arch_ptrace_stop_needed()) {
|
|
/*
|
|
* The arch code has something special to do before a
|
|
* ptrace stop. This is allowed to block, e.g. for faults
|
|
* on user stack pages. We can't keep the siglock while
|
|
* calling arch_ptrace_stop, so we must release it now.
|
|
* To preserve proper semantics, we must do this before
|
|
* any signal bookkeeping like checking group_stop_count.
|
|
*/
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
arch_ptrace_stop();
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
/*
|
|
* After this point ptrace_signal_wake_up or signal_wake_up
|
|
* will clear TASK_TRACED if ptrace_unlink happens or a fatal
|
|
* signal comes in. Handle previous ptrace_unlinks and fatal
|
|
* signals here to prevent ptrace_stop sleeping in schedule.
|
|
*/
|
|
if (!current->ptrace || __fatal_signal_pending(current))
|
|
return exit_code;
|
|
|
|
set_special_state(TASK_TRACED);
|
|
current->jobctl |= JOBCTL_TRACED;
|
|
|
|
/*
|
|
* We're committing to trapping. TRACED should be visible before
|
|
* TRAPPING is cleared; otherwise, the tracer might fail do_wait().
|
|
* Also, transition to TRACED and updates to ->jobctl should be
|
|
* atomic with respect to siglock and should be done after the arch
|
|
* hook as siglock is released and regrabbed across it.
|
|
*
|
|
* TRACER TRACEE
|
|
*
|
|
* ptrace_attach()
|
|
* [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
|
|
* do_wait()
|
|
* set_current_state() smp_wmb();
|
|
* ptrace_do_wait()
|
|
* wait_task_stopped()
|
|
* task_stopped_code()
|
|
* [L] task_is_traced() [S] task_clear_jobctl_trapping();
|
|
*/
|
|
smp_wmb();
|
|
|
|
current->ptrace_message = message;
|
|
current->last_siginfo = info;
|
|
current->exit_code = exit_code;
|
|
|
|
/*
|
|
* If @why is CLD_STOPPED, we're trapping to participate in a group
|
|
* stop. Do the bookkeeping. Note that if SIGCONT was delievered
|
|
* across siglock relocks since INTERRUPT was scheduled, PENDING
|
|
* could be clear now. We act as if SIGCONT is received after
|
|
* TASK_TRACED is entered - ignore it.
|
|
*/
|
|
if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
|
|
gstop_done = task_participate_group_stop(current);
|
|
|
|
/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
|
|
task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
|
|
if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
|
|
task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
|
|
|
|
/* entering a trap, clear TRAPPING */
|
|
task_clear_jobctl_trapping(current);
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
read_lock(&tasklist_lock);
|
|
/*
|
|
* Notify parents of the stop.
|
|
*
|
|
* While ptraced, there are two parents - the ptracer and
|
|
* the real_parent of the group_leader. The ptracer should
|
|
* know about every stop while the real parent is only
|
|
* interested in the completion of group stop. The states
|
|
* for the two don't interact with each other. Notify
|
|
* separately unless they're gonna be duplicates.
|
|
*/
|
|
if (current->ptrace)
|
|
do_notify_parent_cldstop(current, true, why);
|
|
if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
|
|
do_notify_parent_cldstop(current, false, why);
|
|
|
|
/*
|
|
* The previous do_notify_parent_cldstop() invocation woke ptracer.
|
|
* One a PREEMPTION kernel this can result in preemption requirement
|
|
* which will be fulfilled after read_unlock() and the ptracer will be
|
|
* put on the CPU.
|
|
* The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
|
|
* this task wait in schedule(). If this task gets preempted then it
|
|
* remains enqueued on the runqueue. The ptracer will observe this and
|
|
* then sleep for a delay of one HZ tick. In the meantime this task
|
|
* gets scheduled, enters schedule() and will wait for the ptracer.
|
|
*
|
|
* This preemption point is not bad from a correctness point of
|
|
* view but extends the runtime by one HZ tick time due to the
|
|
* ptracer's sleep. The preempt-disable section ensures that there
|
|
* will be no preemption between unlock and schedule() and so
|
|
* improving the performance since the ptracer will observe that
|
|
* the tracee is scheduled out once it gets on the CPU.
|
|
*
|
|
* On PREEMPT_RT locking tasklist_lock does not disable preemption.
|
|
* Therefore the task can be preempted after do_notify_parent_cldstop()
|
|
* before unlocking tasklist_lock so there is no benefit in doing this.
|
|
*
|
|
* In fact disabling preemption is harmful on PREEMPT_RT because
|
|
* the spinlock_t in cgroup_enter_frozen() must not be acquired
|
|
* with preemption disabled due to the 'sleeping' spinlock
|
|
* substitution of RT.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
preempt_disable();
|
|
read_unlock(&tasklist_lock);
|
|
cgroup_enter_frozen();
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
cgroup_leave_frozen(true);
|
|
|
|
/*
|
|
* We are back. Now reacquire the siglock before touching
|
|
* last_siginfo, so that we are sure to have synchronized with
|
|
* any signal-sending on another CPU that wants to examine it.
|
|
*/
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
exit_code = current->exit_code;
|
|
current->last_siginfo = NULL;
|
|
current->ptrace_message = 0;
|
|
current->exit_code = 0;
|
|
|
|
/* LISTENING can be set only during STOP traps, clear it */
|
|
current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
|
|
|
|
/*
|
|
* Queued signals ignored us while we were stopped for tracing.
|
|
* So check for any that we should take before resuming user mode.
|
|
* This sets TIF_SIGPENDING, but never clears it.
|
|
*/
|
|
recalc_sigpending_tsk(current);
|
|
return exit_code;
|
|
}
|
|
|
|
static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
|
|
{
|
|
kernel_siginfo_t info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = signr;
|
|
info.si_code = exit_code;
|
|
info.si_pid = task_pid_vnr(current);
|
|
info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
|
|
|
|
/* Let the debugger run. */
|
|
return ptrace_stop(exit_code, why, message, &info);
|
|
}
|
|
|
|
int ptrace_notify(int exit_code, unsigned long message)
|
|
{
|
|
int signr;
|
|
|
|
BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
|
|
if (unlikely(task_work_pending(current)))
|
|
task_work_run();
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return signr;
|
|
}
|
|
|
|
/**
|
|
* do_signal_stop - handle group stop for SIGSTOP and other stop signals
|
|
* @signr: signr causing group stop if initiating
|
|
*
|
|
* If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
|
|
* and participate in it. If already set, participate in the existing
|
|
* group stop. If participated in a group stop (and thus slept), %true is
|
|
* returned with siglock released.
|
|
*
|
|
* If ptraced, this function doesn't handle stop itself. Instead,
|
|
* %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
|
|
* untouched. The caller must ensure that INTERRUPT trap handling takes
|
|
* places afterwards.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held, which is released
|
|
* on %true return.
|
|
*
|
|
* RETURNS:
|
|
* %false if group stop is already cancelled or ptrace trap is scheduled.
|
|
* %true if participated in group stop.
|
|
*/
|
|
static bool do_signal_stop(int signr)
|
|
__releases(¤t->sighand->siglock)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
|
|
unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
|
|
struct task_struct *t;
|
|
|
|
/* signr will be recorded in task->jobctl for retries */
|
|
WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
|
|
|
|
if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
|
|
unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
|
|
unlikely(sig->group_exec_task))
|
|
return false;
|
|
/*
|
|
* There is no group stop already in progress. We must
|
|
* initiate one now.
|
|
*
|
|
* While ptraced, a task may be resumed while group stop is
|
|
* still in effect and then receive a stop signal and
|
|
* initiate another group stop. This deviates from the
|
|
* usual behavior as two consecutive stop signals can't
|
|
* cause two group stops when !ptraced. That is why we
|
|
* also check !task_is_stopped(t) below.
|
|
*
|
|
* The condition can be distinguished by testing whether
|
|
* SIGNAL_STOP_STOPPED is already set. Don't generate
|
|
* group_exit_code in such case.
|
|
*
|
|
* This is not necessary for SIGNAL_STOP_CONTINUED because
|
|
* an intervening stop signal is required to cause two
|
|
* continued events regardless of ptrace.
|
|
*/
|
|
if (!(sig->flags & SIGNAL_STOP_STOPPED))
|
|
sig->group_exit_code = signr;
|
|
|
|
sig->group_stop_count = 0;
|
|
if (task_set_jobctl_pending(current, signr | gstop))
|
|
sig->group_stop_count++;
|
|
|
|
for_other_threads(current, t) {
|
|
/*
|
|
* Setting state to TASK_STOPPED for a group
|
|
* stop is always done with the siglock held,
|
|
* so this check has no races.
|
|
*/
|
|
if (!task_is_stopped(t) &&
|
|
task_set_jobctl_pending(t, signr | gstop)) {
|
|
sig->group_stop_count++;
|
|
if (likely(!(t->ptrace & PT_SEIZED)))
|
|
signal_wake_up(t, 0);
|
|
else
|
|
ptrace_trap_notify(t);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (likely(!current->ptrace)) {
|
|
int notify = 0;
|
|
|
|
/*
|
|
* If there are no other threads in the group, or if there
|
|
* is a group stop in progress and we are the last to stop,
|
|
* report to the parent.
|
|
*/
|
|
if (task_participate_group_stop(current))
|
|
notify = CLD_STOPPED;
|
|
|
|
current->jobctl |= JOBCTL_STOPPED;
|
|
set_special_state(TASK_STOPPED);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/*
|
|
* Notify the parent of the group stop completion. Because
|
|
* we're not holding either the siglock or tasklist_lock
|
|
* here, ptracer may attach inbetween; however, this is for
|
|
* group stop and should always be delivered to the real
|
|
* parent of the group leader. The new ptracer will get
|
|
* its notification when this task transitions into
|
|
* TASK_TRACED.
|
|
*/
|
|
if (notify) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, false, notify);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
/* Now we don't run again until woken by SIGCONT or SIGKILL */
|
|
cgroup_enter_frozen();
|
|
schedule();
|
|
return true;
|
|
} else {
|
|
/*
|
|
* While ptraced, group stop is handled by STOP trap.
|
|
* Schedule it and let the caller deal with it.
|
|
*/
|
|
task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* do_jobctl_trap - take care of ptrace jobctl traps
|
|
*
|
|
* When PT_SEIZED, it's used for both group stop and explicit
|
|
* SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
|
|
* accompanying siginfo. If stopped, lower eight bits of exit_code contain
|
|
* the stop signal; otherwise, %SIGTRAP.
|
|
*
|
|
* When !PT_SEIZED, it's used only for group stop trap with stop signal
|
|
* number as exit_code and no siginfo.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held, which may be
|
|
* released and re-acquired before returning with intervening sleep.
|
|
*/
|
|
static void do_jobctl_trap(void)
|
|
{
|
|
struct signal_struct *signal = current->signal;
|
|
int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
|
|
|
|
if (current->ptrace & PT_SEIZED) {
|
|
if (!signal->group_stop_count &&
|
|
!(signal->flags & SIGNAL_STOP_STOPPED))
|
|
signr = SIGTRAP;
|
|
WARN_ON_ONCE(!signr);
|
|
ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
|
|
CLD_STOPPED, 0);
|
|
} else {
|
|
WARN_ON_ONCE(!signr);
|
|
ptrace_stop(signr, CLD_STOPPED, 0, NULL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* do_freezer_trap - handle the freezer jobctl trap
|
|
*
|
|
* Puts the task into frozen state, if only the task is not about to quit.
|
|
* In this case it drops JOBCTL_TRAP_FREEZE.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held,
|
|
* which is always released before returning.
|
|
*/
|
|
static void do_freezer_trap(void)
|
|
__releases(¤t->sighand->siglock)
|
|
{
|
|
/*
|
|
* If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
|
|
* let's make another loop to give it a chance to be handled.
|
|
* In any case, we'll return back.
|
|
*/
|
|
if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
|
|
JOBCTL_TRAP_FREEZE) {
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now we're sure that there is no pending fatal signal and no
|
|
* pending traps. Clear TIF_SIGPENDING to not get out of schedule()
|
|
* immediately (if there is a non-fatal signal pending), and
|
|
* put the task into sleep.
|
|
*/
|
|
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
cgroup_enter_frozen();
|
|
schedule();
|
|
|
|
/*
|
|
* We could've been woken by task_work, run it to clear
|
|
* TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
|
|
*/
|
|
clear_notify_signal();
|
|
if (unlikely(task_work_pending(current)))
|
|
task_work_run();
|
|
}
|
|
|
|
static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
|
|
{
|
|
/*
|
|
* We do not check sig_kernel_stop(signr) but set this marker
|
|
* unconditionally because we do not know whether debugger will
|
|
* change signr. This flag has no meaning unless we are going
|
|
* to stop after return from ptrace_stop(). In this case it will
|
|
* be checked in do_signal_stop(), we should only stop if it was
|
|
* not cleared by SIGCONT while we were sleeping. See also the
|
|
* comment in dequeue_signal().
|
|
*/
|
|
current->jobctl |= JOBCTL_STOP_DEQUEUED;
|
|
signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
|
|
|
|
/* We're back. Did the debugger cancel the sig? */
|
|
if (signr == 0)
|
|
return signr;
|
|
|
|
/*
|
|
* Update the siginfo structure if the signal has
|
|
* changed. If the debugger wanted something
|
|
* specific in the siginfo structure then it should
|
|
* have updated *info via PTRACE_SETSIGINFO.
|
|
*/
|
|
if (signr != info->si_signo) {
|
|
clear_siginfo(info);
|
|
info->si_signo = signr;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
rcu_read_lock();
|
|
info->si_pid = task_pid_vnr(current->parent);
|
|
info->si_uid = from_kuid_munged(current_user_ns(),
|
|
task_uid(current->parent));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* If the (new) signal is now blocked, requeue it. */
|
|
if (sigismember(¤t->blocked, signr) ||
|
|
fatal_signal_pending(current)) {
|
|
send_signal_locked(signr, info, current, type);
|
|
signr = 0;
|
|
}
|
|
|
|
return signr;
|
|
}
|
|
|
|
static void hide_si_addr_tag_bits(struct ksignal *ksig)
|
|
{
|
|
switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
|
|
case SIL_FAULT:
|
|
case SIL_FAULT_TRAPNO:
|
|
case SIL_FAULT_MCEERR:
|
|
case SIL_FAULT_BNDERR:
|
|
case SIL_FAULT_PKUERR:
|
|
case SIL_FAULT_PERF_EVENT:
|
|
ksig->info.si_addr = arch_untagged_si_addr(
|
|
ksig->info.si_addr, ksig->sig, ksig->info.si_code);
|
|
break;
|
|
case SIL_KILL:
|
|
case SIL_TIMER:
|
|
case SIL_POLL:
|
|
case SIL_CHLD:
|
|
case SIL_RT:
|
|
case SIL_SYS:
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool get_signal(struct ksignal *ksig)
|
|
{
|
|
struct sighand_struct *sighand = current->sighand;
|
|
struct signal_struct *signal = current->signal;
|
|
int signr;
|
|
|
|
clear_notify_signal();
|
|
if (unlikely(task_work_pending(current)))
|
|
task_work_run();
|
|
|
|
if (!task_sigpending(current))
|
|
return false;
|
|
|
|
if (unlikely(uprobe_deny_signal()))
|
|
return false;
|
|
|
|
/*
|
|
* Do this once, we can't return to user-mode if freezing() == T.
|
|
* do_signal_stop() and ptrace_stop() do freezable_schedule() and
|
|
* thus do not need another check after return.
|
|
*/
|
|
try_to_freeze();
|
|
|
|
relock:
|
|
spin_lock_irq(&sighand->siglock);
|
|
|
|
/*
|
|
* Every stopped thread goes here after wakeup. Check to see if
|
|
* we should notify the parent, prepare_signal(SIGCONT) encodes
|
|
* the CLD_ si_code into SIGNAL_CLD_MASK bits.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
|
|
int why;
|
|
|
|
if (signal->flags & SIGNAL_CLD_CONTINUED)
|
|
why = CLD_CONTINUED;
|
|
else
|
|
why = CLD_STOPPED;
|
|
|
|
signal->flags &= ~SIGNAL_CLD_MASK;
|
|
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/*
|
|
* Notify the parent that we're continuing. This event is
|
|
* always per-process and doesn't make whole lot of sense
|
|
* for ptracers, who shouldn't consume the state via
|
|
* wait(2) either, but, for backward compatibility, notify
|
|
* the ptracer of the group leader too unless it's gonna be
|
|
* a duplicate.
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, false, why);
|
|
|
|
if (ptrace_reparented(current->group_leader))
|
|
do_notify_parent_cldstop(current->group_leader,
|
|
true, why);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
goto relock;
|
|
}
|
|
|
|
for (;;) {
|
|
struct k_sigaction *ka;
|
|
enum pid_type type;
|
|
|
|
/* Has this task already been marked for death? */
|
|
if ((signal->flags & SIGNAL_GROUP_EXIT) ||
|
|
signal->group_exec_task) {
|
|
signr = SIGKILL;
|
|
sigdelset(¤t->pending.signal, SIGKILL);
|
|
trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
|
|
&sighand->action[SIGKILL-1]);
|
|
recalc_sigpending();
|
|
/*
|
|
* implies do_group_exit() or return to PF_USER_WORKER,
|
|
* no need to initialize ksig->info/etc.
|
|
*/
|
|
goto fatal;
|
|
}
|
|
|
|
if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
|
|
do_signal_stop(0))
|
|
goto relock;
|
|
|
|
if (unlikely(current->jobctl &
|
|
(JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
|
|
if (current->jobctl & JOBCTL_TRAP_MASK) {
|
|
do_jobctl_trap();
|
|
spin_unlock_irq(&sighand->siglock);
|
|
} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
|
|
do_freezer_trap();
|
|
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* If the task is leaving the frozen state, let's update
|
|
* cgroup counters and reset the frozen bit.
|
|
*/
|
|
if (unlikely(cgroup_task_frozen(current))) {
|
|
spin_unlock_irq(&sighand->siglock);
|
|
cgroup_leave_frozen(false);
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* Signals generated by the execution of an instruction
|
|
* need to be delivered before any other pending signals
|
|
* so that the instruction pointer in the signal stack
|
|
* frame points to the faulting instruction.
|
|
*/
|
|
type = PIDTYPE_PID;
|
|
signr = dequeue_synchronous_signal(&ksig->info);
|
|
if (!signr)
|
|
signr = dequeue_signal(¤t->blocked, &ksig->info, &type);
|
|
|
|
if (!signr)
|
|
break; /* will return 0 */
|
|
|
|
if (unlikely(current->ptrace) && (signr != SIGKILL) &&
|
|
!(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
|
|
signr = ptrace_signal(signr, &ksig->info, type);
|
|
if (!signr)
|
|
continue;
|
|
}
|
|
|
|
ka = &sighand->action[signr-1];
|
|
|
|
/* Trace actually delivered signals. */
|
|
trace_signal_deliver(signr, &ksig->info, ka);
|
|
|
|
if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
|
|
continue;
|
|
if (ka->sa.sa_handler != SIG_DFL) {
|
|
/* Run the handler. */
|
|
ksig->ka = *ka;
|
|
|
|
if (ka->sa.sa_flags & SA_ONESHOT)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
|
|
break; /* will return non-zero "signr" value */
|
|
}
|
|
|
|
/*
|
|
* Now we are doing the default action for this signal.
|
|
*/
|
|
if (sig_kernel_ignore(signr)) /* Default is nothing. */
|
|
continue;
|
|
|
|
/*
|
|
* Global init gets no signals it doesn't want.
|
|
* Container-init gets no signals it doesn't want from same
|
|
* container.
|
|
*
|
|
* Note that if global/container-init sees a sig_kernel_only()
|
|
* signal here, the signal must have been generated internally
|
|
* or must have come from an ancestor namespace. In either
|
|
* case, the signal cannot be dropped.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
|
|
!sig_kernel_only(signr))
|
|
continue;
|
|
|
|
if (sig_kernel_stop(signr)) {
|
|
/*
|
|
* The default action is to stop all threads in
|
|
* the thread group. The job control signals
|
|
* do nothing in an orphaned pgrp, but SIGSTOP
|
|
* always works. Note that siglock needs to be
|
|
* dropped during the call to is_orphaned_pgrp()
|
|
* because of lock ordering with tasklist_lock.
|
|
* This allows an intervening SIGCONT to be posted.
|
|
* We need to check for that and bail out if necessary.
|
|
*/
|
|
if (signr != SIGSTOP) {
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/* signals can be posted during this window */
|
|
|
|
if (is_current_pgrp_orphaned())
|
|
goto relock;
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
}
|
|
|
|
if (likely(do_signal_stop(signr))) {
|
|
/* It released the siglock. */
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* We didn't actually stop, due to a race
|
|
* with SIGCONT or something like that.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
fatal:
|
|
spin_unlock_irq(&sighand->siglock);
|
|
if (unlikely(cgroup_task_frozen(current)))
|
|
cgroup_leave_frozen(true);
|
|
|
|
/*
|
|
* Anything else is fatal, maybe with a core dump.
|
|
*/
|
|
current->flags |= PF_SIGNALED;
|
|
|
|
if (sig_kernel_coredump(signr)) {
|
|
if (print_fatal_signals)
|
|
print_fatal_signal(signr);
|
|
proc_coredump_connector(current);
|
|
/*
|
|
* If it was able to dump core, this kills all
|
|
* other threads in the group and synchronizes with
|
|
* their demise. If we lost the race with another
|
|
* thread getting here, it set group_exit_code
|
|
* first and our do_group_exit call below will use
|
|
* that value and ignore the one we pass it.
|
|
*/
|
|
do_coredump(&ksig->info);
|
|
}
|
|
|
|
/*
|
|
* PF_USER_WORKER threads will catch and exit on fatal signals
|
|
* themselves. They have cleanup that must be performed, so we
|
|
* cannot call do_exit() on their behalf. Note that ksig won't
|
|
* be properly initialized, PF_USER_WORKER's shouldn't use it.
|
|
*/
|
|
if (current->flags & PF_USER_WORKER)
|
|
goto out;
|
|
|
|
/*
|
|
* Death signals, no core dump.
|
|
*/
|
|
do_group_exit(signr);
|
|
/* NOTREACHED */
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
ksig->sig = signr;
|
|
|
|
if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
|
|
hide_si_addr_tag_bits(ksig);
|
|
out:
|
|
return signr > 0;
|
|
}
|
|
|
|
/**
|
|
* signal_delivered - called after signal delivery to update blocked signals
|
|
* @ksig: kernel signal struct
|
|
* @stepping: nonzero if debugger single-step or block-step in use
|
|
*
|
|
* This function should be called when a signal has successfully been
|
|
* delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
|
|
* is always blocked), and the signal itself is blocked unless %SA_NODEFER
|
|
* is set in @ksig->ka.sa.sa_flags. Tracing is notified.
|
|
*/
|
|
static void signal_delivered(struct ksignal *ksig, int stepping)
|
|
{
|
|
sigset_t blocked;
|
|
|
|
/* A signal was successfully delivered, and the
|
|
saved sigmask was stored on the signal frame,
|
|
and will be restored by sigreturn. So we can
|
|
simply clear the restore sigmask flag. */
|
|
clear_restore_sigmask();
|
|
|
|
sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
|
|
if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
|
|
sigaddset(&blocked, ksig->sig);
|
|
set_current_blocked(&blocked);
|
|
if (current->sas_ss_flags & SS_AUTODISARM)
|
|
sas_ss_reset(current);
|
|
if (stepping)
|
|
ptrace_notify(SIGTRAP, 0);
|
|
}
|
|
|
|
void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
|
|
{
|
|
if (failed)
|
|
force_sigsegv(ksig->sig);
|
|
else
|
|
signal_delivered(ksig, stepping);
|
|
}
|
|
|
|
/*
|
|
* It could be that complete_signal() picked us to notify about the
|
|
* group-wide signal. Other threads should be notified now to take
|
|
* the shared signals in @which since we will not.
|
|
*/
|
|
static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
|
|
{
|
|
sigset_t retarget;
|
|
struct task_struct *t;
|
|
|
|
sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
|
|
if (sigisemptyset(&retarget))
|
|
return;
|
|
|
|
for_other_threads(tsk, t) {
|
|
if (t->flags & PF_EXITING)
|
|
continue;
|
|
|
|
if (!has_pending_signals(&retarget, &t->blocked))
|
|
continue;
|
|
/* Remove the signals this thread can handle. */
|
|
sigandsets(&retarget, &retarget, &t->blocked);
|
|
|
|
if (!task_sigpending(t))
|
|
signal_wake_up(t, 0);
|
|
|
|
if (sigisemptyset(&retarget))
|
|
break;
|
|
}
|
|
}
|
|
|
|
void exit_signals(struct task_struct *tsk)
|
|
{
|
|
int group_stop = 0;
|
|
sigset_t unblocked;
|
|
|
|
/*
|
|
* @tsk is about to have PF_EXITING set - lock out users which
|
|
* expect stable threadgroup.
|
|
*/
|
|
cgroup_threadgroup_change_begin(tsk);
|
|
|
|
if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
|
|
sched_mm_cid_exit_signals(tsk);
|
|
tsk->flags |= PF_EXITING;
|
|
cgroup_threadgroup_change_end(tsk);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
/*
|
|
* From now this task is not visible for group-wide signals,
|
|
* see wants_signal(), do_signal_stop().
|
|
*/
|
|
sched_mm_cid_exit_signals(tsk);
|
|
tsk->flags |= PF_EXITING;
|
|
|
|
cgroup_threadgroup_change_end(tsk);
|
|
|
|
if (!task_sigpending(tsk))
|
|
goto out;
|
|
|
|
unblocked = tsk->blocked;
|
|
signotset(&unblocked);
|
|
retarget_shared_pending(tsk, &unblocked);
|
|
|
|
if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
|
|
task_participate_group_stop(tsk))
|
|
group_stop = CLD_STOPPED;
|
|
out:
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
/*
|
|
* If group stop has completed, deliver the notification. This
|
|
* should always go to the real parent of the group leader.
|
|
*/
|
|
if (unlikely(group_stop)) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(tsk, false, group_stop);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* System call entry points.
|
|
*/
|
|
|
|
/**
|
|
* sys_restart_syscall - restart a system call
|
|
*/
|
|
SYSCALL_DEFINE0(restart_syscall)
|
|
{
|
|
struct restart_block *restart = ¤t->restart_block;
|
|
return restart->fn(restart);
|
|
}
|
|
|
|
long do_no_restart_syscall(struct restart_block *param)
|
|
{
|
|
return -EINTR;
|
|
}
|
|
|
|
static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
|
|
{
|
|
if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
|
|
sigset_t newblocked;
|
|
/* A set of now blocked but previously unblocked signals. */
|
|
sigandnsets(&newblocked, newset, ¤t->blocked);
|
|
retarget_shared_pending(tsk, &newblocked);
|
|
}
|
|
tsk->blocked = *newset;
|
|
recalc_sigpending();
|
|
}
|
|
|
|
/**
|
|
* set_current_blocked - change current->blocked mask
|
|
* @newset: new mask
|
|
*
|
|
* It is wrong to change ->blocked directly, this helper should be used
|
|
* to ensure the process can't miss a shared signal we are going to block.
|
|
*/
|
|
void set_current_blocked(sigset_t *newset)
|
|
{
|
|
sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
__set_current_blocked(newset);
|
|
}
|
|
|
|
void __set_current_blocked(const sigset_t *newset)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
/*
|
|
* In case the signal mask hasn't changed, there is nothing we need
|
|
* to do. The current->blocked shouldn't be modified by other task.
|
|
*/
|
|
if (sigequalsets(&tsk->blocked, newset))
|
|
return;
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
__set_task_blocked(tsk, newset);
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
}
|
|
|
|
/*
|
|
* This is also useful for kernel threads that want to temporarily
|
|
* (or permanently) block certain signals.
|
|
*
|
|
* NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
|
|
* interface happily blocks "unblockable" signals like SIGKILL
|
|
* and friends.
|
|
*/
|
|
int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
sigset_t newset;
|
|
|
|
/* Lockless, only current can change ->blocked, never from irq */
|
|
if (oldset)
|
|
*oldset = tsk->blocked;
|
|
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigorsets(&newset, &tsk->blocked, set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigandnsets(&newset, &tsk->blocked, set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
newset = *set;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
__set_current_blocked(&newset);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sigprocmask);
|
|
|
|
/*
|
|
* The api helps set app-provided sigmasks.
|
|
*
|
|
* This is useful for syscalls such as ppoll, pselect, io_pgetevents and
|
|
* epoll_pwait where a new sigmask is passed from userland for the syscalls.
|
|
*
|
|
* Note that it does set_restore_sigmask() in advance, so it must be always
|
|
* paired with restore_saved_sigmask_unless() before return from syscall.
|
|
*/
|
|
int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
|
|
{
|
|
sigset_t kmask;
|
|
|
|
if (!umask)
|
|
return 0;
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
|
|
set_restore_sigmask();
|
|
current->saved_sigmask = current->blocked;
|
|
set_current_blocked(&kmask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int set_compat_user_sigmask(const compat_sigset_t __user *umask,
|
|
size_t sigsetsize)
|
|
{
|
|
sigset_t kmask;
|
|
|
|
if (!umask)
|
|
return 0;
|
|
if (sigsetsize != sizeof(compat_sigset_t))
|
|
return -EINVAL;
|
|
if (get_compat_sigset(&kmask, umask))
|
|
return -EFAULT;
|
|
|
|
set_restore_sigmask();
|
|
current->saved_sigmask = current->blocked;
|
|
set_current_blocked(&kmask);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* sys_rt_sigprocmask - change the list of currently blocked signals
|
|
* @how: whether to add, remove, or set signals
|
|
* @nset: stores pending signals
|
|
* @oset: previous value of signal mask if non-null
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
|
|
sigset_t __user *, oset, size_t, sigsetsize)
|
|
{
|
|
sigset_t old_set, new_set;
|
|
int error;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
old_set = current->blocked;
|
|
|
|
if (nset) {
|
|
if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
error = sigprocmask(how, &new_set, NULL);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (oset) {
|
|
if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
|
|
compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t old_set = current->blocked;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (nset) {
|
|
sigset_t new_set;
|
|
int error;
|
|
if (get_compat_sigset(&new_set, nset))
|
|
return -EFAULT;
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
error = sigprocmask(how, &new_set, NULL);
|
|
if (error)
|
|
return error;
|
|
}
|
|
return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
|
|
}
|
|
#endif
|
|
|
|
static void do_sigpending(sigset_t *set)
|
|
{
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sigorsets(set, ¤t->pending.signal,
|
|
¤t->signal->shared_pending.signal);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/* Outside the lock because only this thread touches it. */
|
|
sigandsets(set, ¤t->blocked, set);
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigpending - examine a pending signal that has been raised
|
|
* while blocked
|
|
* @uset: stores pending signals
|
|
* @sigsetsize: size of sigset_t type or larger
|
|
*/
|
|
SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
|
|
{
|
|
sigset_t set;
|
|
|
|
if (sigsetsize > sizeof(*uset))
|
|
return -EINVAL;
|
|
|
|
do_sigpending(&set);
|
|
|
|
if (copy_to_user(uset, &set, sigsetsize))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
|
|
compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t set;
|
|
|
|
if (sigsetsize > sizeof(*uset))
|
|
return -EINVAL;
|
|
|
|
do_sigpending(&set);
|
|
|
|
return put_compat_sigset(uset, &set, sigsetsize);
|
|
}
|
|
#endif
|
|
|
|
static const struct {
|
|
unsigned char limit, layout;
|
|
} sig_sicodes[] = {
|
|
[SIGILL] = { NSIGILL, SIL_FAULT },
|
|
[SIGFPE] = { NSIGFPE, SIL_FAULT },
|
|
[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
|
|
[SIGBUS] = { NSIGBUS, SIL_FAULT },
|
|
[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
|
|
#if defined(SIGEMT)
|
|
[SIGEMT] = { NSIGEMT, SIL_FAULT },
|
|
#endif
|
|
[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
|
|
[SIGPOLL] = { NSIGPOLL, SIL_POLL },
|
|
[SIGSYS] = { NSIGSYS, SIL_SYS },
|
|
};
|
|
|
|
static bool known_siginfo_layout(unsigned sig, int si_code)
|
|
{
|
|
if (si_code == SI_KERNEL)
|
|
return true;
|
|
else if ((si_code > SI_USER)) {
|
|
if (sig_specific_sicodes(sig)) {
|
|
if (si_code <= sig_sicodes[sig].limit)
|
|
return true;
|
|
}
|
|
else if (si_code <= NSIGPOLL)
|
|
return true;
|
|
}
|
|
else if (si_code >= SI_DETHREAD)
|
|
return true;
|
|
else if (si_code == SI_ASYNCNL)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
|
|
{
|
|
enum siginfo_layout layout = SIL_KILL;
|
|
if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
|
|
if ((sig < ARRAY_SIZE(sig_sicodes)) &&
|
|
(si_code <= sig_sicodes[sig].limit)) {
|
|
layout = sig_sicodes[sig].layout;
|
|
/* Handle the exceptions */
|
|
if ((sig == SIGBUS) &&
|
|
(si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
|
|
layout = SIL_FAULT_MCEERR;
|
|
else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
|
|
layout = SIL_FAULT_BNDERR;
|
|
#ifdef SEGV_PKUERR
|
|
else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
|
|
layout = SIL_FAULT_PKUERR;
|
|
#endif
|
|
else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
|
|
layout = SIL_FAULT_PERF_EVENT;
|
|
else if (IS_ENABLED(CONFIG_SPARC) &&
|
|
(sig == SIGILL) && (si_code == ILL_ILLTRP))
|
|
layout = SIL_FAULT_TRAPNO;
|
|
else if (IS_ENABLED(CONFIG_ALPHA) &&
|
|
((sig == SIGFPE) ||
|
|
((sig == SIGTRAP) && (si_code == TRAP_UNK))))
|
|
layout = SIL_FAULT_TRAPNO;
|
|
}
|
|
else if (si_code <= NSIGPOLL)
|
|
layout = SIL_POLL;
|
|
} else {
|
|
if (si_code == SI_TIMER)
|
|
layout = SIL_TIMER;
|
|
else if (si_code == SI_SIGIO)
|
|
layout = SIL_POLL;
|
|
else if (si_code < 0)
|
|
layout = SIL_RT;
|
|
}
|
|
return layout;
|
|
}
|
|
|
|
static inline char __user *si_expansion(const siginfo_t __user *info)
|
|
{
|
|
return ((char __user *)info) + sizeof(struct kernel_siginfo);
|
|
}
|
|
|
|
int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
|
|
{
|
|
char __user *expansion = si_expansion(to);
|
|
if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
|
|
return -EFAULT;
|
|
if (clear_user(expansion, SI_EXPANSION_SIZE))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
|
|
const siginfo_t __user *from)
|
|
{
|
|
if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
|
|
char __user *expansion = si_expansion(from);
|
|
char buf[SI_EXPANSION_SIZE];
|
|
int i;
|
|
/*
|
|
* An unknown si_code might need more than
|
|
* sizeof(struct kernel_siginfo) bytes. Verify all of the
|
|
* extra bytes are 0. This guarantees copy_siginfo_to_user
|
|
* will return this data to userspace exactly.
|
|
*/
|
|
if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
|
|
return -EFAULT;
|
|
for (i = 0; i < SI_EXPANSION_SIZE; i++) {
|
|
if (buf[i] != 0)
|
|
return -E2BIG;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
|
|
const siginfo_t __user *from)
|
|
{
|
|
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
|
|
return -EFAULT;
|
|
to->si_signo = signo;
|
|
return post_copy_siginfo_from_user(to, from);
|
|
}
|
|
|
|
int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
|
|
{
|
|
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
|
|
return -EFAULT;
|
|
return post_copy_siginfo_from_user(to, from);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
/**
|
|
* copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
|
|
* @to: compat siginfo destination
|
|
* @from: kernel siginfo source
|
|
*
|
|
* Note: This function does not work properly for the SIGCHLD on x32, but
|
|
* fortunately it doesn't have to. The only valid callers for this function are
|
|
* copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
|
|
* The latter does not care because SIGCHLD will never cause a coredump.
|
|
*/
|
|
void copy_siginfo_to_external32(struct compat_siginfo *to,
|
|
const struct kernel_siginfo *from)
|
|
{
|
|
memset(to, 0, sizeof(*to));
|
|
|
|
to->si_signo = from->si_signo;
|
|
to->si_errno = from->si_errno;
|
|
to->si_code = from->si_code;
|
|
switch(siginfo_layout(from->si_signo, from->si_code)) {
|
|
case SIL_KILL:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
break;
|
|
case SIL_TIMER:
|
|
to->si_tid = from->si_tid;
|
|
to->si_overrun = from->si_overrun;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_POLL:
|
|
to->si_band = from->si_band;
|
|
to->si_fd = from->si_fd;
|
|
break;
|
|
case SIL_FAULT:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
break;
|
|
case SIL_FAULT_TRAPNO:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_trapno = from->si_trapno;
|
|
break;
|
|
case SIL_FAULT_MCEERR:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_addr_lsb = from->si_addr_lsb;
|
|
break;
|
|
case SIL_FAULT_BNDERR:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_lower = ptr_to_compat(from->si_lower);
|
|
to->si_upper = ptr_to_compat(from->si_upper);
|
|
break;
|
|
case SIL_FAULT_PKUERR:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_pkey = from->si_pkey;
|
|
break;
|
|
case SIL_FAULT_PERF_EVENT:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_perf_data = from->si_perf_data;
|
|
to->si_perf_type = from->si_perf_type;
|
|
to->si_perf_flags = from->si_perf_flags;
|
|
break;
|
|
case SIL_CHLD:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_status = from->si_status;
|
|
to->si_utime = from->si_utime;
|
|
to->si_stime = from->si_stime;
|
|
break;
|
|
case SIL_RT:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_SYS:
|
|
to->si_call_addr = ptr_to_compat(from->si_call_addr);
|
|
to->si_syscall = from->si_syscall;
|
|
to->si_arch = from->si_arch;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
|
|
const struct kernel_siginfo *from)
|
|
{
|
|
struct compat_siginfo new;
|
|
|
|
copy_siginfo_to_external32(&new, from);
|
|
if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
|
|
const struct compat_siginfo *from)
|
|
{
|
|
clear_siginfo(to);
|
|
to->si_signo = from->si_signo;
|
|
to->si_errno = from->si_errno;
|
|
to->si_code = from->si_code;
|
|
switch(siginfo_layout(from->si_signo, from->si_code)) {
|
|
case SIL_KILL:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
break;
|
|
case SIL_TIMER:
|
|
to->si_tid = from->si_tid;
|
|
to->si_overrun = from->si_overrun;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_POLL:
|
|
to->si_band = from->si_band;
|
|
to->si_fd = from->si_fd;
|
|
break;
|
|
case SIL_FAULT:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
break;
|
|
case SIL_FAULT_TRAPNO:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_trapno = from->si_trapno;
|
|
break;
|
|
case SIL_FAULT_MCEERR:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_addr_lsb = from->si_addr_lsb;
|
|
break;
|
|
case SIL_FAULT_BNDERR:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_lower = compat_ptr(from->si_lower);
|
|
to->si_upper = compat_ptr(from->si_upper);
|
|
break;
|
|
case SIL_FAULT_PKUERR:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_pkey = from->si_pkey;
|
|
break;
|
|
case SIL_FAULT_PERF_EVENT:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_perf_data = from->si_perf_data;
|
|
to->si_perf_type = from->si_perf_type;
|
|
to->si_perf_flags = from->si_perf_flags;
|
|
break;
|
|
case SIL_CHLD:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_status = from->si_status;
|
|
#ifdef CONFIG_X86_X32_ABI
|
|
if (in_x32_syscall()) {
|
|
to->si_utime = from->_sifields._sigchld_x32._utime;
|
|
to->si_stime = from->_sifields._sigchld_x32._stime;
|
|
} else
|
|
#endif
|
|
{
|
|
to->si_utime = from->si_utime;
|
|
to->si_stime = from->si_stime;
|
|
}
|
|
break;
|
|
case SIL_RT:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_SYS:
|
|
to->si_call_addr = compat_ptr(from->si_call_addr);
|
|
to->si_syscall = from->si_syscall;
|
|
to->si_arch = from->si_arch;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
|
|
const struct compat_siginfo __user *ufrom)
|
|
{
|
|
struct compat_siginfo from;
|
|
|
|
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
|
|
return -EFAULT;
|
|
|
|
from.si_signo = signo;
|
|
return post_copy_siginfo_from_user32(to, &from);
|
|
}
|
|
|
|
int copy_siginfo_from_user32(struct kernel_siginfo *to,
|
|
const struct compat_siginfo __user *ufrom)
|
|
{
|
|
struct compat_siginfo from;
|
|
|
|
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
|
|
return -EFAULT;
|
|
|
|
return post_copy_siginfo_from_user32(to, &from);
|
|
}
|
|
#endif /* CONFIG_COMPAT */
|
|
|
|
/**
|
|
* do_sigtimedwait - wait for queued signals specified in @which
|
|
* @which: queued signals to wait for
|
|
* @info: if non-null, the signal's siginfo is returned here
|
|
* @ts: upper bound on process time suspension
|
|
*/
|
|
static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
|
|
const struct timespec64 *ts)
|
|
{
|
|
ktime_t *to = NULL, timeout = KTIME_MAX;
|
|
struct task_struct *tsk = current;
|
|
sigset_t mask = *which;
|
|
enum pid_type type;
|
|
int sig, ret = 0;
|
|
|
|
if (ts) {
|
|
if (!timespec64_valid(ts))
|
|
return -EINVAL;
|
|
timeout = timespec64_to_ktime(*ts);
|
|
to = &timeout;
|
|
}
|
|
|
|
/*
|
|
* Invert the set of allowed signals to get those we want to block.
|
|
*/
|
|
sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
signotset(&mask);
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
sig = dequeue_signal(&mask, info, &type);
|
|
if (!sig && timeout) {
|
|
/*
|
|
* None ready, temporarily unblock those we're interested
|
|
* while we are sleeping in so that we'll be awakened when
|
|
* they arrive. Unblocking is always fine, we can avoid
|
|
* set_current_blocked().
|
|
*/
|
|
tsk->real_blocked = tsk->blocked;
|
|
sigandsets(&tsk->blocked, &tsk->blocked, &mask);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
|
|
ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
|
|
HRTIMER_MODE_REL);
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
__set_task_blocked(tsk, &tsk->real_blocked);
|
|
sigemptyset(&tsk->real_blocked);
|
|
sig = dequeue_signal(&mask, info, &type);
|
|
}
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
if (sig)
|
|
return sig;
|
|
return ret ? -EINTR : -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigtimedwait - synchronously wait for queued signals specified
|
|
* in @uthese
|
|
* @uthese: queued signals to wait for
|
|
* @uinfo: if non-null, the signal's siginfo is returned here
|
|
* @uts: upper bound on process time suspension
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
|
|
siginfo_t __user *, uinfo,
|
|
const struct __kernel_timespec __user *, uts,
|
|
size_t, sigsetsize)
|
|
{
|
|
sigset_t these;
|
|
struct timespec64 ts;
|
|
kernel_siginfo_t info;
|
|
int ret;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&these, uthese, sizeof(these)))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_timespec64(&ts, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
|
|
siginfo_t __user *, uinfo,
|
|
const struct old_timespec32 __user *, uts,
|
|
size_t, sigsetsize)
|
|
{
|
|
sigset_t these;
|
|
struct timespec64 ts;
|
|
kernel_siginfo_t info;
|
|
int ret;
|
|
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&these, uthese, sizeof(these)))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_old_timespec32(&ts, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
|
|
struct compat_siginfo __user *, uinfo,
|
|
struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t s;
|
|
struct timespec64 t;
|
|
kernel_siginfo_t info;
|
|
long ret;
|
|
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (get_compat_sigset(&s, uthese))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_timespec64(&t, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user32(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
|
|
struct compat_siginfo __user *, uinfo,
|
|
struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t s;
|
|
struct timespec64 t;
|
|
kernel_siginfo_t info;
|
|
long ret;
|
|
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (get_compat_sigset(&s, uthese))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_old_timespec32(&t, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user32(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
|
|
enum pid_type type)
|
|
{
|
|
clear_siginfo(info);
|
|
info->si_signo = sig;
|
|
info->si_errno = 0;
|
|
info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
|
|
info->si_pid = task_tgid_vnr(current);
|
|
info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
|
|
}
|
|
|
|
/**
|
|
* sys_kill - send a signal to a process
|
|
* @pid: the PID of the process
|
|
* @sig: signal to be sent
|
|
*/
|
|
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
|
|
|
|
return kill_something_info(sig, &info, pid);
|
|
}
|
|
|
|
/*
|
|
* Verify that the signaler and signalee either are in the same pid namespace
|
|
* or that the signaler's pid namespace is an ancestor of the signalee's pid
|
|
* namespace.
|
|
*/
|
|
static bool access_pidfd_pidns(struct pid *pid)
|
|
{
|
|
struct pid_namespace *active = task_active_pid_ns(current);
|
|
struct pid_namespace *p = ns_of_pid(pid);
|
|
|
|
for (;;) {
|
|
if (!p)
|
|
return false;
|
|
if (p == active)
|
|
break;
|
|
p = p->parent;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
|
|
siginfo_t __user *info)
|
|
{
|
|
#ifdef CONFIG_COMPAT
|
|
/*
|
|
* Avoid hooking up compat syscalls and instead handle necessary
|
|
* conversions here. Note, this is a stop-gap measure and should not be
|
|
* considered a generic solution.
|
|
*/
|
|
if (in_compat_syscall())
|
|
return copy_siginfo_from_user32(
|
|
kinfo, (struct compat_siginfo __user *)info);
|
|
#endif
|
|
return copy_siginfo_from_user(kinfo, info);
|
|
}
|
|
|
|
static struct pid *pidfd_to_pid(const struct file *file)
|
|
{
|
|
struct pid *pid;
|
|
|
|
pid = pidfd_pid(file);
|
|
if (!IS_ERR(pid))
|
|
return pid;
|
|
|
|
return tgid_pidfd_to_pid(file);
|
|
}
|
|
|
|
#define PIDFD_SEND_SIGNAL_FLAGS \
|
|
(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
|
|
PIDFD_SIGNAL_PROCESS_GROUP)
|
|
|
|
/**
|
|
* sys_pidfd_send_signal - Signal a process through a pidfd
|
|
* @pidfd: file descriptor of the process
|
|
* @sig: signal to send
|
|
* @info: signal info
|
|
* @flags: future flags
|
|
*
|
|
* Send the signal to the thread group or to the individual thread depending
|
|
* on PIDFD_THREAD.
|
|
* In the future extension to @flags may be used to override the default scope
|
|
* of @pidfd.
|
|
*
|
|
* Return: 0 on success, negative errno on failure
|
|
*/
|
|
SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
|
|
siginfo_t __user *, info, unsigned int, flags)
|
|
{
|
|
int ret;
|
|
struct fd f;
|
|
struct pid *pid;
|
|
kernel_siginfo_t kinfo;
|
|
enum pid_type type;
|
|
|
|
/* Enforce flags be set to 0 until we add an extension. */
|
|
if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
|
|
return -EINVAL;
|
|
|
|
/* Ensure that only a single signal scope determining flag is set. */
|
|
if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
|
|
return -EINVAL;
|
|
|
|
f = fdget(pidfd);
|
|
if (!fd_file(f))
|
|
return -EBADF;
|
|
|
|
/* Is this a pidfd? */
|
|
pid = pidfd_to_pid(fd_file(f));
|
|
if (IS_ERR(pid)) {
|
|
ret = PTR_ERR(pid);
|
|
goto err;
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
if (!access_pidfd_pidns(pid))
|
|
goto err;
|
|
|
|
switch (flags) {
|
|
case 0:
|
|
/* Infer scope from the type of pidfd. */
|
|
if (fd_file(f)->f_flags & PIDFD_THREAD)
|
|
type = PIDTYPE_PID;
|
|
else
|
|
type = PIDTYPE_TGID;
|
|
break;
|
|
case PIDFD_SIGNAL_THREAD:
|
|
type = PIDTYPE_PID;
|
|
break;
|
|
case PIDFD_SIGNAL_THREAD_GROUP:
|
|
type = PIDTYPE_TGID;
|
|
break;
|
|
case PIDFD_SIGNAL_PROCESS_GROUP:
|
|
type = PIDTYPE_PGID;
|
|
break;
|
|
}
|
|
|
|
if (info) {
|
|
ret = copy_siginfo_from_user_any(&kinfo, info);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
|
|
ret = -EINVAL;
|
|
if (unlikely(sig != kinfo.si_signo))
|
|
goto err;
|
|
|
|
/* Only allow sending arbitrary signals to yourself. */
|
|
ret = -EPERM;
|
|
if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
|
|
(kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
|
|
goto err;
|
|
} else {
|
|
prepare_kill_siginfo(sig, &kinfo, type);
|
|
}
|
|
|
|
if (type == PIDTYPE_PGID)
|
|
ret = kill_pgrp_info(sig, &kinfo, pid);
|
|
else
|
|
ret = kill_pid_info_type(sig, &kinfo, pid, type);
|
|
err:
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
|
|
{
|
|
struct task_struct *p;
|
|
int error = -ESRCH;
|
|
|
|
rcu_read_lock();
|
|
p = find_task_by_vpid(pid);
|
|
if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
|
|
error = check_kill_permission(sig, info, p);
|
|
/*
|
|
* The null signal is a permissions and process existence
|
|
* probe. No signal is actually delivered.
|
|
*/
|
|
if (!error && sig) {
|
|
error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
|
|
/*
|
|
* If lock_task_sighand() failed we pretend the task
|
|
* dies after receiving the signal. The window is tiny,
|
|
* and the signal is private anyway.
|
|
*/
|
|
if (unlikely(error == -ESRCH))
|
|
error = 0;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return error;
|
|
}
|
|
|
|
static int do_tkill(pid_t tgid, pid_t pid, int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
|
|
|
|
return do_send_specific(tgid, pid, sig, &info);
|
|
}
|
|
|
|
/**
|
|
* sys_tgkill - send signal to one specific thread
|
|
* @tgid: the thread group ID of the thread
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
*
|
|
* This syscall also checks the @tgid and returns -ESRCH even if the PID
|
|
* exists but it's not belonging to the target process anymore. This
|
|
* method solves the problem of threads exiting and PIDs getting reused.
|
|
*/
|
|
SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(tgid, pid, sig);
|
|
}
|
|
|
|
/**
|
|
* sys_tkill - send signal to one specific task
|
|
* @pid: the PID of the task
|
|
* @sig: signal to be sent
|
|
*
|
|
* Send a signal to only one task, even if it's a CLONE_THREAD task.
|
|
*/
|
|
SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(0, pid, sig);
|
|
}
|
|
|
|
static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
|
|
{
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
* Nor can they impersonate a kill()/tgkill(), which adds source info.
|
|
*/
|
|
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
|
|
(task_pid_vnr(current) != pid))
|
|
return -EPERM;
|
|
|
|
/* POSIX.1b doesn't mention process groups. */
|
|
return kill_proc_info(sig, info, pid);
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigqueueinfo - send signal information to a signal
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
* @uinfo: signal info to be sent
|
|
*/
|
|
SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
|
|
siginfo_t __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_sigqueueinfo(pid, sig, &info);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
|
|
compat_pid_t, pid,
|
|
int, sig,
|
|
struct compat_siginfo __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_sigqueueinfo(pid, sig, &info);
|
|
}
|
|
#endif
|
|
|
|
static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
* Nor can they impersonate a kill()/tgkill(), which adds source info.
|
|
*/
|
|
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
|
|
(task_pid_vnr(current) != pid))
|
|
return -EPERM;
|
|
|
|
return do_send_specific(tgid, pid, sig, info);
|
|
}
|
|
|
|
SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
|
|
siginfo_t __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
|
|
compat_pid_t, tgid,
|
|
compat_pid_t, pid,
|
|
int, sig,
|
|
struct compat_siginfo __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* For kthreads only, must not be used if cloned with CLONE_SIGHAND
|
|
*/
|
|
void kernel_sigaction(int sig, __sighandler_t action)
|
|
{
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
current->sighand->action[sig - 1].sa.sa_handler = action;
|
|
if (action == SIG_IGN) {
|
|
sigset_t mask;
|
|
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, sig);
|
|
|
|
flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending);
|
|
flush_sigqueue_mask(current, &mask, ¤t->pending);
|
|
recalc_sigpending();
|
|
}
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
EXPORT_SYMBOL(kernel_sigaction);
|
|
|
|
void __weak sigaction_compat_abi(struct k_sigaction *act,
|
|
struct k_sigaction *oact)
|
|
{
|
|
}
|
|
|
|
int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
|
|
{
|
|
struct task_struct *p = current, *t;
|
|
struct k_sigaction *k;
|
|
sigset_t mask;
|
|
|
|
if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
|
|
return -EINVAL;
|
|
|
|
k = &p->sighand->action[sig-1];
|
|
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
if (k->sa.sa_flags & SA_IMMUTABLE) {
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
return -EINVAL;
|
|
}
|
|
if (oact)
|
|
*oact = *k;
|
|
|
|
/*
|
|
* Make sure that we never accidentally claim to support SA_UNSUPPORTED,
|
|
* e.g. by having an architecture use the bit in their uapi.
|
|
*/
|
|
BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
|
|
|
|
/*
|
|
* Clear unknown flag bits in order to allow userspace to detect missing
|
|
* support for flag bits and to allow the kernel to use non-uapi bits
|
|
* internally.
|
|
*/
|
|
if (act)
|
|
act->sa.sa_flags &= UAPI_SA_FLAGS;
|
|
if (oact)
|
|
oact->sa.sa_flags &= UAPI_SA_FLAGS;
|
|
|
|
sigaction_compat_abi(act, oact);
|
|
|
|
if (act) {
|
|
sigdelsetmask(&act->sa.sa_mask,
|
|
sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
*k = *act;
|
|
/*
|
|
* POSIX 3.3.1.3:
|
|
* "Setting a signal action to SIG_IGN for a signal that is
|
|
* pending shall cause the pending signal to be discarded,
|
|
* whether or not it is blocked."
|
|
*
|
|
* "Setting a signal action to SIG_DFL for a signal that is
|
|
* pending and whose default action is to ignore the signal
|
|
* (for example, SIGCHLD), shall cause the pending signal to
|
|
* be discarded, whether or not it is blocked"
|
|
*/
|
|
if (sig_handler_ignored(sig_handler(p, sig), sig)) {
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, sig);
|
|
flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
|
|
for_each_thread(p, t)
|
|
flush_sigqueue_mask(p, &mask, &t->pending);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DYNAMIC_SIGFRAME
|
|
static inline void sigaltstack_lock(void)
|
|
__acquires(¤t->sighand->siglock)
|
|
{
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
static inline void sigaltstack_unlock(void)
|
|
__releases(¤t->sighand->siglock)
|
|
{
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
#else
|
|
static inline void sigaltstack_lock(void) { }
|
|
static inline void sigaltstack_unlock(void) { }
|
|
#endif
|
|
|
|
static int
|
|
do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
|
|
size_t min_ss_size)
|
|
{
|
|
struct task_struct *t = current;
|
|
int ret = 0;
|
|
|
|
if (oss) {
|
|
memset(oss, 0, sizeof(stack_t));
|
|
oss->ss_sp = (void __user *) t->sas_ss_sp;
|
|
oss->ss_size = t->sas_ss_size;
|
|
oss->ss_flags = sas_ss_flags(sp) |
|
|
(current->sas_ss_flags & SS_FLAG_BITS);
|
|
}
|
|
|
|
if (ss) {
|
|
void __user *ss_sp = ss->ss_sp;
|
|
size_t ss_size = ss->ss_size;
|
|
unsigned ss_flags = ss->ss_flags;
|
|
int ss_mode;
|
|
|
|
if (unlikely(on_sig_stack(sp)))
|
|
return -EPERM;
|
|
|
|
ss_mode = ss_flags & ~SS_FLAG_BITS;
|
|
if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
|
|
ss_mode != 0))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Return before taking any locks if no actual
|
|
* sigaltstack changes were requested.
|
|
*/
|
|
if (t->sas_ss_sp == (unsigned long)ss_sp &&
|
|
t->sas_ss_size == ss_size &&
|
|
t->sas_ss_flags == ss_flags)
|
|
return 0;
|
|
|
|
sigaltstack_lock();
|
|
if (ss_mode == SS_DISABLE) {
|
|
ss_size = 0;
|
|
ss_sp = NULL;
|
|
} else {
|
|
if (unlikely(ss_size < min_ss_size))
|
|
ret = -ENOMEM;
|
|
if (!sigaltstack_size_valid(ss_size))
|
|
ret = -ENOMEM;
|
|
}
|
|
if (!ret) {
|
|
t->sas_ss_sp = (unsigned long) ss_sp;
|
|
t->sas_ss_size = ss_size;
|
|
t->sas_ss_flags = ss_flags;
|
|
}
|
|
sigaltstack_unlock();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
|
|
{
|
|
stack_t new, old;
|
|
int err;
|
|
if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
|
|
return -EFAULT;
|
|
err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
|
|
current_user_stack_pointer(),
|
|
MINSIGSTKSZ);
|
|
if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
|
|
err = -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
int restore_altstack(const stack_t __user *uss)
|
|
{
|
|
stack_t new;
|
|
if (copy_from_user(&new, uss, sizeof(stack_t)))
|
|
return -EFAULT;
|
|
(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
|
|
MINSIGSTKSZ);
|
|
/* squash all but EFAULT for now */
|
|
return 0;
|
|
}
|
|
|
|
int __save_altstack(stack_t __user *uss, unsigned long sp)
|
|
{
|
|
struct task_struct *t = current;
|
|
int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
|
|
__put_user(t->sas_ss_flags, &uss->ss_flags) |
|
|
__put_user(t->sas_ss_size, &uss->ss_size);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
|
|
compat_stack_t __user *uoss_ptr)
|
|
{
|
|
stack_t uss, uoss;
|
|
int ret;
|
|
|
|
if (uss_ptr) {
|
|
compat_stack_t uss32;
|
|
if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
|
|
return -EFAULT;
|
|
uss.ss_sp = compat_ptr(uss32.ss_sp);
|
|
uss.ss_flags = uss32.ss_flags;
|
|
uss.ss_size = uss32.ss_size;
|
|
}
|
|
ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
|
|
compat_user_stack_pointer(),
|
|
COMPAT_MINSIGSTKSZ);
|
|
if (ret >= 0 && uoss_ptr) {
|
|
compat_stack_t old;
|
|
memset(&old, 0, sizeof(old));
|
|
old.ss_sp = ptr_to_compat(uoss.ss_sp);
|
|
old.ss_flags = uoss.ss_flags;
|
|
old.ss_size = uoss.ss_size;
|
|
if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
|
|
ret = -EFAULT;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE2(sigaltstack,
|
|
const compat_stack_t __user *, uss_ptr,
|
|
compat_stack_t __user *, uoss_ptr)
|
|
{
|
|
return do_compat_sigaltstack(uss_ptr, uoss_ptr);
|
|
}
|
|
|
|
int compat_restore_altstack(const compat_stack_t __user *uss)
|
|
{
|
|
int err = do_compat_sigaltstack(uss, NULL);
|
|
/* squash all but -EFAULT for now */
|
|
return err == -EFAULT ? err : 0;
|
|
}
|
|
|
|
int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
|
|
{
|
|
int err;
|
|
struct task_struct *t = current;
|
|
err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
|
|
&uss->ss_sp) |
|
|
__put_user(t->sas_ss_flags, &uss->ss_flags) |
|
|
__put_user(t->sas_ss_size, &uss->ss_size);
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPENDING
|
|
|
|
/**
|
|
* sys_sigpending - examine pending signals
|
|
* @uset: where mask of pending signal is returned
|
|
*/
|
|
SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
|
|
{
|
|
sigset_t set;
|
|
|
|
if (sizeof(old_sigset_t) > sizeof(*uset))
|
|
return -EINVAL;
|
|
|
|
do_sigpending(&set);
|
|
|
|
if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
|
|
{
|
|
sigset_t set;
|
|
|
|
do_sigpending(&set);
|
|
|
|
return put_user(set.sig[0], set32);
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPROCMASK
|
|
/**
|
|
* sys_sigprocmask - examine and change blocked signals
|
|
* @how: whether to add, remove, or set signals
|
|
* @nset: signals to add or remove (if non-null)
|
|
* @oset: previous value of signal mask if non-null
|
|
*
|
|
* Some platforms have their own version with special arguments;
|
|
* others support only sys_rt_sigprocmask.
|
|
*/
|
|
|
|
SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
|
|
old_sigset_t __user *, oset)
|
|
{
|
|
old_sigset_t old_set, new_set;
|
|
sigset_t new_blocked;
|
|
|
|
old_set = current->blocked.sig[0];
|
|
|
|
if (nset) {
|
|
if (copy_from_user(&new_set, nset, sizeof(*nset)))
|
|
return -EFAULT;
|
|
|
|
new_blocked = current->blocked;
|
|
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigaddsetmask(&new_blocked, new_set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigdelsetmask(&new_blocked, new_set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
new_blocked.sig[0] = new_set;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_current_blocked(&new_blocked);
|
|
}
|
|
|
|
if (oset) {
|
|
if (copy_to_user(oset, &old_set, sizeof(*oset)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
|
|
|
|
#ifndef CONFIG_ODD_RT_SIGACTION
|
|
/**
|
|
* sys_rt_sigaction - alter an action taken by a process
|
|
* @sig: signal to be sent
|
|
* @act: new sigaction
|
|
* @oact: used to save the previous sigaction
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigaction, int, sig,
|
|
const struct sigaction __user *, act,
|
|
struct sigaction __user *, oact,
|
|
size_t, sigsetsize)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
|
|
return -EFAULT;
|
|
|
|
ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
|
|
const struct compat_sigaction __user *, act,
|
|
struct compat_sigaction __user *, oact,
|
|
compat_size_t, sigsetsize)
|
|
{
|
|
struct k_sigaction new_ka, old_ka;
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
compat_uptr_t restorer;
|
|
#endif
|
|
int ret;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(compat_sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (act) {
|
|
compat_uptr_t handler;
|
|
ret = get_user(handler, &act->sa_handler);
|
|
new_ka.sa.sa_handler = compat_ptr(handler);
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
ret |= get_user(restorer, &act->sa_restorer);
|
|
new_ka.sa.sa_restorer = compat_ptr(restorer);
|
|
#endif
|
|
ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
|
|
ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
|
|
if (ret)
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
|
|
if (!ret && oact) {
|
|
ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
|
|
&oact->sa_handler);
|
|
ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
|
|
sizeof(oact->sa_mask));
|
|
ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
|
|
&oact->sa_restorer);
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
#endif /* !CONFIG_ODD_RT_SIGACTION */
|
|
|
|
#ifdef CONFIG_OLD_SIGACTION
|
|
SYSCALL_DEFINE3(sigaction, int, sig,
|
|
const struct old_sigaction __user *, act,
|
|
struct old_sigaction __user *, oact)
|
|
{
|
|
struct k_sigaction new_ka, old_ka;
|
|
int ret;
|
|
|
|
if (act) {
|
|
old_sigset_t mask;
|
|
if (!access_ok(act, sizeof(*act)) ||
|
|
__get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
|
|
__get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
|
|
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
|
|
__get_user(mask, &act->sa_mask))
|
|
return -EFAULT;
|
|
#ifdef __ARCH_HAS_KA_RESTORER
|
|
new_ka.ka_restorer = NULL;
|
|
#endif
|
|
siginitset(&new_ka.sa.sa_mask, mask);
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
|
|
|
|
if (!ret && oact) {
|
|
if (!access_ok(oact, sizeof(*oact)) ||
|
|
__put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
|
|
__put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
|
|
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
|
|
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_COMPAT_OLD_SIGACTION
|
|
COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
|
|
const struct compat_old_sigaction __user *, act,
|
|
struct compat_old_sigaction __user *, oact)
|
|
{
|
|
struct k_sigaction new_ka, old_ka;
|
|
int ret;
|
|
compat_old_sigset_t mask;
|
|
compat_uptr_t handler, restorer;
|
|
|
|
if (act) {
|
|
if (!access_ok(act, sizeof(*act)) ||
|
|
__get_user(handler, &act->sa_handler) ||
|
|
__get_user(restorer, &act->sa_restorer) ||
|
|
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
|
|
__get_user(mask, &act->sa_mask))
|
|
return -EFAULT;
|
|
|
|
#ifdef __ARCH_HAS_KA_RESTORER
|
|
new_ka.ka_restorer = NULL;
|
|
#endif
|
|
new_ka.sa.sa_handler = compat_ptr(handler);
|
|
new_ka.sa.sa_restorer = compat_ptr(restorer);
|
|
siginitset(&new_ka.sa.sa_mask, mask);
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
|
|
|
|
if (!ret && oact) {
|
|
if (!access_ok(oact, sizeof(*oact)) ||
|
|
__put_user(ptr_to_compat(old_ka.sa.sa_handler),
|
|
&oact->sa_handler) ||
|
|
__put_user(ptr_to_compat(old_ka.sa.sa_restorer),
|
|
&oact->sa_restorer) ||
|
|
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
|
|
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
|
|
return -EFAULT;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SGETMASK_SYSCALL
|
|
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigprocmask.
|
|
*/
|
|
SYSCALL_DEFINE0(sgetmask)
|
|
{
|
|
/* SMP safe */
|
|
return current->blocked.sig[0];
|
|
}
|
|
|
|
SYSCALL_DEFINE1(ssetmask, int, newmask)
|
|
{
|
|
int old = current->blocked.sig[0];
|
|
sigset_t newset;
|
|
|
|
siginitset(&newset, newmask);
|
|
set_current_blocked(&newset);
|
|
|
|
return old;
|
|
}
|
|
#endif /* CONFIG_SGETMASK_SYSCALL */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGNAL
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigaction.
|
|
*/
|
|
SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret;
|
|
|
|
new_sa.sa.sa_handler = handler;
|
|
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
|
|
sigemptyset(&new_sa.sa.sa_mask);
|
|
|
|
ret = do_sigaction(sig, &new_sa, &old_sa);
|
|
|
|
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGNAL */
|
|
|
|
#ifdef __ARCH_WANT_SYS_PAUSE
|
|
|
|
SYSCALL_DEFINE0(pause)
|
|
{
|
|
while (!signal_pending(current)) {
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int sigsuspend(sigset_t *set)
|
|
{
|
|
current->saved_sigmask = current->blocked;
|
|
set_current_blocked(set);
|
|
|
|
while (!signal_pending(current)) {
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
set_restore_sigmask();
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigsuspend - replace the signal mask for a value with the
|
|
* @unewset value until a signal is received
|
|
* @unewset: new signal mask value
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
|
|
{
|
|
sigset_t newset;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&newset, unewset, sizeof(newset)))
|
|
return -EFAULT;
|
|
return sigsuspend(&newset);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t newset;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (get_compat_sigset(&newset, unewset))
|
|
return -EFAULT;
|
|
return sigsuspend(&newset);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_OLD_SIGSUSPEND
|
|
SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
|
|
{
|
|
sigset_t blocked;
|
|
siginitset(&blocked, mask);
|
|
return sigsuspend(&blocked);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_OLD_SIGSUSPEND3
|
|
SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
|
|
{
|
|
sigset_t blocked;
|
|
siginitset(&blocked, mask);
|
|
return sigsuspend(&blocked);
|
|
}
|
|
#endif
|
|
|
|
__weak const char *arch_vma_name(struct vm_area_struct *vma)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void siginfo_buildtime_checks(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
|
|
|
|
/* Verify the offsets in the two siginfos match */
|
|
#define CHECK_OFFSET(field) \
|
|
BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
|
|
|
|
/* kill */
|
|
CHECK_OFFSET(si_pid);
|
|
CHECK_OFFSET(si_uid);
|
|
|
|
/* timer */
|
|
CHECK_OFFSET(si_tid);
|
|
CHECK_OFFSET(si_overrun);
|
|
CHECK_OFFSET(si_value);
|
|
|
|
/* rt */
|
|
CHECK_OFFSET(si_pid);
|
|
CHECK_OFFSET(si_uid);
|
|
CHECK_OFFSET(si_value);
|
|
|
|
/* sigchld */
|
|
CHECK_OFFSET(si_pid);
|
|
CHECK_OFFSET(si_uid);
|
|
CHECK_OFFSET(si_status);
|
|
CHECK_OFFSET(si_utime);
|
|
CHECK_OFFSET(si_stime);
|
|
|
|
/* sigfault */
|
|
CHECK_OFFSET(si_addr);
|
|
CHECK_OFFSET(si_trapno);
|
|
CHECK_OFFSET(si_addr_lsb);
|
|
CHECK_OFFSET(si_lower);
|
|
CHECK_OFFSET(si_upper);
|
|
CHECK_OFFSET(si_pkey);
|
|
CHECK_OFFSET(si_perf_data);
|
|
CHECK_OFFSET(si_perf_type);
|
|
CHECK_OFFSET(si_perf_flags);
|
|
|
|
/* sigpoll */
|
|
CHECK_OFFSET(si_band);
|
|
CHECK_OFFSET(si_fd);
|
|
|
|
/* sigsys */
|
|
CHECK_OFFSET(si_call_addr);
|
|
CHECK_OFFSET(si_syscall);
|
|
CHECK_OFFSET(si_arch);
|
|
#undef CHECK_OFFSET
|
|
|
|
/* usb asyncio */
|
|
BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
|
|
offsetof(struct siginfo, si_addr));
|
|
if (sizeof(int) == sizeof(void __user *)) {
|
|
BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
|
|
sizeof(void __user *));
|
|
} else {
|
|
BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
|
|
sizeof_field(struct siginfo, si_uid)) !=
|
|
sizeof(void __user *));
|
|
BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
|
|
offsetof(struct siginfo, si_uid));
|
|
}
|
|
#ifdef CONFIG_COMPAT
|
|
BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
|
|
offsetof(struct compat_siginfo, si_addr));
|
|
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
|
|
sizeof(compat_uptr_t));
|
|
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
|
|
sizeof_field(struct siginfo, si_pid));
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_SYSCTL)
|
|
static struct ctl_table signal_debug_table[] = {
|
|
#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
|
|
{
|
|
.procname = "exception-trace",
|
|
.data = &show_unhandled_signals,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec
|
|
},
|
|
#endif
|
|
};
|
|
|
|
static int __init init_signal_sysctls(void)
|
|
{
|
|
register_sysctl_init("debug", signal_debug_table);
|
|
return 0;
|
|
}
|
|
early_initcall(init_signal_sysctls);
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
void __init signals_init(void)
|
|
{
|
|
siginfo_buildtime_checks();
|
|
|
|
sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB_KDB
|
|
#include <linux/kdb.h>
|
|
/*
|
|
* kdb_send_sig - Allows kdb to send signals without exposing
|
|
* signal internals. This function checks if the required locks are
|
|
* available before calling the main signal code, to avoid kdb
|
|
* deadlocks.
|
|
*/
|
|
void kdb_send_sig(struct task_struct *t, int sig)
|
|
{
|
|
static struct task_struct *kdb_prev_t;
|
|
int new_t, ret;
|
|
if (!spin_trylock(&t->sighand->siglock)) {
|
|
kdb_printf("Can't do kill command now.\n"
|
|
"The sigmask lock is held somewhere else in "
|
|
"kernel, try again later\n");
|
|
return;
|
|
}
|
|
new_t = kdb_prev_t != t;
|
|
kdb_prev_t = t;
|
|
if (!task_is_running(t) && new_t) {
|
|
spin_unlock(&t->sighand->siglock);
|
|
kdb_printf("Process is not RUNNING, sending a signal from "
|
|
"kdb risks deadlock\n"
|
|
"on the run queue locks. "
|
|
"The signal has _not_ been sent.\n"
|
|
"Reissue the kill command if you want to risk "
|
|
"the deadlock.\n");
|
|
return;
|
|
}
|
|
ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
|
|
spin_unlock(&t->sighand->siglock);
|
|
if (ret)
|
|
kdb_printf("Fail to deliver Signal %d to process %d.\n",
|
|
sig, t->pid);
|
|
else
|
|
kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
|
|
}
|
|
#endif /* CONFIG_KGDB_KDB */
|