mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
61952bb734
The write_hint is only used for read/write requests, which must have a bio attached to them. Just use the bio field instead. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20241112170050.1612998-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
4439 lines
116 KiB
C
4439 lines
116 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* sd.c Copyright (C) 1992 Drew Eckhardt
|
|
* Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
|
|
*
|
|
* Linux scsi disk driver
|
|
* Initial versions: Drew Eckhardt
|
|
* Subsequent revisions: Eric Youngdale
|
|
* Modification history:
|
|
* - Drew Eckhardt <drew@colorado.edu> original
|
|
* - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
|
|
* outstanding request, and other enhancements.
|
|
* Support loadable low-level scsi drivers.
|
|
* - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
|
|
* eight major numbers.
|
|
* - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
|
|
* - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
|
|
* sd_init and cleanups.
|
|
* - Alex Davis <letmein@erols.com> Fix problem where partition info
|
|
* not being read in sd_open. Fix problem where removable media
|
|
* could be ejected after sd_open.
|
|
* - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
|
|
* - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
|
|
* <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
|
|
* Support 32k/1M disks.
|
|
*
|
|
* Logging policy (needs CONFIG_SCSI_LOGGING defined):
|
|
* - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
|
|
* - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
|
|
* - entering sd_ioctl: SCSI_LOG_IOCTL level 1
|
|
* - entering other commands: SCSI_LOG_HLQUEUE level 3
|
|
* Note: when the logging level is set by the user, it must be greater
|
|
* than the level indicated above to trigger output.
|
|
*/
|
|
|
|
#include <linux/bio-integrity.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/blk-pm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/rw_hint.h>
|
|
#include <linux/major.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/string_helpers.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sed-opal.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/pr.h>
|
|
#include <linux/t10-pi.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/unaligned.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_dbg.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_devinfo.h>
|
|
#include <scsi/scsi_driver.h>
|
|
#include <scsi/scsi_eh.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_ioctl.h>
|
|
#include <scsi/scsicam.h>
|
|
#include <scsi/scsi_common.h>
|
|
|
|
#include "sd.h"
|
|
#include "scsi_priv.h"
|
|
#include "scsi_logging.h"
|
|
|
|
MODULE_AUTHOR("Eric Youngdale");
|
|
MODULE_DESCRIPTION("SCSI disk (sd) driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
|
|
|
|
#define SD_MINORS 16
|
|
|
|
static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
|
|
unsigned int mode);
|
|
static void sd_config_write_same(struct scsi_disk *sdkp,
|
|
struct queue_limits *lim);
|
|
static int sd_revalidate_disk(struct gendisk *);
|
|
static void sd_unlock_native_capacity(struct gendisk *disk);
|
|
static void sd_shutdown(struct device *);
|
|
static void scsi_disk_release(struct device *cdev);
|
|
|
|
static DEFINE_IDA(sd_index_ida);
|
|
|
|
static mempool_t *sd_page_pool;
|
|
static struct lock_class_key sd_bio_compl_lkclass;
|
|
|
|
static const char *sd_cache_types[] = {
|
|
"write through", "none", "write back",
|
|
"write back, no read (daft)"
|
|
};
|
|
|
|
static void sd_set_flush_flag(struct scsi_disk *sdkp,
|
|
struct queue_limits *lim)
|
|
{
|
|
if (sdkp->WCE) {
|
|
lim->features |= BLK_FEAT_WRITE_CACHE;
|
|
if (sdkp->DPOFUA)
|
|
lim->features |= BLK_FEAT_FUA;
|
|
else
|
|
lim->features &= ~BLK_FEAT_FUA;
|
|
} else {
|
|
lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
|
|
}
|
|
}
|
|
|
|
static ssize_t
|
|
cache_type_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ct, rcd, wce, sp;
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
char buffer[64];
|
|
char *buffer_data;
|
|
struct scsi_mode_data data;
|
|
struct scsi_sense_hdr sshdr;
|
|
static const char temp[] = "temporary ";
|
|
int len, ret;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
/* no cache control on RBC devices; theoretically they
|
|
* can do it, but there's probably so many exceptions
|
|
* it's not worth the risk */
|
|
return -EINVAL;
|
|
|
|
if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
|
|
buf += sizeof(temp) - 1;
|
|
sdkp->cache_override = 1;
|
|
} else {
|
|
sdkp->cache_override = 0;
|
|
}
|
|
|
|
ct = sysfs_match_string(sd_cache_types, buf);
|
|
if (ct < 0)
|
|
return -EINVAL;
|
|
|
|
rcd = ct & 0x01 ? 1 : 0;
|
|
wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
|
|
|
|
if (sdkp->cache_override) {
|
|
struct queue_limits lim;
|
|
|
|
sdkp->WCE = wce;
|
|
sdkp->RCD = rcd;
|
|
|
|
lim = queue_limits_start_update(sdkp->disk->queue);
|
|
sd_set_flush_flag(sdkp, &lim);
|
|
blk_mq_freeze_queue(sdkp->disk->queue);
|
|
ret = queue_limits_commit_update(sdkp->disk->queue, &lim);
|
|
blk_mq_unfreeze_queue(sdkp->disk->queue);
|
|
if (ret)
|
|
return ret;
|
|
return count;
|
|
}
|
|
|
|
if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
|
|
sdkp->max_retries, &data, NULL))
|
|
return -EINVAL;
|
|
len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
|
|
data.block_descriptor_length);
|
|
buffer_data = buffer + data.header_length +
|
|
data.block_descriptor_length;
|
|
buffer_data[2] &= ~0x05;
|
|
buffer_data[2] |= wce << 2 | rcd;
|
|
sp = buffer_data[0] & 0x80 ? 1 : 0;
|
|
buffer_data[0] &= ~0x80;
|
|
|
|
/*
|
|
* Ensure WP, DPOFUA, and RESERVED fields are cleared in
|
|
* received mode parameter buffer before doing MODE SELECT.
|
|
*/
|
|
data.device_specific = 0;
|
|
|
|
ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
|
|
sdkp->max_retries, &data, &sshdr);
|
|
if (ret) {
|
|
if (ret > 0 && scsi_sense_valid(&sshdr))
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
return -EINVAL;
|
|
}
|
|
sd_revalidate_disk(sdkp->disk);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t
|
|
manage_start_stop_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
return sysfs_emit(buf, "%u\n",
|
|
sdp->manage_system_start_stop &&
|
|
sdp->manage_runtime_start_stop &&
|
|
sdp->manage_shutdown);
|
|
}
|
|
static DEVICE_ATTR_RO(manage_start_stop);
|
|
|
|
static ssize_t
|
|
manage_system_start_stop_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
|
|
}
|
|
|
|
static ssize_t
|
|
manage_system_start_stop_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
bool v;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (kstrtobool(buf, &v))
|
|
return -EINVAL;
|
|
|
|
sdp->manage_system_start_stop = v;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(manage_system_start_stop);
|
|
|
|
static ssize_t
|
|
manage_runtime_start_stop_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
|
|
}
|
|
|
|
static ssize_t
|
|
manage_runtime_start_stop_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
bool v;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (kstrtobool(buf, &v))
|
|
return -EINVAL;
|
|
|
|
sdp->manage_runtime_start_stop = v;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(manage_runtime_start_stop);
|
|
|
|
static ssize_t manage_shutdown_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
|
|
}
|
|
|
|
static ssize_t manage_shutdown_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
bool v;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (kstrtobool(buf, &v))
|
|
return -EINVAL;
|
|
|
|
sdp->manage_shutdown = v;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(manage_shutdown);
|
|
|
|
static ssize_t
|
|
allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->device->allow_restart);
|
|
}
|
|
|
|
static ssize_t
|
|
allow_restart_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
bool v;
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
return -EINVAL;
|
|
|
|
if (kstrtobool(buf, &v))
|
|
return -EINVAL;
|
|
|
|
sdp->allow_restart = v;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(allow_restart);
|
|
|
|
static ssize_t
|
|
cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
int ct = sdkp->RCD + 2*sdkp->WCE;
|
|
|
|
return sprintf(buf, "%s\n", sd_cache_types[ct]);
|
|
}
|
|
static DEVICE_ATTR_RW(cache_type);
|
|
|
|
static ssize_t
|
|
FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->DPOFUA);
|
|
}
|
|
static DEVICE_ATTR_RO(FUA);
|
|
|
|
static ssize_t
|
|
protection_type_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->protection_type);
|
|
}
|
|
|
|
static ssize_t
|
|
protection_type_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
unsigned int val;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
err = kstrtouint(buf, 10, &val);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (val <= T10_PI_TYPE3_PROTECTION)
|
|
sdkp->protection_type = val;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(protection_type);
|
|
|
|
static ssize_t
|
|
protection_mode_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
unsigned int dif, dix;
|
|
|
|
dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
|
|
dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
|
|
|
|
if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
|
|
dif = 0;
|
|
dix = 1;
|
|
}
|
|
|
|
if (!dif && !dix)
|
|
return sprintf(buf, "none\n");
|
|
|
|
return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
|
|
}
|
|
static DEVICE_ATTR_RO(protection_mode);
|
|
|
|
static ssize_t
|
|
app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->ATO);
|
|
}
|
|
static DEVICE_ATTR_RO(app_tag_own);
|
|
|
|
static ssize_t
|
|
thin_provisioning_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->lbpme);
|
|
}
|
|
static DEVICE_ATTR_RO(thin_provisioning);
|
|
|
|
/* sysfs_match_string() requires dense arrays */
|
|
static const char *lbp_mode[] = {
|
|
[SD_LBP_FULL] = "full",
|
|
[SD_LBP_UNMAP] = "unmap",
|
|
[SD_LBP_WS16] = "writesame_16",
|
|
[SD_LBP_WS10] = "writesame_10",
|
|
[SD_LBP_ZERO] = "writesame_zero",
|
|
[SD_LBP_DISABLE] = "disabled",
|
|
};
|
|
|
|
static ssize_t
|
|
provisioning_mode_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
|
|
}
|
|
|
|
static ssize_t
|
|
provisioning_mode_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct queue_limits lim;
|
|
int mode, err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (sdp->type != TYPE_DISK)
|
|
return -EINVAL;
|
|
|
|
mode = sysfs_match_string(lbp_mode, buf);
|
|
if (mode < 0)
|
|
return -EINVAL;
|
|
|
|
lim = queue_limits_start_update(sdkp->disk->queue);
|
|
sd_config_discard(sdkp, &lim, mode);
|
|
blk_mq_freeze_queue(sdkp->disk->queue);
|
|
err = queue_limits_commit_update(sdkp->disk->queue, &lim);
|
|
blk_mq_unfreeze_queue(sdkp->disk->queue);
|
|
if (err)
|
|
return err;
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(provisioning_mode);
|
|
|
|
/* sysfs_match_string() requires dense arrays */
|
|
static const char *zeroing_mode[] = {
|
|
[SD_ZERO_WRITE] = "write",
|
|
[SD_ZERO_WS] = "writesame",
|
|
[SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
|
|
[SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
|
|
};
|
|
|
|
static ssize_t
|
|
zeroing_mode_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
|
|
}
|
|
|
|
static ssize_t
|
|
zeroing_mode_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
int mode;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
mode = sysfs_match_string(zeroing_mode, buf);
|
|
if (mode < 0)
|
|
return -EINVAL;
|
|
|
|
sdkp->zeroing_mode = mode;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(zeroing_mode);
|
|
|
|
static ssize_t
|
|
max_medium_access_timeouts_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
|
|
}
|
|
|
|
static ssize_t
|
|
max_medium_access_timeouts_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
|
|
|
|
return err ? err : count;
|
|
}
|
|
static DEVICE_ATTR_RW(max_medium_access_timeouts);
|
|
|
|
static ssize_t
|
|
max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
|
|
}
|
|
|
|
static ssize_t
|
|
max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct queue_limits lim;
|
|
unsigned long max;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
return -EINVAL;
|
|
|
|
err = kstrtoul(buf, 10, &max);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (max == 0)
|
|
sdp->no_write_same = 1;
|
|
else if (max <= SD_MAX_WS16_BLOCKS) {
|
|
sdp->no_write_same = 0;
|
|
sdkp->max_ws_blocks = max;
|
|
}
|
|
|
|
lim = queue_limits_start_update(sdkp->disk->queue);
|
|
sd_config_write_same(sdkp, &lim);
|
|
blk_mq_freeze_queue(sdkp->disk->queue);
|
|
err = queue_limits_commit_update(sdkp->disk->queue, &lim);
|
|
blk_mq_unfreeze_queue(sdkp->disk->queue);
|
|
if (err)
|
|
return err;
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(max_write_same_blocks);
|
|
|
|
static ssize_t
|
|
zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
if (sdkp->device->type == TYPE_ZBC)
|
|
return sprintf(buf, "host-managed\n");
|
|
if (sdkp->zoned == 1)
|
|
return sprintf(buf, "host-aware\n");
|
|
if (sdkp->zoned == 2)
|
|
return sprintf(buf, "drive-managed\n");
|
|
return sprintf(buf, "none\n");
|
|
}
|
|
static DEVICE_ATTR_RO(zoned_cap);
|
|
|
|
static ssize_t
|
|
max_retries_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdev = sdkp->device;
|
|
int retries, err;
|
|
|
|
err = kstrtoint(buf, 10, &retries);
|
|
if (err)
|
|
return err;
|
|
|
|
if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
|
|
sdkp->max_retries = retries;
|
|
return count;
|
|
}
|
|
|
|
sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
|
|
SD_MAX_RETRIES);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static ssize_t
|
|
max_retries_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%d\n", sdkp->max_retries);
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(max_retries);
|
|
|
|
static struct attribute *sd_disk_attrs[] = {
|
|
&dev_attr_cache_type.attr,
|
|
&dev_attr_FUA.attr,
|
|
&dev_attr_allow_restart.attr,
|
|
&dev_attr_manage_start_stop.attr,
|
|
&dev_attr_manage_system_start_stop.attr,
|
|
&dev_attr_manage_runtime_start_stop.attr,
|
|
&dev_attr_manage_shutdown.attr,
|
|
&dev_attr_protection_type.attr,
|
|
&dev_attr_protection_mode.attr,
|
|
&dev_attr_app_tag_own.attr,
|
|
&dev_attr_thin_provisioning.attr,
|
|
&dev_attr_provisioning_mode.attr,
|
|
&dev_attr_zeroing_mode.attr,
|
|
&dev_attr_max_write_same_blocks.attr,
|
|
&dev_attr_max_medium_access_timeouts.attr,
|
|
&dev_attr_zoned_cap.attr,
|
|
&dev_attr_max_retries.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(sd_disk);
|
|
|
|
static struct class sd_disk_class = {
|
|
.name = "scsi_disk",
|
|
.dev_release = scsi_disk_release,
|
|
.dev_groups = sd_disk_groups,
|
|
};
|
|
|
|
/*
|
|
* Don't request a new module, as that could deadlock in multipath
|
|
* environment.
|
|
*/
|
|
static void sd_default_probe(dev_t devt)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Device no to disk mapping:
|
|
*
|
|
* major disc2 disc p1
|
|
* |............|.............|....|....| <- dev_t
|
|
* 31 20 19 8 7 4 3 0
|
|
*
|
|
* Inside a major, we have 16k disks, however mapped non-
|
|
* contiguously. The first 16 disks are for major0, the next
|
|
* ones with major1, ... Disk 256 is for major0 again, disk 272
|
|
* for major1, ...
|
|
* As we stay compatible with our numbering scheme, we can reuse
|
|
* the well-know SCSI majors 8, 65--71, 136--143.
|
|
*/
|
|
static int sd_major(int major_idx)
|
|
{
|
|
switch (major_idx) {
|
|
case 0:
|
|
return SCSI_DISK0_MAJOR;
|
|
case 1 ... 7:
|
|
return SCSI_DISK1_MAJOR + major_idx - 1;
|
|
case 8 ... 15:
|
|
return SCSI_DISK8_MAJOR + major_idx - 8;
|
|
default:
|
|
BUG();
|
|
return 0; /* shut up gcc */
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_SED_OPAL
|
|
static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
|
|
size_t len, bool send)
|
|
{
|
|
struct scsi_disk *sdkp = data;
|
|
struct scsi_device *sdev = sdkp->device;
|
|
u8 cdb[12] = { 0, };
|
|
const struct scsi_exec_args exec_args = {
|
|
.req_flags = BLK_MQ_REQ_PM,
|
|
};
|
|
int ret;
|
|
|
|
cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
|
|
cdb[1] = secp;
|
|
put_unaligned_be16(spsp, &cdb[2]);
|
|
put_unaligned_be32(len, &cdb[6]);
|
|
|
|
ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
|
|
buffer, len, SD_TIMEOUT, sdkp->max_retries,
|
|
&exec_args);
|
|
return ret <= 0 ? ret : -EIO;
|
|
}
|
|
#endif /* CONFIG_BLK_SED_OPAL */
|
|
|
|
/*
|
|
* Look up the DIX operation based on whether the command is read or
|
|
* write and whether dix and dif are enabled.
|
|
*/
|
|
static unsigned int sd_prot_op(bool write, bool dix, bool dif)
|
|
{
|
|
/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
|
|
static const unsigned int ops[] = { /* wrt dix dif */
|
|
SCSI_PROT_NORMAL, /* 0 0 0 */
|
|
SCSI_PROT_READ_STRIP, /* 0 0 1 */
|
|
SCSI_PROT_READ_INSERT, /* 0 1 0 */
|
|
SCSI_PROT_READ_PASS, /* 0 1 1 */
|
|
SCSI_PROT_NORMAL, /* 1 0 0 */
|
|
SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
|
|
SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
|
|
SCSI_PROT_WRITE_PASS, /* 1 1 1 */
|
|
};
|
|
|
|
return ops[write << 2 | dix << 1 | dif];
|
|
}
|
|
|
|
/*
|
|
* Returns a mask of the protection flags that are valid for a given DIX
|
|
* operation.
|
|
*/
|
|
static unsigned int sd_prot_flag_mask(unsigned int prot_op)
|
|
{
|
|
static const unsigned int flag_mask[] = {
|
|
[SCSI_PROT_NORMAL] = 0,
|
|
|
|
[SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT,
|
|
|
|
[SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
|
|
[SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
|
|
[SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_REF_INCREMENT,
|
|
|
|
[SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
|
|
[SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
};
|
|
|
|
return flag_mask[prot_op];
|
|
}
|
|
|
|
static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
|
|
unsigned int dix, unsigned int dif)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(scmd);
|
|
struct bio *bio = rq->bio;
|
|
unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
|
|
unsigned int protect = 0;
|
|
|
|
if (dix) { /* DIX Type 0, 1, 2, 3 */
|
|
if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
|
|
scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
|
|
|
|
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
|
|
scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
|
|
}
|
|
|
|
if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
|
|
scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
|
|
|
|
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
|
|
scmd->prot_flags |= SCSI_PROT_REF_CHECK;
|
|
}
|
|
|
|
if (dif) { /* DIX/DIF Type 1, 2, 3 */
|
|
scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
|
|
|
|
if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
|
|
protect = 3 << 5; /* Disable target PI checking */
|
|
else
|
|
protect = 1 << 5; /* Enable target PI checking */
|
|
}
|
|
|
|
scsi_set_prot_op(scmd, prot_op);
|
|
scsi_set_prot_type(scmd, dif);
|
|
scmd->prot_flags &= sd_prot_flag_mask(prot_op);
|
|
|
|
return protect;
|
|
}
|
|
|
|
static void sd_disable_discard(struct scsi_disk *sdkp)
|
|
{
|
|
sdkp->provisioning_mode = SD_LBP_DISABLE;
|
|
blk_queue_disable_discard(sdkp->disk->queue);
|
|
}
|
|
|
|
static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
|
|
unsigned int mode)
|
|
{
|
|
unsigned int logical_block_size = sdkp->device->sector_size;
|
|
unsigned int max_blocks = 0;
|
|
|
|
lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
|
|
lim->discard_granularity = max(sdkp->physical_block_size,
|
|
sdkp->unmap_granularity * logical_block_size);
|
|
sdkp->provisioning_mode = mode;
|
|
|
|
switch (mode) {
|
|
|
|
case SD_LBP_FULL:
|
|
case SD_LBP_DISABLE:
|
|
break;
|
|
|
|
case SD_LBP_UNMAP:
|
|
max_blocks = min_not_zero(sdkp->max_unmap_blocks,
|
|
(u32)SD_MAX_WS16_BLOCKS);
|
|
break;
|
|
|
|
case SD_LBP_WS16:
|
|
if (sdkp->device->unmap_limit_for_ws)
|
|
max_blocks = sdkp->max_unmap_blocks;
|
|
else
|
|
max_blocks = sdkp->max_ws_blocks;
|
|
|
|
max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
|
|
break;
|
|
|
|
case SD_LBP_WS10:
|
|
if (sdkp->device->unmap_limit_for_ws)
|
|
max_blocks = sdkp->max_unmap_blocks;
|
|
else
|
|
max_blocks = sdkp->max_ws_blocks;
|
|
|
|
max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
|
|
break;
|
|
|
|
case SD_LBP_ZERO:
|
|
max_blocks = min_not_zero(sdkp->max_ws_blocks,
|
|
(u32)SD_MAX_WS10_BLOCKS);
|
|
break;
|
|
}
|
|
|
|
lim->max_hw_discard_sectors = max_blocks *
|
|
(logical_block_size >> SECTOR_SHIFT);
|
|
}
|
|
|
|
static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
|
|
{
|
|
struct page *page;
|
|
|
|
page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
|
|
if (!page)
|
|
return NULL;
|
|
clear_highpage(page);
|
|
bvec_set_page(&rq->special_vec, page, data_len, 0);
|
|
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
|
|
return bvec_virt(&rq->special_vec);
|
|
}
|
|
|
|
static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
unsigned int data_len = 24;
|
|
char *buf;
|
|
|
|
buf = sd_set_special_bvec(rq, data_len);
|
|
if (!buf)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
cmd->cmd_len = 10;
|
|
cmd->cmnd[0] = UNMAP;
|
|
cmd->cmnd[8] = 24;
|
|
|
|
put_unaligned_be16(6 + 16, &buf[0]);
|
|
put_unaligned_be16(16, &buf[2]);
|
|
put_unaligned_be64(lba, &buf[8]);
|
|
put_unaligned_be32(nr_blocks, &buf[16]);
|
|
|
|
cmd->allowed = sdkp->max_retries;
|
|
cmd->transfersize = data_len;
|
|
rq->timeout = SD_TIMEOUT;
|
|
|
|
return scsi_alloc_sgtables(cmd);
|
|
}
|
|
|
|
static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
|
|
{
|
|
unsigned int logical_block_size = sdkp->device->sector_size,
|
|
physical_block_size_sectors, max_atomic, unit_min, unit_max;
|
|
|
|
if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
|
|
sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
|
|
return;
|
|
|
|
physical_block_size_sectors = sdkp->physical_block_size /
|
|
sdkp->device->sector_size;
|
|
|
|
unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
|
|
sdkp->atomic_granularity :
|
|
physical_block_size_sectors);
|
|
|
|
/*
|
|
* Only use atomic boundary when we have the odd scenario of
|
|
* sdkp->max_atomic == 0, which the spec does permit.
|
|
*/
|
|
if (sdkp->max_atomic) {
|
|
max_atomic = sdkp->max_atomic;
|
|
unit_max = rounddown_pow_of_two(sdkp->max_atomic);
|
|
sdkp->use_atomic_write_boundary = 0;
|
|
} else {
|
|
max_atomic = sdkp->max_atomic_with_boundary;
|
|
unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
|
|
sdkp->use_atomic_write_boundary = 1;
|
|
}
|
|
|
|
/*
|
|
* Ensure compliance with granularity and alignment. For now, keep it
|
|
* simple and just don't support atomic writes for values mismatched
|
|
* with max_{boundary}atomic, physical block size, and
|
|
* atomic_granularity itself.
|
|
*
|
|
* We're really being distrustful by checking unit_max also...
|
|
*/
|
|
if (sdkp->atomic_granularity > 1) {
|
|
if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
|
|
return;
|
|
if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
|
|
return;
|
|
}
|
|
|
|
if (sdkp->atomic_alignment > 1) {
|
|
if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
|
|
return;
|
|
if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
|
|
return;
|
|
}
|
|
|
|
lim->atomic_write_hw_max = max_atomic * logical_block_size;
|
|
lim->atomic_write_hw_boundary = 0;
|
|
lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
|
|
lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
|
|
}
|
|
|
|
static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
|
|
bool unmap)
|
|
{
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
u32 data_len = sdp->sector_size;
|
|
|
|
if (!sd_set_special_bvec(rq, data_len))
|
|
return BLK_STS_RESOURCE;
|
|
|
|
cmd->cmd_len = 16;
|
|
cmd->cmnd[0] = WRITE_SAME_16;
|
|
if (unmap)
|
|
cmd->cmnd[1] = 0x8; /* UNMAP */
|
|
put_unaligned_be64(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
|
|
|
|
cmd->allowed = sdkp->max_retries;
|
|
cmd->transfersize = data_len;
|
|
rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
|
|
|
|
return scsi_alloc_sgtables(cmd);
|
|
}
|
|
|
|
static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
|
|
bool unmap)
|
|
{
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
u32 data_len = sdp->sector_size;
|
|
|
|
if (!sd_set_special_bvec(rq, data_len))
|
|
return BLK_STS_RESOURCE;
|
|
|
|
cmd->cmd_len = 10;
|
|
cmd->cmnd[0] = WRITE_SAME;
|
|
if (unmap)
|
|
cmd->cmnd[1] = 0x8; /* UNMAP */
|
|
put_unaligned_be32(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
|
|
|
|
cmd->allowed = sdkp->max_retries;
|
|
cmd->transfersize = data_len;
|
|
rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
|
|
|
|
return scsi_alloc_sgtables(cmd);
|
|
}
|
|
|
|
static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
|
|
if (!(rq->cmd_flags & REQ_NOUNMAP)) {
|
|
switch (sdkp->zeroing_mode) {
|
|
case SD_ZERO_WS16_UNMAP:
|
|
return sd_setup_write_same16_cmnd(cmd, true);
|
|
case SD_ZERO_WS10_UNMAP:
|
|
return sd_setup_write_same10_cmnd(cmd, true);
|
|
}
|
|
}
|
|
|
|
if (sdp->no_write_same) {
|
|
rq->rq_flags |= RQF_QUIET;
|
|
return BLK_STS_TARGET;
|
|
}
|
|
|
|
if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
|
|
return sd_setup_write_same16_cmnd(cmd, false);
|
|
|
|
return sd_setup_write_same10_cmnd(cmd, false);
|
|
}
|
|
|
|
static void sd_disable_write_same(struct scsi_disk *sdkp)
|
|
{
|
|
sdkp->device->no_write_same = 1;
|
|
sdkp->max_ws_blocks = 0;
|
|
blk_queue_disable_write_zeroes(sdkp->disk->queue);
|
|
}
|
|
|
|
static void sd_config_write_same(struct scsi_disk *sdkp,
|
|
struct queue_limits *lim)
|
|
{
|
|
unsigned int logical_block_size = sdkp->device->sector_size;
|
|
|
|
if (sdkp->device->no_write_same) {
|
|
sdkp->max_ws_blocks = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Some devices can not handle block counts above 0xffff despite
|
|
* supporting WRITE SAME(16). Consequently we default to 64k
|
|
* blocks per I/O unless the device explicitly advertises a
|
|
* bigger limit.
|
|
*/
|
|
if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
|
|
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
|
|
(u32)SD_MAX_WS16_BLOCKS);
|
|
else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
|
|
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
|
|
(u32)SD_MAX_WS10_BLOCKS);
|
|
else {
|
|
sdkp->device->no_write_same = 1;
|
|
sdkp->max_ws_blocks = 0;
|
|
}
|
|
|
|
if (sdkp->lbprz && sdkp->lbpws)
|
|
sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
|
|
else if (sdkp->lbprz && sdkp->lbpws10)
|
|
sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
|
|
else if (sdkp->max_ws_blocks)
|
|
sdkp->zeroing_mode = SD_ZERO_WS;
|
|
else
|
|
sdkp->zeroing_mode = SD_ZERO_WRITE;
|
|
|
|
if (sdkp->max_ws_blocks &&
|
|
sdkp->physical_block_size > logical_block_size) {
|
|
/*
|
|
* Reporting a maximum number of blocks that is not aligned
|
|
* on the device physical size would cause a large write same
|
|
* request to be split into physically unaligned chunks by
|
|
* __blkdev_issue_write_zeroes() even if the caller of this
|
|
* functions took care to align the large request. So make sure
|
|
* the maximum reported is aligned to the device physical block
|
|
* size. This is only an optional optimization for regular
|
|
* disks, but this is mandatory to avoid failure of large write
|
|
* same requests directed at sequential write required zones of
|
|
* host-managed ZBC disks.
|
|
*/
|
|
sdkp->max_ws_blocks =
|
|
round_down(sdkp->max_ws_blocks,
|
|
bytes_to_logical(sdkp->device,
|
|
sdkp->physical_block_size));
|
|
}
|
|
|
|
out:
|
|
lim->max_write_zeroes_sectors =
|
|
sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
|
|
}
|
|
|
|
static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
|
|
|
|
/* flush requests don't perform I/O, zero the S/G table */
|
|
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
|
|
|
|
if (cmd->device->use_16_for_sync) {
|
|
cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
|
|
cmd->cmd_len = 16;
|
|
} else {
|
|
cmd->cmnd[0] = SYNCHRONIZE_CACHE;
|
|
cmd->cmd_len = 10;
|
|
}
|
|
cmd->transfersize = 0;
|
|
cmd->allowed = sdkp->max_retries;
|
|
|
|
rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
/**
|
|
* sd_group_number() - Compute the GROUP NUMBER field
|
|
* @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
|
|
* field.
|
|
*
|
|
* From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
|
|
* 0: no relative lifetime.
|
|
* 1: shortest relative lifetime.
|
|
* 2: second shortest relative lifetime.
|
|
* 3 - 0x3d: intermediate relative lifetimes.
|
|
* 0x3e: second longest relative lifetime.
|
|
* 0x3f: longest relative lifetime.
|
|
*/
|
|
static u8 sd_group_number(struct scsi_cmnd *cmd)
|
|
{
|
|
const struct request *rq = scsi_cmd_to_rq(cmd);
|
|
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
|
|
|
|
if (!sdkp->rscs)
|
|
return 0;
|
|
|
|
return min3((u32)rq->bio->bi_write_hint,
|
|
(u32)sdkp->permanent_stream_count, 0x3fu);
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags, unsigned int dld)
|
|
{
|
|
cmd->cmd_len = SD_EXT_CDB_SIZE;
|
|
cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
|
|
cmd->cmnd[6] = sd_group_number(cmd);
|
|
cmd->cmnd[7] = 0x18; /* Additional CDB len */
|
|
cmd->cmnd[9] = write ? WRITE_32 : READ_32;
|
|
cmd->cmnd[10] = flags;
|
|
cmd->cmnd[11] = dld & 0x07;
|
|
put_unaligned_be64(lba, &cmd->cmnd[12]);
|
|
put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
|
|
put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags, unsigned int dld)
|
|
{
|
|
cmd->cmd_len = 16;
|
|
cmd->cmnd[0] = write ? WRITE_16 : READ_16;
|
|
cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
|
|
cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
|
|
cmd->cmnd[15] = 0;
|
|
put_unaligned_be64(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags)
|
|
{
|
|
cmd->cmd_len = 10;
|
|
cmd->cmnd[0] = write ? WRITE_10 : READ_10;
|
|
cmd->cmnd[1] = flags;
|
|
cmd->cmnd[6] = sd_group_number(cmd);
|
|
cmd->cmnd[9] = 0;
|
|
put_unaligned_be32(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags)
|
|
{
|
|
/* Avoid that 0 blocks gets translated into 256 blocks. */
|
|
if (WARN_ON_ONCE(nr_blocks == 0))
|
|
return BLK_STS_IOERR;
|
|
|
|
if (unlikely(flags & 0x8)) {
|
|
/*
|
|
* This happens only if this drive failed 10byte rw
|
|
* command with ILLEGAL_REQUEST during operation and
|
|
* thus turned off use_10_for_rw.
|
|
*/
|
|
scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
cmd->cmd_len = 6;
|
|
cmd->cmnd[0] = write ? WRITE_6 : READ_6;
|
|
cmd->cmnd[1] = (lba >> 16) & 0x1f;
|
|
cmd->cmnd[2] = (lba >> 8) & 0xff;
|
|
cmd->cmnd[3] = lba & 0xff;
|
|
cmd->cmnd[4] = nr_blocks;
|
|
cmd->cmnd[5] = 0;
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
/*
|
|
* Check if a command has a duration limit set. If it does, and the target
|
|
* device supports CDL and the feature is enabled, return the limit
|
|
* descriptor index to use. Return 0 (no limit) otherwise.
|
|
*/
|
|
static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
int hint;
|
|
|
|
if (!sdp->cdl_supported || !sdp->cdl_enable)
|
|
return 0;
|
|
|
|
/*
|
|
* Use "no limit" if the request ioprio does not specify a duration
|
|
* limit hint.
|
|
*/
|
|
hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
|
|
if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
|
|
hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
|
|
return 0;
|
|
|
|
return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
|
|
}
|
|
|
|
static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
bool boundary, unsigned char flags)
|
|
{
|
|
cmd->cmd_len = 16;
|
|
cmd->cmnd[0] = WRITE_ATOMIC_16;
|
|
cmd->cmnd[1] = flags;
|
|
put_unaligned_be64(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
|
|
if (boundary)
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
|
|
else
|
|
put_unaligned_be16(0, &cmd->cmnd[10]);
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
|
|
cmd->cmnd[14] = 0;
|
|
cmd->cmnd[15] = 0;
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
|
|
sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
sector_t threshold;
|
|
unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
unsigned int mask = logical_to_sectors(sdp, 1) - 1;
|
|
bool write = rq_data_dir(rq) == WRITE;
|
|
unsigned char protect, fua;
|
|
unsigned int dld;
|
|
blk_status_t ret;
|
|
unsigned int dif;
|
|
bool dix;
|
|
|
|
ret = scsi_alloc_sgtables(cmd);
|
|
if (ret != BLK_STS_OK)
|
|
return ret;
|
|
|
|
ret = BLK_STS_IOERR;
|
|
if (!scsi_device_online(sdp) || sdp->changed) {
|
|
scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
|
|
scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
|
|
goto fail;
|
|
}
|
|
|
|
if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
|
|
scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Some SD card readers can't handle accesses which touch the
|
|
* last one or two logical blocks. Split accesses as needed.
|
|
*/
|
|
threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
|
|
|
|
if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
|
|
if (lba < threshold) {
|
|
/* Access up to the threshold but not beyond */
|
|
nr_blocks = threshold - lba;
|
|
} else {
|
|
/* Access only a single logical block */
|
|
nr_blocks = 1;
|
|
}
|
|
}
|
|
|
|
fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
|
|
dix = scsi_prot_sg_count(cmd);
|
|
dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
|
|
dld = sd_cdl_dld(sdkp, cmd);
|
|
|
|
if (dif || dix)
|
|
protect = sd_setup_protect_cmnd(cmd, dix, dif);
|
|
else
|
|
protect = 0;
|
|
|
|
if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
|
|
ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua, dld);
|
|
} else if (rq->cmd_flags & REQ_ATOMIC) {
|
|
ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
|
|
sdkp->use_atomic_write_boundary,
|
|
protect | fua);
|
|
} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
|
|
ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua, dld);
|
|
} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
|
|
sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) {
|
|
ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua);
|
|
} else {
|
|
ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua);
|
|
}
|
|
|
|
if (unlikely(ret != BLK_STS_OK))
|
|
goto fail;
|
|
|
|
/*
|
|
* We shouldn't disconnect in the middle of a sector, so with a dumb
|
|
* host adapter, it's safe to assume that we can at least transfer
|
|
* this many bytes between each connect / disconnect.
|
|
*/
|
|
cmd->transfersize = sdp->sector_size;
|
|
cmd->underflow = nr_blocks << 9;
|
|
cmd->allowed = sdkp->max_retries;
|
|
cmd->sdb.length = nr_blocks * sdp->sector_size;
|
|
|
|
SCSI_LOG_HLQUEUE(1,
|
|
scmd_printk(KERN_INFO, cmd,
|
|
"%s: block=%llu, count=%d\n", __func__,
|
|
(unsigned long long)blk_rq_pos(rq),
|
|
blk_rq_sectors(rq)));
|
|
SCSI_LOG_HLQUEUE(2,
|
|
scmd_printk(KERN_INFO, cmd,
|
|
"%s %d/%u 512 byte blocks.\n",
|
|
write ? "writing" : "reading", nr_blocks,
|
|
blk_rq_sectors(rq)));
|
|
|
|
/*
|
|
* This indicates that the command is ready from our end to be queued.
|
|
*/
|
|
return BLK_STS_OK;
|
|
fail:
|
|
scsi_free_sgtables(cmd);
|
|
return ret;
|
|
}
|
|
|
|
static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
|
|
switch (req_op(rq)) {
|
|
case REQ_OP_DISCARD:
|
|
switch (scsi_disk(rq->q->disk)->provisioning_mode) {
|
|
case SD_LBP_UNMAP:
|
|
return sd_setup_unmap_cmnd(cmd);
|
|
case SD_LBP_WS16:
|
|
return sd_setup_write_same16_cmnd(cmd, true);
|
|
case SD_LBP_WS10:
|
|
return sd_setup_write_same10_cmnd(cmd, true);
|
|
case SD_LBP_ZERO:
|
|
return sd_setup_write_same10_cmnd(cmd, false);
|
|
default:
|
|
return BLK_STS_TARGET;
|
|
}
|
|
case REQ_OP_WRITE_ZEROES:
|
|
return sd_setup_write_zeroes_cmnd(cmd);
|
|
case REQ_OP_FLUSH:
|
|
return sd_setup_flush_cmnd(cmd);
|
|
case REQ_OP_READ:
|
|
case REQ_OP_WRITE:
|
|
return sd_setup_read_write_cmnd(cmd);
|
|
case REQ_OP_ZONE_RESET:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
|
|
false);
|
|
case REQ_OP_ZONE_RESET_ALL:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
|
|
true);
|
|
case REQ_OP_ZONE_OPEN:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
|
|
case REQ_OP_ZONE_CLOSE:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
|
|
case REQ_OP_ZONE_FINISH:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return BLK_STS_NOTSUPP;
|
|
}
|
|
}
|
|
|
|
static void sd_uninit_command(struct scsi_cmnd *SCpnt)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(SCpnt);
|
|
|
|
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
|
|
mempool_free(rq->special_vec.bv_page, sd_page_pool);
|
|
}
|
|
|
|
static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
|
|
{
|
|
if (sdkp->device->removable || sdkp->write_prot) {
|
|
if (disk_check_media_change(disk))
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Force a full rescan after ioctl(BLKRRPART). While the disk state has
|
|
* nothing to do with partitions, BLKRRPART is used to force a full
|
|
* revalidate after things like a format for historical reasons.
|
|
*/
|
|
return test_bit(GD_NEED_PART_SCAN, &disk->state);
|
|
}
|
|
|
|
/**
|
|
* sd_open - open a scsi disk device
|
|
* @disk: disk to open
|
|
* @mode: open mode
|
|
*
|
|
* Returns 0 if successful. Returns a negated errno value in case
|
|
* of error.
|
|
*
|
|
* Note: This can be called from a user context (e.g. fsck(1) )
|
|
* or from within the kernel (e.g. as a result of a mount(1) ).
|
|
* In the latter case @inode and @filp carry an abridged amount
|
|
* of information as noted above.
|
|
*
|
|
* Locking: called with disk->open_mutex held.
|
|
**/
|
|
static int sd_open(struct gendisk *disk, blk_mode_t mode)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
struct scsi_device *sdev = sdkp->device;
|
|
int retval;
|
|
|
|
if (scsi_device_get(sdev))
|
|
return -ENXIO;
|
|
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
|
|
|
|
/*
|
|
* If the device is in error recovery, wait until it is done.
|
|
* If the device is offline, then disallow any access to it.
|
|
*/
|
|
retval = -ENXIO;
|
|
if (!scsi_block_when_processing_errors(sdev))
|
|
goto error_out;
|
|
|
|
if (sd_need_revalidate(disk, sdkp))
|
|
sd_revalidate_disk(disk);
|
|
|
|
/*
|
|
* If the drive is empty, just let the open fail.
|
|
*/
|
|
retval = -ENOMEDIUM;
|
|
if (sdev->removable && !sdkp->media_present &&
|
|
!(mode & BLK_OPEN_NDELAY))
|
|
goto error_out;
|
|
|
|
/*
|
|
* If the device has the write protect tab set, have the open fail
|
|
* if the user expects to be able to write to the thing.
|
|
*/
|
|
retval = -EROFS;
|
|
if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
|
|
goto error_out;
|
|
|
|
/*
|
|
* It is possible that the disk changing stuff resulted in
|
|
* the device being taken offline. If this is the case,
|
|
* report this to the user, and don't pretend that the
|
|
* open actually succeeded.
|
|
*/
|
|
retval = -ENXIO;
|
|
if (!scsi_device_online(sdev))
|
|
goto error_out;
|
|
|
|
if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
|
|
if (scsi_block_when_processing_errors(sdev))
|
|
scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
|
|
}
|
|
|
|
return 0;
|
|
|
|
error_out:
|
|
scsi_device_put(sdev);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* sd_release - invoked when the (last) close(2) is called on this
|
|
* scsi disk.
|
|
* @disk: disk to release
|
|
*
|
|
* Returns 0.
|
|
*
|
|
* Note: may block (uninterruptible) if error recovery is underway
|
|
* on this disk.
|
|
*
|
|
* Locking: called with disk->open_mutex held.
|
|
**/
|
|
static void sd_release(struct gendisk *disk)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
struct scsi_device *sdev = sdkp->device;
|
|
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
|
|
|
|
if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
|
|
if (scsi_block_when_processing_errors(sdev))
|
|
scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
|
|
}
|
|
|
|
scsi_device_put(sdev);
|
|
}
|
|
|
|
static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct Scsi_Host *host = sdp->host;
|
|
sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
|
|
int diskinfo[4];
|
|
|
|
/* default to most commonly used values */
|
|
diskinfo[0] = 0x40; /* 1 << 6 */
|
|
diskinfo[1] = 0x20; /* 1 << 5 */
|
|
diskinfo[2] = capacity >> 11;
|
|
|
|
/* override with calculated, extended default, or driver values */
|
|
if (host->hostt->bios_param)
|
|
host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
|
|
else
|
|
scsicam_bios_param(bdev, capacity, diskinfo);
|
|
|
|
geo->heads = diskinfo[0];
|
|
geo->sectors = diskinfo[1];
|
|
geo->cylinders = diskinfo[2];
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_ioctl - process an ioctl
|
|
* @bdev: target block device
|
|
* @mode: open mode
|
|
* @cmd: ioctl command number
|
|
* @arg: this is third argument given to ioctl(2) system call.
|
|
* Often contains a pointer.
|
|
*
|
|
* Returns 0 if successful (some ioctls return positive numbers on
|
|
* success as well). Returns a negated errno value in case of error.
|
|
*
|
|
* Note: most ioctls are forward onto the block subsystem or further
|
|
* down in the scsi subsystem.
|
|
**/
|
|
static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct gendisk *disk = bdev->bd_disk;
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
void __user *p = (void __user *)arg;
|
|
int error;
|
|
|
|
SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
|
|
"cmd=0x%x\n", disk->disk_name, cmd));
|
|
|
|
if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
|
|
return -ENOIOCTLCMD;
|
|
|
|
/*
|
|
* If we are in the middle of error recovery, don't let anyone
|
|
* else try and use this device. Also, if error recovery fails, it
|
|
* may try and take the device offline, in which case all further
|
|
* access to the device is prohibited.
|
|
*/
|
|
error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
|
|
(mode & BLK_OPEN_NDELAY));
|
|
if (error)
|
|
return error;
|
|
|
|
if (is_sed_ioctl(cmd))
|
|
return sed_ioctl(sdkp->opal_dev, cmd, p);
|
|
return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
|
|
}
|
|
|
|
static void set_media_not_present(struct scsi_disk *sdkp)
|
|
{
|
|
if (sdkp->media_present)
|
|
sdkp->device->changed = 1;
|
|
|
|
if (sdkp->device->removable) {
|
|
sdkp->media_present = 0;
|
|
sdkp->capacity = 0;
|
|
}
|
|
}
|
|
|
|
static int media_not_present(struct scsi_disk *sdkp,
|
|
struct scsi_sense_hdr *sshdr)
|
|
{
|
|
if (!scsi_sense_valid(sshdr))
|
|
return 0;
|
|
|
|
/* not invoked for commands that could return deferred errors */
|
|
switch (sshdr->sense_key) {
|
|
case UNIT_ATTENTION:
|
|
case NOT_READY:
|
|
/* medium not present */
|
|
if (sshdr->asc == 0x3A) {
|
|
set_media_not_present(sdkp);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_check_events - check media events
|
|
* @disk: kernel device descriptor
|
|
* @clearing: disk events currently being cleared
|
|
*
|
|
* Returns mask of DISK_EVENT_*.
|
|
*
|
|
* Note: this function is invoked from the block subsystem.
|
|
**/
|
|
static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
|
|
{
|
|
struct scsi_disk *sdkp = disk->private_data;
|
|
struct scsi_device *sdp;
|
|
int retval;
|
|
bool disk_changed;
|
|
|
|
if (!sdkp)
|
|
return 0;
|
|
|
|
sdp = sdkp->device;
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
|
|
|
|
/*
|
|
* If the device is offline, don't send any commands - just pretend as
|
|
* if the command failed. If the device ever comes back online, we
|
|
* can deal with it then. It is only because of unrecoverable errors
|
|
* that we would ever take a device offline in the first place.
|
|
*/
|
|
if (!scsi_device_online(sdp)) {
|
|
set_media_not_present(sdkp);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Using TEST_UNIT_READY enables differentiation between drive with
|
|
* no cartridge loaded - NOT READY, drive with changed cartridge -
|
|
* UNIT ATTENTION, or with same cartridge - GOOD STATUS.
|
|
*
|
|
* Drives that auto spin down. eg iomega jaz 1G, will be started
|
|
* by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
|
|
* sd_revalidate() is called.
|
|
*/
|
|
if (scsi_block_when_processing_errors(sdp)) {
|
|
struct scsi_sense_hdr sshdr = { 0, };
|
|
|
|
retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
|
|
&sshdr);
|
|
|
|
/* failed to execute TUR, assume media not present */
|
|
if (retval < 0 || host_byte(retval)) {
|
|
set_media_not_present(sdkp);
|
|
goto out;
|
|
}
|
|
|
|
if (media_not_present(sdkp, &sshdr))
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* For removable scsi disk we have to recognise the presence
|
|
* of a disk in the drive.
|
|
*/
|
|
if (!sdkp->media_present)
|
|
sdp->changed = 1;
|
|
sdkp->media_present = 1;
|
|
out:
|
|
/*
|
|
* sdp->changed is set under the following conditions:
|
|
*
|
|
* Medium present state has changed in either direction.
|
|
* Device has indicated UNIT_ATTENTION.
|
|
*/
|
|
disk_changed = sdp->changed;
|
|
sdp->changed = 0;
|
|
return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
|
|
}
|
|
|
|
static int sd_sync_cache(struct scsi_disk *sdkp)
|
|
{
|
|
int res;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
const int timeout = sdp->request_queue->rq_timeout
|
|
* SD_FLUSH_TIMEOUT_MULTIPLIER;
|
|
/* Leave the rest of the command zero to indicate flush everything. */
|
|
const unsigned char cmd[16] = { sdp->use_16_for_sync ?
|
|
SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_failure failure_defs[] = {
|
|
{
|
|
.allowed = 3,
|
|
.result = SCMD_FAILURE_RESULT_ANY,
|
|
},
|
|
{}
|
|
};
|
|
struct scsi_failures failures = {
|
|
.failure_definitions = failure_defs,
|
|
};
|
|
const struct scsi_exec_args exec_args = {
|
|
.req_flags = BLK_MQ_REQ_PM,
|
|
.sshdr = &sshdr,
|
|
.failures = &failures,
|
|
};
|
|
|
|
if (!scsi_device_online(sdp))
|
|
return -ENODEV;
|
|
|
|
res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
|
|
sdkp->max_retries, &exec_args);
|
|
if (res) {
|
|
sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
|
|
|
|
if (res < 0)
|
|
return res;
|
|
|
|
if (scsi_status_is_check_condition(res) &&
|
|
scsi_sense_valid(&sshdr)) {
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
|
|
/* we need to evaluate the error return */
|
|
if (sshdr.asc == 0x3a || /* medium not present */
|
|
sshdr.asc == 0x20 || /* invalid command */
|
|
(sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */
|
|
/* this is no error here */
|
|
return 0;
|
|
|
|
/*
|
|
* If a format is in progress or if the drive does not
|
|
* support sync, there is not much we can do because
|
|
* this is called during shutdown or suspend so just
|
|
* return success so those operations can proceed.
|
|
*/
|
|
if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
|
|
sshdr.sense_key == ILLEGAL_REQUEST)
|
|
return 0;
|
|
}
|
|
|
|
switch (host_byte(res)) {
|
|
/* ignore errors due to racing a disconnection */
|
|
case DID_BAD_TARGET:
|
|
case DID_NO_CONNECT:
|
|
return 0;
|
|
/* signal the upper layer it might try again */
|
|
case DID_BUS_BUSY:
|
|
case DID_IMM_RETRY:
|
|
case DID_REQUEUE:
|
|
case DID_SOFT_ERROR:
|
|
return -EBUSY;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void sd_rescan(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
|
|
sd_revalidate_disk(sdkp->disk);
|
|
}
|
|
|
|
static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
|
|
enum blk_unique_id type)
|
|
{
|
|
struct scsi_device *sdev = scsi_disk(disk)->device;
|
|
const struct scsi_vpd *vpd;
|
|
const unsigned char *d;
|
|
int ret = -ENXIO, len;
|
|
|
|
rcu_read_lock();
|
|
vpd = rcu_dereference(sdev->vpd_pg83);
|
|
if (!vpd)
|
|
goto out_unlock;
|
|
|
|
ret = -EINVAL;
|
|
for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
|
|
/* we only care about designators with LU association */
|
|
if (((d[1] >> 4) & 0x3) != 0x00)
|
|
continue;
|
|
if ((d[1] & 0xf) != type)
|
|
continue;
|
|
|
|
/*
|
|
* Only exit early if a 16-byte descriptor was found. Otherwise
|
|
* keep looking as one with more entropy might still show up.
|
|
*/
|
|
len = d[3];
|
|
if (len != 8 && len != 12 && len != 16)
|
|
continue;
|
|
ret = len;
|
|
memcpy(id, d + 4, len);
|
|
if (len == 16)
|
|
break;
|
|
}
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
|
|
{
|
|
switch (host_byte(result)) {
|
|
case DID_TRANSPORT_MARGINAL:
|
|
case DID_TRANSPORT_DISRUPTED:
|
|
case DID_BUS_BUSY:
|
|
return PR_STS_RETRY_PATH_FAILURE;
|
|
case DID_NO_CONNECT:
|
|
return PR_STS_PATH_FAILED;
|
|
case DID_TRANSPORT_FAILFAST:
|
|
return PR_STS_PATH_FAST_FAILED;
|
|
}
|
|
|
|
switch (status_byte(result)) {
|
|
case SAM_STAT_RESERVATION_CONFLICT:
|
|
return PR_STS_RESERVATION_CONFLICT;
|
|
case SAM_STAT_CHECK_CONDITION:
|
|
if (!scsi_sense_valid(sshdr))
|
|
return PR_STS_IOERR;
|
|
|
|
if (sshdr->sense_key == ILLEGAL_REQUEST &&
|
|
(sshdr->asc == 0x26 || sshdr->asc == 0x24))
|
|
return -EINVAL;
|
|
|
|
fallthrough;
|
|
default:
|
|
return PR_STS_IOERR;
|
|
}
|
|
}
|
|
|
|
static int sd_pr_in_command(struct block_device *bdev, u8 sa,
|
|
unsigned char *data, int data_len)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
|
|
struct scsi_device *sdev = sdkp->device;
|
|
struct scsi_sense_hdr sshdr;
|
|
u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
|
|
struct scsi_failure failure_defs[] = {
|
|
{
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = SCMD_FAILURE_ASC_ANY,
|
|
.ascq = SCMD_FAILURE_ASCQ_ANY,
|
|
.allowed = 5,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
{}
|
|
};
|
|
struct scsi_failures failures = {
|
|
.failure_definitions = failure_defs,
|
|
};
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = &sshdr,
|
|
.failures = &failures,
|
|
};
|
|
int result;
|
|
|
|
put_unaligned_be16(data_len, &cmd[7]);
|
|
|
|
result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
|
|
SD_TIMEOUT, sdkp->max_retries, &exec_args);
|
|
if (scsi_status_is_check_condition(result) &&
|
|
scsi_sense_valid(&sshdr)) {
|
|
sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
|
|
scsi_print_sense_hdr(sdev, NULL, &sshdr);
|
|
}
|
|
|
|
if (result <= 0)
|
|
return result;
|
|
|
|
return sd_scsi_to_pr_err(&sshdr, result);
|
|
}
|
|
|
|
static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
|
|
{
|
|
int result, i, data_offset, num_copy_keys;
|
|
u32 num_keys = keys_info->num_keys;
|
|
int data_len = num_keys * 8 + 8;
|
|
u8 *data;
|
|
|
|
data = kzalloc(data_len, GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
|
|
if (result)
|
|
goto free_data;
|
|
|
|
keys_info->generation = get_unaligned_be32(&data[0]);
|
|
keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
|
|
|
|
data_offset = 8;
|
|
num_copy_keys = min(num_keys, keys_info->num_keys);
|
|
|
|
for (i = 0; i < num_copy_keys; i++) {
|
|
keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
|
|
data_offset += 8;
|
|
}
|
|
|
|
free_data:
|
|
kfree(data);
|
|
return result;
|
|
}
|
|
|
|
static int sd_pr_read_reservation(struct block_device *bdev,
|
|
struct pr_held_reservation *rsv)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
|
|
struct scsi_device *sdev = sdkp->device;
|
|
u8 data[24] = { };
|
|
int result, len;
|
|
|
|
result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
|
|
if (result)
|
|
return result;
|
|
|
|
len = get_unaligned_be32(&data[4]);
|
|
if (!len)
|
|
return 0;
|
|
|
|
/* Make sure we have at least the key and type */
|
|
if (len < 14) {
|
|
sdev_printk(KERN_INFO, sdev,
|
|
"READ RESERVATION failed due to short return buffer of %d bytes\n",
|
|
len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rsv->generation = get_unaligned_be32(&data[0]);
|
|
rsv->key = get_unaligned_be64(&data[8]);
|
|
rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
|
|
return 0;
|
|
}
|
|
|
|
static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
|
|
u64 sa_key, enum scsi_pr_type type, u8 flags)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
|
|
struct scsi_device *sdev = sdkp->device;
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_failure failure_defs[] = {
|
|
{
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = SCMD_FAILURE_ASC_ANY,
|
|
.ascq = SCMD_FAILURE_ASCQ_ANY,
|
|
.allowed = 5,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
{}
|
|
};
|
|
struct scsi_failures failures = {
|
|
.failure_definitions = failure_defs,
|
|
};
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = &sshdr,
|
|
.failures = &failures,
|
|
};
|
|
int result;
|
|
u8 cmd[16] = { 0, };
|
|
u8 data[24] = { 0, };
|
|
|
|
cmd[0] = PERSISTENT_RESERVE_OUT;
|
|
cmd[1] = sa;
|
|
cmd[2] = type;
|
|
put_unaligned_be32(sizeof(data), &cmd[5]);
|
|
|
|
put_unaligned_be64(key, &data[0]);
|
|
put_unaligned_be64(sa_key, &data[8]);
|
|
data[20] = flags;
|
|
|
|
result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
|
|
sizeof(data), SD_TIMEOUT, sdkp->max_retries,
|
|
&exec_args);
|
|
|
|
if (scsi_status_is_check_condition(result) &&
|
|
scsi_sense_valid(&sshdr)) {
|
|
sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
|
|
scsi_print_sense_hdr(sdev, NULL, &sshdr);
|
|
}
|
|
|
|
if (result <= 0)
|
|
return result;
|
|
|
|
return sd_scsi_to_pr_err(&sshdr, result);
|
|
}
|
|
|
|
static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
|
|
u32 flags)
|
|
{
|
|
if (flags & ~PR_FL_IGNORE_KEY)
|
|
return -EOPNOTSUPP;
|
|
return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
|
|
old_key, new_key, 0,
|
|
(1 << 0) /* APTPL */);
|
|
}
|
|
|
|
static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
|
|
u32 flags)
|
|
{
|
|
if (flags)
|
|
return -EOPNOTSUPP;
|
|
return sd_pr_out_command(bdev, 0x01, key, 0,
|
|
block_pr_type_to_scsi(type), 0);
|
|
}
|
|
|
|
static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
|
|
{
|
|
return sd_pr_out_command(bdev, 0x02, key, 0,
|
|
block_pr_type_to_scsi(type), 0);
|
|
}
|
|
|
|
static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
|
|
enum pr_type type, bool abort)
|
|
{
|
|
return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
|
|
block_pr_type_to_scsi(type), 0);
|
|
}
|
|
|
|
static int sd_pr_clear(struct block_device *bdev, u64 key)
|
|
{
|
|
return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
|
|
}
|
|
|
|
static const struct pr_ops sd_pr_ops = {
|
|
.pr_register = sd_pr_register,
|
|
.pr_reserve = sd_pr_reserve,
|
|
.pr_release = sd_pr_release,
|
|
.pr_preempt = sd_pr_preempt,
|
|
.pr_clear = sd_pr_clear,
|
|
.pr_read_keys = sd_pr_read_keys,
|
|
.pr_read_reservation = sd_pr_read_reservation,
|
|
};
|
|
|
|
static void scsi_disk_free_disk(struct gendisk *disk)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
|
|
put_device(&sdkp->disk_dev);
|
|
}
|
|
|
|
static const struct block_device_operations sd_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = sd_open,
|
|
.release = sd_release,
|
|
.ioctl = sd_ioctl,
|
|
.getgeo = sd_getgeo,
|
|
.compat_ioctl = blkdev_compat_ptr_ioctl,
|
|
.check_events = sd_check_events,
|
|
.unlock_native_capacity = sd_unlock_native_capacity,
|
|
.report_zones = sd_zbc_report_zones,
|
|
.get_unique_id = sd_get_unique_id,
|
|
.free_disk = scsi_disk_free_disk,
|
|
.pr_ops = &sd_pr_ops,
|
|
};
|
|
|
|
/**
|
|
* sd_eh_reset - reset error handling callback
|
|
* @scmd: sd-issued command that has failed
|
|
*
|
|
* This function is called by the SCSI midlayer before starting
|
|
* SCSI EH. When counting medium access failures we have to be
|
|
* careful to register it only only once per device and SCSI EH run;
|
|
* there might be several timed out commands which will cause the
|
|
* 'max_medium_access_timeouts' counter to trigger after the first
|
|
* SCSI EH run already and set the device to offline.
|
|
* So this function resets the internal counter before starting SCSI EH.
|
|
**/
|
|
static void sd_eh_reset(struct scsi_cmnd *scmd)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
|
|
|
|
/* New SCSI EH run, reset gate variable */
|
|
sdkp->ignore_medium_access_errors = false;
|
|
}
|
|
|
|
/**
|
|
* sd_eh_action - error handling callback
|
|
* @scmd: sd-issued command that has failed
|
|
* @eh_disp: The recovery disposition suggested by the midlayer
|
|
*
|
|
* This function is called by the SCSI midlayer upon completion of an
|
|
* error test command (currently TEST UNIT READY). The result of sending
|
|
* the eh command is passed in eh_disp. We're looking for devices that
|
|
* fail medium access commands but are OK with non access commands like
|
|
* test unit ready (so wrongly see the device as having a successful
|
|
* recovery)
|
|
**/
|
|
static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
|
|
struct scsi_device *sdev = scmd->device;
|
|
|
|
if (!scsi_device_online(sdev) ||
|
|
!scsi_medium_access_command(scmd) ||
|
|
host_byte(scmd->result) != DID_TIME_OUT ||
|
|
eh_disp != SUCCESS)
|
|
return eh_disp;
|
|
|
|
/*
|
|
* The device has timed out executing a medium access command.
|
|
* However, the TEST UNIT READY command sent during error
|
|
* handling completed successfully. Either the device is in the
|
|
* process of recovering or has it suffered an internal failure
|
|
* that prevents access to the storage medium.
|
|
*/
|
|
if (!sdkp->ignore_medium_access_errors) {
|
|
sdkp->medium_access_timed_out++;
|
|
sdkp->ignore_medium_access_errors = true;
|
|
}
|
|
|
|
/*
|
|
* If the device keeps failing read/write commands but TEST UNIT
|
|
* READY always completes successfully we assume that medium
|
|
* access is no longer possible and take the device offline.
|
|
*/
|
|
if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
|
|
scmd_printk(KERN_ERR, scmd,
|
|
"Medium access timeout failure. Offlining disk!\n");
|
|
mutex_lock(&sdev->state_mutex);
|
|
scsi_device_set_state(sdev, SDEV_OFFLINE);
|
|
mutex_unlock(&sdev->state_mutex);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
return eh_disp;
|
|
}
|
|
|
|
static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
|
|
{
|
|
struct request *req = scsi_cmd_to_rq(scmd);
|
|
struct scsi_device *sdev = scmd->device;
|
|
unsigned int transferred, good_bytes;
|
|
u64 start_lba, end_lba, bad_lba;
|
|
|
|
/*
|
|
* Some commands have a payload smaller than the device logical
|
|
* block size (e.g. INQUIRY on a 4K disk).
|
|
*/
|
|
if (scsi_bufflen(scmd) <= sdev->sector_size)
|
|
return 0;
|
|
|
|
/* Check if we have a 'bad_lba' information */
|
|
if (!scsi_get_sense_info_fld(scmd->sense_buffer,
|
|
SCSI_SENSE_BUFFERSIZE,
|
|
&bad_lba))
|
|
return 0;
|
|
|
|
/*
|
|
* If the bad lba was reported incorrectly, we have no idea where
|
|
* the error is.
|
|
*/
|
|
start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
|
|
end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
|
|
if (bad_lba < start_lba || bad_lba >= end_lba)
|
|
return 0;
|
|
|
|
/*
|
|
* resid is optional but mostly filled in. When it's unused,
|
|
* its value is zero, so we assume the whole buffer transferred
|
|
*/
|
|
transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
|
|
|
|
/* This computation should always be done in terms of the
|
|
* resolution of the device's medium.
|
|
*/
|
|
good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
|
|
|
|
return min(good_bytes, transferred);
|
|
}
|
|
|
|
/**
|
|
* sd_done - bottom half handler: called when the lower level
|
|
* driver has completed (successfully or otherwise) a scsi command.
|
|
* @SCpnt: mid-level's per command structure.
|
|
*
|
|
* Note: potentially run from within an ISR. Must not block.
|
|
**/
|
|
static int sd_done(struct scsi_cmnd *SCpnt)
|
|
{
|
|
int result = SCpnt->result;
|
|
unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
|
|
unsigned int sector_size = SCpnt->device->sector_size;
|
|
unsigned int resid;
|
|
struct scsi_sense_hdr sshdr;
|
|
struct request *req = scsi_cmd_to_rq(SCpnt);
|
|
struct scsi_disk *sdkp = scsi_disk(req->q->disk);
|
|
int sense_valid = 0;
|
|
int sense_deferred = 0;
|
|
|
|
switch (req_op(req)) {
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_WRITE_ZEROES:
|
|
case REQ_OP_ZONE_RESET:
|
|
case REQ_OP_ZONE_RESET_ALL:
|
|
case REQ_OP_ZONE_OPEN:
|
|
case REQ_OP_ZONE_CLOSE:
|
|
case REQ_OP_ZONE_FINISH:
|
|
if (!result) {
|
|
good_bytes = blk_rq_bytes(req);
|
|
scsi_set_resid(SCpnt, 0);
|
|
} else {
|
|
good_bytes = 0;
|
|
scsi_set_resid(SCpnt, blk_rq_bytes(req));
|
|
}
|
|
break;
|
|
default:
|
|
/*
|
|
* In case of bogus fw or device, we could end up having
|
|
* an unaligned partial completion. Check this here and force
|
|
* alignment.
|
|
*/
|
|
resid = scsi_get_resid(SCpnt);
|
|
if (resid & (sector_size - 1)) {
|
|
sd_printk(KERN_INFO, sdkp,
|
|
"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
|
|
resid, sector_size);
|
|
scsi_print_command(SCpnt);
|
|
resid = min(scsi_bufflen(SCpnt),
|
|
round_up(resid, sector_size));
|
|
scsi_set_resid(SCpnt, resid);
|
|
}
|
|
}
|
|
|
|
if (result) {
|
|
sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
|
|
if (sense_valid)
|
|
sense_deferred = scsi_sense_is_deferred(&sshdr);
|
|
}
|
|
sdkp->medium_access_timed_out = 0;
|
|
|
|
if (!scsi_status_is_check_condition(result) &&
|
|
(!sense_valid || sense_deferred))
|
|
goto out;
|
|
|
|
switch (sshdr.sense_key) {
|
|
case HARDWARE_ERROR:
|
|
case MEDIUM_ERROR:
|
|
good_bytes = sd_completed_bytes(SCpnt);
|
|
break;
|
|
case RECOVERED_ERROR:
|
|
good_bytes = scsi_bufflen(SCpnt);
|
|
break;
|
|
case NO_SENSE:
|
|
/* This indicates a false check condition, so ignore it. An
|
|
* unknown amount of data was transferred so treat it as an
|
|
* error.
|
|
*/
|
|
SCpnt->result = 0;
|
|
memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
|
|
break;
|
|
case ABORTED_COMMAND:
|
|
if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
|
|
good_bytes = sd_completed_bytes(SCpnt);
|
|
break;
|
|
case ILLEGAL_REQUEST:
|
|
switch (sshdr.asc) {
|
|
case 0x10: /* DIX: Host detected corruption */
|
|
good_bytes = sd_completed_bytes(SCpnt);
|
|
break;
|
|
case 0x20: /* INVALID COMMAND OPCODE */
|
|
case 0x24: /* INVALID FIELD IN CDB */
|
|
switch (SCpnt->cmnd[0]) {
|
|
case UNMAP:
|
|
sd_disable_discard(sdkp);
|
|
break;
|
|
case WRITE_SAME_16:
|
|
case WRITE_SAME:
|
|
if (SCpnt->cmnd[1] & 8) { /* UNMAP */
|
|
sd_disable_discard(sdkp);
|
|
} else {
|
|
sd_disable_write_same(sdkp);
|
|
req->rq_flags |= RQF_QUIET;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if (sdkp->device->type == TYPE_ZBC)
|
|
good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
|
|
|
|
SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
|
|
"sd_done: completed %d of %d bytes\n",
|
|
good_bytes, scsi_bufflen(SCpnt)));
|
|
|
|
return good_bytes;
|
|
}
|
|
|
|
/*
|
|
* spinup disk - called only in sd_revalidate_disk()
|
|
*/
|
|
static void
|
|
sd_spinup_disk(struct scsi_disk *sdkp)
|
|
{
|
|
static const u8 cmd[10] = { TEST_UNIT_READY };
|
|
unsigned long spintime_expire = 0;
|
|
int spintime, sense_valid = 0;
|
|
unsigned int the_result;
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_failure failure_defs[] = {
|
|
/* Do not retry Medium Not Present */
|
|
{
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = 0x3A,
|
|
.ascq = SCMD_FAILURE_ASCQ_ANY,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
{
|
|
.sense = NOT_READY,
|
|
.asc = 0x3A,
|
|
.ascq = SCMD_FAILURE_ASCQ_ANY,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
/* Retry when scsi_status_is_good would return false 3 times */
|
|
{
|
|
.result = SCMD_FAILURE_STAT_ANY,
|
|
.allowed = 3,
|
|
},
|
|
{}
|
|
};
|
|
struct scsi_failures failures = {
|
|
.failure_definitions = failure_defs,
|
|
};
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = &sshdr,
|
|
.failures = &failures,
|
|
};
|
|
|
|
spintime = 0;
|
|
|
|
/* Spin up drives, as required. Only do this at boot time */
|
|
/* Spinup needs to be done for module loads too. */
|
|
do {
|
|
bool media_was_present = sdkp->media_present;
|
|
|
|
scsi_failures_reset_retries(&failures);
|
|
|
|
the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
|
|
NULL, 0, SD_TIMEOUT,
|
|
sdkp->max_retries, &exec_args);
|
|
|
|
|
|
if (the_result > 0) {
|
|
/*
|
|
* If the drive has indicated to us that it doesn't
|
|
* have any media in it, don't bother with any more
|
|
* polling.
|
|
*/
|
|
if (media_not_present(sdkp, &sshdr)) {
|
|
if (media_was_present)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Media removed, stopped polling\n");
|
|
return;
|
|
}
|
|
sense_valid = scsi_sense_valid(&sshdr);
|
|
}
|
|
|
|
if (!scsi_status_is_check_condition(the_result)) {
|
|
/* no sense, TUR either succeeded or failed
|
|
* with a status error */
|
|
if(!spintime && !scsi_status_is_good(the_result)) {
|
|
sd_print_result(sdkp, "Test Unit Ready failed",
|
|
the_result);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The device does not want the automatic start to be issued.
|
|
*/
|
|
if (sdkp->device->no_start_on_add)
|
|
break;
|
|
|
|
if (sense_valid && sshdr.sense_key == NOT_READY) {
|
|
if (sshdr.asc == 4 && sshdr.ascq == 3)
|
|
break; /* manual intervention required */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0xb)
|
|
break; /* standby */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0xc)
|
|
break; /* unavailable */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
|
|
break; /* sanitize in progress */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0x24)
|
|
break; /* depopulation in progress */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0x25)
|
|
break; /* depopulation restoration in progress */
|
|
/*
|
|
* Issue command to spin up drive when not ready
|
|
*/
|
|
if (!spintime) {
|
|
/* Return immediately and start spin cycle */
|
|
const u8 start_cmd[10] = {
|
|
[0] = START_STOP,
|
|
[1] = 1,
|
|
[4] = sdkp->device->start_stop_pwr_cond ?
|
|
0x11 : 1,
|
|
};
|
|
|
|
sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
|
|
scsi_execute_cmd(sdkp->device, start_cmd,
|
|
REQ_OP_DRV_IN, NULL, 0,
|
|
SD_TIMEOUT, sdkp->max_retries,
|
|
&exec_args);
|
|
spintime_expire = jiffies + 100 * HZ;
|
|
spintime = 1;
|
|
}
|
|
/* Wait 1 second for next try */
|
|
msleep(1000);
|
|
printk(KERN_CONT ".");
|
|
|
|
/*
|
|
* Wait for USB flash devices with slow firmware.
|
|
* Yes, this sense key/ASC combination shouldn't
|
|
* occur here. It's characteristic of these devices.
|
|
*/
|
|
} else if (sense_valid &&
|
|
sshdr.sense_key == UNIT_ATTENTION &&
|
|
sshdr.asc == 0x28) {
|
|
if (!spintime) {
|
|
spintime_expire = jiffies + 5 * HZ;
|
|
spintime = 1;
|
|
}
|
|
/* Wait 1 second for next try */
|
|
msleep(1000);
|
|
} else {
|
|
/* we don't understand the sense code, so it's
|
|
* probably pointless to loop */
|
|
if(!spintime) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
}
|
|
break;
|
|
}
|
|
|
|
} while (spintime && time_before_eq(jiffies, spintime_expire));
|
|
|
|
if (spintime) {
|
|
if (scsi_status_is_good(the_result))
|
|
printk(KERN_CONT "ready\n");
|
|
else
|
|
printk(KERN_CONT "not responding...\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine whether disk supports Data Integrity Field.
|
|
*/
|
|
static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
u8 type;
|
|
|
|
if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
|
|
sdkp->protection_type = 0;
|
|
return 0;
|
|
}
|
|
|
|
type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
|
|
|
|
if (type > T10_PI_TYPE3_PROTECTION) {
|
|
sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
|
|
" protection type %u. Disabling disk!\n",
|
|
type);
|
|
sdkp->protection_type = 0;
|
|
return -ENODEV;
|
|
}
|
|
|
|
sdkp->protection_type = type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sd_config_protection(struct scsi_disk *sdkp,
|
|
struct queue_limits *lim)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
|
|
sd_dif_config_host(sdkp, lim);
|
|
|
|
if (!sdkp->protection_type)
|
|
return;
|
|
|
|
if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
|
|
sd_first_printk(KERN_NOTICE, sdkp,
|
|
"Disabling DIF Type %u protection\n",
|
|
sdkp->protection_type);
|
|
sdkp->protection_type = 0;
|
|
}
|
|
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
|
|
sdkp->protection_type);
|
|
}
|
|
|
|
static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
|
|
struct scsi_sense_hdr *sshdr, int sense_valid,
|
|
int the_result)
|
|
{
|
|
if (sense_valid)
|
|
sd_print_sense_hdr(sdkp, sshdr);
|
|
else
|
|
sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
|
|
|
|
/*
|
|
* Set dirty bit for removable devices if not ready -
|
|
* sometimes drives will not report this properly.
|
|
*/
|
|
if (sdp->removable &&
|
|
sense_valid && sshdr->sense_key == NOT_READY)
|
|
set_media_not_present(sdkp);
|
|
|
|
/*
|
|
* We used to set media_present to 0 here to indicate no media
|
|
* in the drive, but some drives fail read capacity even with
|
|
* media present, so we can't do that.
|
|
*/
|
|
sdkp->capacity = 0; /* unknown mapped to zero - as usual */
|
|
}
|
|
|
|
#define RC16_LEN 32
|
|
#if RC16_LEN > SD_BUF_SIZE
|
|
#error RC16_LEN must not be more than SD_BUF_SIZE
|
|
#endif
|
|
|
|
#define READ_CAPACITY_RETRIES_ON_RESET 10
|
|
|
|
static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
|
|
struct queue_limits *lim, unsigned char *buffer)
|
|
{
|
|
unsigned char cmd[16];
|
|
struct scsi_sense_hdr sshdr;
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = &sshdr,
|
|
};
|
|
int sense_valid = 0;
|
|
int the_result;
|
|
int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
|
|
unsigned int alignment;
|
|
unsigned long long lba;
|
|
unsigned sector_size;
|
|
|
|
if (sdp->no_read_capacity_16)
|
|
return -EINVAL;
|
|
|
|
do {
|
|
memset(cmd, 0, 16);
|
|
cmd[0] = SERVICE_ACTION_IN_16;
|
|
cmd[1] = SAI_READ_CAPACITY_16;
|
|
cmd[13] = RC16_LEN;
|
|
memset(buffer, 0, RC16_LEN);
|
|
|
|
the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
|
|
buffer, RC16_LEN, SD_TIMEOUT,
|
|
sdkp->max_retries, &exec_args);
|
|
if (the_result > 0) {
|
|
if (media_not_present(sdkp, &sshdr))
|
|
return -ENODEV;
|
|
|
|
sense_valid = scsi_sense_valid(&sshdr);
|
|
if (sense_valid &&
|
|
sshdr.sense_key == ILLEGAL_REQUEST &&
|
|
(sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
|
|
sshdr.ascq == 0x00)
|
|
/* Invalid Command Operation Code or
|
|
* Invalid Field in CDB, just retry
|
|
* silently with RC10 */
|
|
return -EINVAL;
|
|
if (sense_valid &&
|
|
sshdr.sense_key == UNIT_ATTENTION &&
|
|
sshdr.asc == 0x29 && sshdr.ascq == 0x00)
|
|
/* Device reset might occur several times,
|
|
* give it one more chance */
|
|
if (--reset_retries > 0)
|
|
continue;
|
|
}
|
|
retries--;
|
|
|
|
} while (the_result && retries);
|
|
|
|
if (the_result) {
|
|
sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
|
|
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sector_size = get_unaligned_be32(&buffer[8]);
|
|
lba = get_unaligned_be64(&buffer[0]);
|
|
|
|
if (sd_read_protection_type(sdkp, buffer) < 0) {
|
|
sdkp->capacity = 0;
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Logical blocks per physical block exponent */
|
|
sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
|
|
|
|
/* RC basis */
|
|
sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
|
|
|
|
/* Lowest aligned logical block */
|
|
alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
|
|
lim->alignment_offset = alignment;
|
|
if (alignment && sdkp->first_scan)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"physical block alignment offset: %u\n", alignment);
|
|
|
|
if (buffer[14] & 0x80) { /* LBPME */
|
|
sdkp->lbpme = 1;
|
|
|
|
if (buffer[14] & 0x40) /* LBPRZ */
|
|
sdkp->lbprz = 1;
|
|
}
|
|
|
|
sdkp->capacity = lba + 1;
|
|
return sector_size;
|
|
}
|
|
|
|
static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
|
|
unsigned char *buffer)
|
|
{
|
|
static const u8 cmd[10] = { READ_CAPACITY };
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_failure failure_defs[] = {
|
|
/* Do not retry Medium Not Present */
|
|
{
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = 0x3A,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
{
|
|
.sense = NOT_READY,
|
|
.asc = 0x3A,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
/* Device reset might occur several times so retry a lot */
|
|
{
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = 0x29,
|
|
.allowed = READ_CAPACITY_RETRIES_ON_RESET,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
/* Any other error not listed above retry 3 times */
|
|
{
|
|
.result = SCMD_FAILURE_RESULT_ANY,
|
|
.allowed = 3,
|
|
},
|
|
{}
|
|
};
|
|
struct scsi_failures failures = {
|
|
.failure_definitions = failure_defs,
|
|
};
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = &sshdr,
|
|
.failures = &failures,
|
|
};
|
|
int sense_valid = 0;
|
|
int the_result;
|
|
sector_t lba;
|
|
unsigned sector_size;
|
|
|
|
memset(buffer, 0, 8);
|
|
|
|
the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
|
|
8, SD_TIMEOUT, sdkp->max_retries,
|
|
&exec_args);
|
|
|
|
if (the_result > 0) {
|
|
sense_valid = scsi_sense_valid(&sshdr);
|
|
|
|
if (media_not_present(sdkp, &sshdr))
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (the_result) {
|
|
sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
|
|
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sector_size = get_unaligned_be32(&buffer[4]);
|
|
lba = get_unaligned_be32(&buffer[0]);
|
|
|
|
if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
|
|
/* Some buggy (usb cardreader) devices return an lba of
|
|
0xffffffff when the want to report a size of 0 (with
|
|
which they really mean no media is present) */
|
|
sdkp->capacity = 0;
|
|
sdkp->physical_block_size = sector_size;
|
|
return sector_size;
|
|
}
|
|
|
|
sdkp->capacity = lba + 1;
|
|
sdkp->physical_block_size = sector_size;
|
|
return sector_size;
|
|
}
|
|
|
|
static int sd_try_rc16_first(struct scsi_device *sdp)
|
|
{
|
|
if (sdp->host->max_cmd_len < 16)
|
|
return 0;
|
|
if (sdp->try_rc_10_first)
|
|
return 0;
|
|
if (sdp->scsi_level > SCSI_SPC_2)
|
|
return 1;
|
|
if (scsi_device_protection(sdp))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* read disk capacity
|
|
*/
|
|
static void
|
|
sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
|
|
unsigned char *buffer)
|
|
{
|
|
int sector_size;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
if (sd_try_rc16_first(sdp)) {
|
|
sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
|
|
if (sector_size == -EOVERFLOW)
|
|
goto got_data;
|
|
if (sector_size == -ENODEV)
|
|
return;
|
|
if (sector_size < 0)
|
|
sector_size = read_capacity_10(sdkp, sdp, buffer);
|
|
if (sector_size < 0)
|
|
return;
|
|
} else {
|
|
sector_size = read_capacity_10(sdkp, sdp, buffer);
|
|
if (sector_size == -EOVERFLOW)
|
|
goto got_data;
|
|
if (sector_size < 0)
|
|
return;
|
|
if ((sizeof(sdkp->capacity) > 4) &&
|
|
(sdkp->capacity > 0xffffffffULL)) {
|
|
int old_sector_size = sector_size;
|
|
sd_printk(KERN_NOTICE, sdkp, "Very big device. "
|
|
"Trying to use READ CAPACITY(16).\n");
|
|
sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
|
|
if (sector_size < 0) {
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Using 0xffffffff as device size\n");
|
|
sdkp->capacity = 1 + (sector_t) 0xffffffff;
|
|
sector_size = old_sector_size;
|
|
goto got_data;
|
|
}
|
|
/* Remember that READ CAPACITY(16) succeeded */
|
|
sdp->try_rc_10_first = 0;
|
|
}
|
|
}
|
|
|
|
/* Some devices are known to return the total number of blocks,
|
|
* not the highest block number. Some devices have versions
|
|
* which do this and others which do not. Some devices we might
|
|
* suspect of doing this but we don't know for certain.
|
|
*
|
|
* If we know the reported capacity is wrong, decrement it. If
|
|
* we can only guess, then assume the number of blocks is even
|
|
* (usually true but not always) and err on the side of lowering
|
|
* the capacity.
|
|
*/
|
|
if (sdp->fix_capacity ||
|
|
(sdp->guess_capacity && (sdkp->capacity & 0x01))) {
|
|
sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
|
|
"from its reported value: %llu\n",
|
|
(unsigned long long) sdkp->capacity);
|
|
--sdkp->capacity;
|
|
}
|
|
|
|
got_data:
|
|
if (sector_size == 0) {
|
|
sector_size = 512;
|
|
sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
|
|
"assuming 512.\n");
|
|
}
|
|
|
|
if (sector_size != 512 &&
|
|
sector_size != 1024 &&
|
|
sector_size != 2048 &&
|
|
sector_size != 4096) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
|
|
sector_size);
|
|
/*
|
|
* The user might want to re-format the drive with
|
|
* a supported sectorsize. Once this happens, it
|
|
* would be relatively trivial to set the thing up.
|
|
* For this reason, we leave the thing in the table.
|
|
*/
|
|
sdkp->capacity = 0;
|
|
/*
|
|
* set a bogus sector size so the normal read/write
|
|
* logic in the block layer will eventually refuse any
|
|
* request on this device without tripping over power
|
|
* of two sector size assumptions
|
|
*/
|
|
sector_size = 512;
|
|
}
|
|
lim->logical_block_size = sector_size;
|
|
lim->physical_block_size = sdkp->physical_block_size;
|
|
sdkp->device->sector_size = sector_size;
|
|
|
|
if (sdkp->capacity > 0xffffffff)
|
|
sdp->use_16_for_rw = 1;
|
|
|
|
}
|
|
|
|
/*
|
|
* Print disk capacity
|
|
*/
|
|
static void
|
|
sd_print_capacity(struct scsi_disk *sdkp,
|
|
sector_t old_capacity)
|
|
{
|
|
int sector_size = sdkp->device->sector_size;
|
|
char cap_str_2[10], cap_str_10[10];
|
|
|
|
if (!sdkp->first_scan && old_capacity == sdkp->capacity)
|
|
return;
|
|
|
|
string_get_size(sdkp->capacity, sector_size,
|
|
STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
|
|
string_get_size(sdkp->capacity, sector_size,
|
|
STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
|
|
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"%llu %d-byte logical blocks: (%s/%s)\n",
|
|
(unsigned long long)sdkp->capacity,
|
|
sector_size, cap_str_10, cap_str_2);
|
|
|
|
if (sdkp->physical_block_size != sector_size)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"%u-byte physical blocks\n",
|
|
sdkp->physical_block_size);
|
|
}
|
|
|
|
/* called with buffer of length 512 */
|
|
static inline int
|
|
sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
|
|
unsigned char *buffer, int len, struct scsi_mode_data *data,
|
|
struct scsi_sense_hdr *sshdr)
|
|
{
|
|
/*
|
|
* If we must use MODE SENSE(10), make sure that the buffer length
|
|
* is at least 8 bytes so that the mode sense header fits.
|
|
*/
|
|
if (sdkp->device->use_10_for_ms && len < 8)
|
|
len = 8;
|
|
|
|
return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
|
|
SD_TIMEOUT, sdkp->max_retries, data, sshdr);
|
|
}
|
|
|
|
/*
|
|
* read write protect setting, if possible - called only in sd_revalidate_disk()
|
|
* called with buffer of length SD_BUF_SIZE
|
|
*/
|
|
static void
|
|
sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
int res;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct scsi_mode_data data;
|
|
int old_wp = sdkp->write_prot;
|
|
|
|
set_disk_ro(sdkp->disk, 0);
|
|
if (sdp->skip_ms_page_3f) {
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
|
|
return;
|
|
}
|
|
|
|
if (sdp->use_192_bytes_for_3f) {
|
|
res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
|
|
} else {
|
|
/*
|
|
* First attempt: ask for all pages (0x3F), but only 4 bytes.
|
|
* We have to start carefully: some devices hang if we ask
|
|
* for more than is available.
|
|
*/
|
|
res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
|
|
|
|
/*
|
|
* Second attempt: ask for page 0 When only page 0 is
|
|
* implemented, a request for page 3F may return Sense Key
|
|
* 5: Illegal Request, Sense Code 24: Invalid field in
|
|
* CDB.
|
|
*/
|
|
if (res < 0)
|
|
res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
|
|
|
|
/*
|
|
* Third attempt: ask 255 bytes, as we did earlier.
|
|
*/
|
|
if (res < 0)
|
|
res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
|
|
&data, NULL);
|
|
}
|
|
|
|
if (res < 0) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Test WP failed, assume Write Enabled\n");
|
|
} else {
|
|
sdkp->write_prot = ((data.device_specific & 0x80) != 0);
|
|
set_disk_ro(sdkp->disk, sdkp->write_prot);
|
|
if (sdkp->first_scan || old_wp != sdkp->write_prot) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
|
|
sdkp->write_prot ? "on" : "off");
|
|
sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sd_read_cache_type - called only from sd_revalidate_disk()
|
|
* called with buffer of length SD_BUF_SIZE
|
|
*/
|
|
static void
|
|
sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
int len = 0, res;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
int dbd;
|
|
int modepage;
|
|
int first_len;
|
|
struct scsi_mode_data data;
|
|
struct scsi_sense_hdr sshdr;
|
|
int old_wce = sdkp->WCE;
|
|
int old_rcd = sdkp->RCD;
|
|
int old_dpofua = sdkp->DPOFUA;
|
|
|
|
|
|
if (sdkp->cache_override)
|
|
return;
|
|
|
|
first_len = 4;
|
|
if (sdp->skip_ms_page_8) {
|
|
if (sdp->type == TYPE_RBC)
|
|
goto defaults;
|
|
else {
|
|
if (sdp->skip_ms_page_3f)
|
|
goto defaults;
|
|
modepage = 0x3F;
|
|
if (sdp->use_192_bytes_for_3f)
|
|
first_len = 192;
|
|
dbd = 0;
|
|
}
|
|
} else if (sdp->type == TYPE_RBC) {
|
|
modepage = 6;
|
|
dbd = 8;
|
|
} else {
|
|
modepage = 8;
|
|
dbd = 0;
|
|
}
|
|
|
|
/* cautiously ask */
|
|
res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
|
|
&data, &sshdr);
|
|
|
|
if (res < 0)
|
|
goto bad_sense;
|
|
|
|
if (!data.header_length) {
|
|
modepage = 6;
|
|
first_len = 0;
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Missing header in MODE_SENSE response\n");
|
|
}
|
|
|
|
/* that went OK, now ask for the proper length */
|
|
len = data.length;
|
|
|
|
/*
|
|
* We're only interested in the first three bytes, actually.
|
|
* But the data cache page is defined for the first 20.
|
|
*/
|
|
if (len < 3)
|
|
goto bad_sense;
|
|
else if (len > SD_BUF_SIZE) {
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
|
|
"data from %d to %d bytes\n", len, SD_BUF_SIZE);
|
|
len = SD_BUF_SIZE;
|
|
}
|
|
if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
|
|
len = 192;
|
|
|
|
/* Get the data */
|
|
if (len > first_len)
|
|
res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
|
|
&data, &sshdr);
|
|
|
|
if (!res) {
|
|
int offset = data.header_length + data.block_descriptor_length;
|
|
|
|
while (offset < len) {
|
|
u8 page_code = buffer[offset] & 0x3F;
|
|
u8 spf = buffer[offset] & 0x40;
|
|
|
|
if (page_code == 8 || page_code == 6) {
|
|
/* We're interested only in the first 3 bytes.
|
|
*/
|
|
if (len - offset <= 2) {
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Incomplete mode parameter "
|
|
"data\n");
|
|
goto defaults;
|
|
} else {
|
|
modepage = page_code;
|
|
goto Page_found;
|
|
}
|
|
} else {
|
|
/* Go to the next page */
|
|
if (spf && len - offset > 3)
|
|
offset += 4 + (buffer[offset+2] << 8) +
|
|
buffer[offset+3];
|
|
else if (!spf && len - offset > 1)
|
|
offset += 2 + buffer[offset+1];
|
|
else {
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Incomplete mode "
|
|
"parameter data\n");
|
|
goto defaults;
|
|
}
|
|
}
|
|
}
|
|
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"No Caching mode page found\n");
|
|
goto defaults;
|
|
|
|
Page_found:
|
|
if (modepage == 8) {
|
|
sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
|
|
sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
|
|
} else {
|
|
sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
|
|
sdkp->RCD = 0;
|
|
}
|
|
|
|
sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
|
|
if (sdp->broken_fua) {
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
|
|
sdkp->DPOFUA = 0;
|
|
} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
|
|
!sdkp->device->use_16_for_rw) {
|
|
sd_first_printk(KERN_NOTICE, sdkp,
|
|
"Uses READ/WRITE(6), disabling FUA\n");
|
|
sdkp->DPOFUA = 0;
|
|
}
|
|
|
|
/* No cache flush allowed for write protected devices */
|
|
if (sdkp->WCE && sdkp->write_prot)
|
|
sdkp->WCE = 0;
|
|
|
|
if (sdkp->first_scan || old_wce != sdkp->WCE ||
|
|
old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Write cache: %s, read cache: %s, %s\n",
|
|
sdkp->WCE ? "enabled" : "disabled",
|
|
sdkp->RCD ? "disabled" : "enabled",
|
|
sdkp->DPOFUA ? "supports DPO and FUA"
|
|
: "doesn't support DPO or FUA");
|
|
|
|
return;
|
|
}
|
|
|
|
bad_sense:
|
|
if (res == -EIO && scsi_sense_valid(&sshdr) &&
|
|
sshdr.sense_key == ILLEGAL_REQUEST &&
|
|
sshdr.asc == 0x24 && sshdr.ascq == 0x0)
|
|
/* Invalid field in CDB */
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
|
|
else
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Asking for cache data failed\n");
|
|
|
|
defaults:
|
|
if (sdp->wce_default_on) {
|
|
sd_first_printk(KERN_NOTICE, sdkp,
|
|
"Assuming drive cache: write back\n");
|
|
sdkp->WCE = 1;
|
|
} else {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Assuming drive cache: write through\n");
|
|
sdkp->WCE = 0;
|
|
}
|
|
sdkp->RCD = 0;
|
|
sdkp->DPOFUA = 0;
|
|
}
|
|
|
|
static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
|
|
{
|
|
u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
|
|
struct {
|
|
struct scsi_stream_status_header h;
|
|
struct scsi_stream_status s;
|
|
} buf;
|
|
struct scsi_device *sdev = sdkp->device;
|
|
struct scsi_sense_hdr sshdr;
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = &sshdr,
|
|
};
|
|
int res;
|
|
|
|
put_unaligned_be16(stream_id, &cdb[4]);
|
|
put_unaligned_be32(sizeof(buf), &cdb[10]);
|
|
|
|
res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
|
|
SD_TIMEOUT, sdkp->max_retries, &exec_args);
|
|
if (res < 0)
|
|
return false;
|
|
if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
if (res)
|
|
return false;
|
|
if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
|
|
return false;
|
|
return buf.h.stream_status[0].perm;
|
|
}
|
|
|
|
static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
const struct scsi_io_group_descriptor *desc, *start, *end;
|
|
u16 permanent_stream_count_old;
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_mode_data data;
|
|
int res;
|
|
|
|
if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
|
|
return;
|
|
|
|
res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
|
|
/*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
|
|
sdkp->max_retries, &data, &sshdr);
|
|
if (res < 0)
|
|
return;
|
|
start = (void *)buffer + data.header_length + 16;
|
|
end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
|
|
sizeof(*end));
|
|
/*
|
|
* From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
|
|
* should assign the lowest numbered stream identifiers to permanent
|
|
* streams.
|
|
*/
|
|
for (desc = start; desc < end; desc++)
|
|
if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
|
|
break;
|
|
permanent_stream_count_old = sdkp->permanent_stream_count;
|
|
sdkp->permanent_stream_count = desc - start;
|
|
if (sdkp->rscs && sdkp->permanent_stream_count < 2)
|
|
sd_printk(KERN_INFO, sdkp,
|
|
"Unexpected: RSCS has been set and the permanent stream count is %u\n",
|
|
sdkp->permanent_stream_count);
|
|
else if (sdkp->permanent_stream_count != permanent_stream_count_old)
|
|
sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
|
|
sdkp->permanent_stream_count);
|
|
}
|
|
|
|
/*
|
|
* The ATO bit indicates whether the DIF application tag is available
|
|
* for use by the operating system.
|
|
*/
|
|
static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
int res, offset;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct scsi_mode_data data;
|
|
struct scsi_sense_hdr sshdr;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
return;
|
|
|
|
if (sdkp->protection_type == 0)
|
|
return;
|
|
|
|
res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
|
|
sdkp->max_retries, &data, &sshdr);
|
|
|
|
if (res < 0 || !data.header_length ||
|
|
data.length < 6) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"getting Control mode page failed, assume no ATO\n");
|
|
|
|
if (res == -EIO && scsi_sense_valid(&sshdr))
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
|
|
return;
|
|
}
|
|
|
|
offset = data.header_length + data.block_descriptor_length;
|
|
|
|
if ((buffer[offset] & 0x3f) != 0x0a) {
|
|
sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
|
|
return;
|
|
}
|
|
|
|
if ((buffer[offset + 5] & 0x80) == 0)
|
|
return;
|
|
|
|
sdkp->ATO = 1;
|
|
|
|
return;
|
|
}
|
|
|
|
static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
|
|
{
|
|
if (!sdkp->lbpme)
|
|
return SD_LBP_FULL;
|
|
|
|
if (!sdkp->lbpvpd) {
|
|
/* LBP VPD page not provided */
|
|
if (sdkp->max_unmap_blocks)
|
|
return SD_LBP_UNMAP;
|
|
return SD_LBP_WS16;
|
|
}
|
|
|
|
/* LBP VPD page tells us what to use */
|
|
if (sdkp->lbpu && sdkp->max_unmap_blocks)
|
|
return SD_LBP_UNMAP;
|
|
if (sdkp->lbpws)
|
|
return SD_LBP_WS16;
|
|
if (sdkp->lbpws10)
|
|
return SD_LBP_WS10;
|
|
return SD_LBP_DISABLE;
|
|
}
|
|
|
|
/*
|
|
* Query disk device for preferred I/O sizes.
|
|
*/
|
|
static void sd_read_block_limits(struct scsi_disk *sdkp,
|
|
struct queue_limits *lim)
|
|
{
|
|
struct scsi_vpd *vpd;
|
|
|
|
rcu_read_lock();
|
|
|
|
vpd = rcu_dereference(sdkp->device->vpd_pgb0);
|
|
if (!vpd || vpd->len < 16)
|
|
goto out;
|
|
|
|
sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
|
|
sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
|
|
sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
|
|
|
|
if (vpd->len >= 64) {
|
|
unsigned int lba_count, desc_count;
|
|
|
|
sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
|
|
|
|
if (!sdkp->lbpme)
|
|
goto config_atomic;
|
|
|
|
lba_count = get_unaligned_be32(&vpd->data[20]);
|
|
desc_count = get_unaligned_be32(&vpd->data[24]);
|
|
|
|
if (lba_count && desc_count)
|
|
sdkp->max_unmap_blocks = lba_count;
|
|
|
|
sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
|
|
|
|
if (vpd->data[32] & 0x80)
|
|
sdkp->unmap_alignment =
|
|
get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
|
|
|
|
config_atomic:
|
|
sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
|
|
sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
|
|
sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
|
|
sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
|
|
sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
|
|
|
|
sd_config_atomic(sdkp, lim);
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Parse the Block Limits Extension VPD page (0xb7) */
|
|
static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
|
|
{
|
|
struct scsi_vpd *vpd;
|
|
|
|
rcu_read_lock();
|
|
vpd = rcu_dereference(sdkp->device->vpd_pgb7);
|
|
if (vpd && vpd->len >= 2)
|
|
sdkp->rscs = vpd->data[5] & 1;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Query block device characteristics */
|
|
static void sd_read_block_characteristics(struct scsi_disk *sdkp,
|
|
struct queue_limits *lim)
|
|
{
|
|
struct scsi_vpd *vpd;
|
|
u16 rot;
|
|
|
|
rcu_read_lock();
|
|
vpd = rcu_dereference(sdkp->device->vpd_pgb1);
|
|
|
|
if (!vpd || vpd->len <= 8) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
rot = get_unaligned_be16(&vpd->data[4]);
|
|
sdkp->zoned = (vpd->data[8] >> 4) & 3;
|
|
rcu_read_unlock();
|
|
|
|
if (rot == 1)
|
|
lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
|
|
|
|
if (!sdkp->first_scan)
|
|
return;
|
|
|
|
if (sdkp->device->type == TYPE_ZBC)
|
|
sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
|
|
else if (sdkp->zoned == 1)
|
|
sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
|
|
else if (sdkp->zoned == 2)
|
|
sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
|
|
}
|
|
|
|
/**
|
|
* sd_read_block_provisioning - Query provisioning VPD page
|
|
* @sdkp: disk to query
|
|
*/
|
|
static void sd_read_block_provisioning(struct scsi_disk *sdkp)
|
|
{
|
|
struct scsi_vpd *vpd;
|
|
|
|
if (sdkp->lbpme == 0)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
vpd = rcu_dereference(sdkp->device->vpd_pgb2);
|
|
|
|
if (!vpd || vpd->len < 8) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
sdkp->lbpvpd = 1;
|
|
sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
|
|
sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
|
|
sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
struct scsi_device *sdev = sdkp->device;
|
|
|
|
if (sdev->host->no_write_same) {
|
|
sdev->no_write_same = 1;
|
|
|
|
return;
|
|
}
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
|
|
struct scsi_vpd *vpd;
|
|
|
|
sdev->no_report_opcodes = 1;
|
|
|
|
/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
|
|
* CODES is unsupported and the device has an ATA
|
|
* Information VPD page (SAT).
|
|
*/
|
|
rcu_read_lock();
|
|
vpd = rcu_dereference(sdev->vpd_pg89);
|
|
if (vpd)
|
|
sdev->no_write_same = 1;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
|
|
sdkp->ws16 = 1;
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
|
|
sdkp->ws10 = 1;
|
|
}
|
|
|
|
static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
struct scsi_device *sdev = sdkp->device;
|
|
|
|
if (!sdev->security_supported)
|
|
return;
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
|
|
SECURITY_PROTOCOL_IN, 0) == 1 &&
|
|
scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
|
|
SECURITY_PROTOCOL_OUT, 0) == 1)
|
|
sdkp->security = 1;
|
|
}
|
|
|
|
static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
|
|
{
|
|
return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
|
|
}
|
|
|
|
/**
|
|
* sd_read_cpr - Query concurrent positioning ranges
|
|
* @sdkp: disk to query
|
|
*/
|
|
static void sd_read_cpr(struct scsi_disk *sdkp)
|
|
{
|
|
struct blk_independent_access_ranges *iars = NULL;
|
|
unsigned char *buffer = NULL;
|
|
unsigned int nr_cpr = 0;
|
|
int i, vpd_len, buf_len = SD_BUF_SIZE;
|
|
u8 *desc;
|
|
|
|
/*
|
|
* We need to have the capacity set first for the block layer to be
|
|
* able to check the ranges.
|
|
*/
|
|
if (sdkp->first_scan)
|
|
return;
|
|
|
|
if (!sdkp->capacity)
|
|
goto out;
|
|
|
|
/*
|
|
* Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
|
|
* leading to a maximum page size of 64 + 256*32 bytes.
|
|
*/
|
|
buf_len = 64 + 256*32;
|
|
buffer = kmalloc(buf_len, GFP_KERNEL);
|
|
if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
|
|
goto out;
|
|
|
|
/* We must have at least a 64B header and one 32B range descriptor */
|
|
vpd_len = get_unaligned_be16(&buffer[2]) + 4;
|
|
if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
|
|
sd_printk(KERN_ERR, sdkp,
|
|
"Invalid Concurrent Positioning Ranges VPD page\n");
|
|
goto out;
|
|
}
|
|
|
|
nr_cpr = (vpd_len - 64) / 32;
|
|
if (nr_cpr == 1) {
|
|
nr_cpr = 0;
|
|
goto out;
|
|
}
|
|
|
|
iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
|
|
if (!iars) {
|
|
nr_cpr = 0;
|
|
goto out;
|
|
}
|
|
|
|
desc = &buffer[64];
|
|
for (i = 0; i < nr_cpr; i++, desc += 32) {
|
|
if (desc[0] != i) {
|
|
sd_printk(KERN_ERR, sdkp,
|
|
"Invalid Concurrent Positioning Range number\n");
|
|
nr_cpr = 0;
|
|
break;
|
|
}
|
|
|
|
iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
|
|
iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
|
|
}
|
|
|
|
out:
|
|
disk_set_independent_access_ranges(sdkp->disk, iars);
|
|
if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"%u concurrent positioning ranges\n", nr_cpr);
|
|
sdkp->nr_actuators = nr_cpr;
|
|
}
|
|
|
|
kfree(buffer);
|
|
}
|
|
|
|
static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
unsigned int min_xfer_bytes =
|
|
logical_to_bytes(sdp, sdkp->min_xfer_blocks);
|
|
|
|
if (sdkp->min_xfer_blocks == 0)
|
|
return false;
|
|
|
|
if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Preferred minimum I/O size %u bytes not a " \
|
|
"multiple of physical block size (%u bytes)\n",
|
|
min_xfer_bytes, sdkp->physical_block_size);
|
|
sdkp->min_xfer_blocks = 0;
|
|
return false;
|
|
}
|
|
|
|
sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
|
|
min_xfer_bytes);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Determine the device's preferred I/O size for reads and writes
|
|
* unless the reported value is unreasonably small, large, not a
|
|
* multiple of the physical block size, or simply garbage.
|
|
*/
|
|
static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
|
|
unsigned int dev_max)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
unsigned int opt_xfer_bytes =
|
|
logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
|
|
unsigned int min_xfer_bytes =
|
|
logical_to_bytes(sdp, sdkp->min_xfer_blocks);
|
|
|
|
if (sdkp->opt_xfer_blocks == 0)
|
|
return false;
|
|
|
|
if (sdkp->opt_xfer_blocks > dev_max) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u logical blocks " \
|
|
"> dev_max (%u logical blocks)\n",
|
|
sdkp->opt_xfer_blocks, dev_max);
|
|
return false;
|
|
}
|
|
|
|
if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u logical blocks " \
|
|
"> sd driver limit (%u logical blocks)\n",
|
|
sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
|
|
return false;
|
|
}
|
|
|
|
if (opt_xfer_bytes < PAGE_SIZE) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u bytes < " \
|
|
"PAGE_SIZE (%u bytes)\n",
|
|
opt_xfer_bytes, (unsigned int)PAGE_SIZE);
|
|
return false;
|
|
}
|
|
|
|
if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u bytes not a " \
|
|
"multiple of preferred minimum block " \
|
|
"size (%u bytes)\n",
|
|
opt_xfer_bytes, min_xfer_bytes);
|
|
return false;
|
|
}
|
|
|
|
if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u bytes not a " \
|
|
"multiple of physical block size (%u bytes)\n",
|
|
opt_xfer_bytes, sdkp->physical_block_size);
|
|
return false;
|
|
}
|
|
|
|
sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
|
|
opt_xfer_bytes);
|
|
return true;
|
|
}
|
|
|
|
static void sd_read_block_zero(struct scsi_disk *sdkp)
|
|
{
|
|
struct scsi_device *sdev = sdkp->device;
|
|
unsigned int buf_len = sdev->sector_size;
|
|
u8 *buffer, cmd[16] = { };
|
|
|
|
buffer = kmalloc(buf_len, GFP_KERNEL);
|
|
if (!buffer)
|
|
return;
|
|
|
|
if (sdev->use_16_for_rw) {
|
|
cmd[0] = READ_16;
|
|
put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
|
|
put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
|
|
} else {
|
|
cmd[0] = READ_10;
|
|
put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
|
|
put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
|
|
}
|
|
|
|
scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
|
|
SD_TIMEOUT, sdkp->max_retries, NULL);
|
|
kfree(buffer);
|
|
}
|
|
|
|
/**
|
|
* sd_revalidate_disk - called the first time a new disk is seen,
|
|
* performs disk spin up, read_capacity, etc.
|
|
* @disk: struct gendisk we care about
|
|
**/
|
|
static int sd_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
sector_t old_capacity = sdkp->capacity;
|
|
struct queue_limits lim;
|
|
unsigned char *buffer;
|
|
unsigned int dev_max;
|
|
int err;
|
|
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
|
|
"sd_revalidate_disk\n"));
|
|
|
|
/*
|
|
* If the device is offline, don't try and read capacity or any
|
|
* of the other niceties.
|
|
*/
|
|
if (!scsi_device_online(sdp))
|
|
goto out;
|
|
|
|
buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
|
|
if (!buffer) {
|
|
sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
|
|
"allocation failure.\n");
|
|
goto out;
|
|
}
|
|
|
|
sd_spinup_disk(sdkp);
|
|
|
|
lim = queue_limits_start_update(sdkp->disk->queue);
|
|
|
|
/*
|
|
* Without media there is no reason to ask; moreover, some devices
|
|
* react badly if we do.
|
|
*/
|
|
if (sdkp->media_present) {
|
|
sd_read_capacity(sdkp, &lim, buffer);
|
|
/*
|
|
* Some USB/UAS devices return generic values for mode pages
|
|
* until the media has been accessed. Trigger a READ operation
|
|
* to force the device to populate mode pages.
|
|
*/
|
|
if (sdp->read_before_ms)
|
|
sd_read_block_zero(sdkp);
|
|
/*
|
|
* set the default to rotational. All non-rotational devices
|
|
* support the block characteristics VPD page, which will
|
|
* cause this to be updated correctly and any device which
|
|
* doesn't support it should be treated as rotational.
|
|
*/
|
|
lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
|
|
|
|
if (scsi_device_supports_vpd(sdp)) {
|
|
sd_read_block_provisioning(sdkp);
|
|
sd_read_block_limits(sdkp, &lim);
|
|
sd_read_block_limits_ext(sdkp);
|
|
sd_read_block_characteristics(sdkp, &lim);
|
|
sd_zbc_read_zones(sdkp, &lim, buffer);
|
|
}
|
|
|
|
sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp));
|
|
|
|
sd_print_capacity(sdkp, old_capacity);
|
|
|
|
sd_read_write_protect_flag(sdkp, buffer);
|
|
sd_read_cache_type(sdkp, buffer);
|
|
sd_read_io_hints(sdkp, buffer);
|
|
sd_read_app_tag_own(sdkp, buffer);
|
|
sd_read_write_same(sdkp, buffer);
|
|
sd_read_security(sdkp, buffer);
|
|
sd_config_protection(sdkp, &lim);
|
|
}
|
|
|
|
/*
|
|
* We now have all cache related info, determine how we deal
|
|
* with flush requests.
|
|
*/
|
|
sd_set_flush_flag(sdkp, &lim);
|
|
|
|
/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
|
|
dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
|
|
|
|
/* Some devices report a maximum block count for READ/WRITE requests. */
|
|
dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
|
|
lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
|
|
|
|
if (sd_validate_min_xfer_size(sdkp))
|
|
lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
|
|
else
|
|
lim.io_min = 0;
|
|
|
|
/*
|
|
* Limit default to SCSI host optimal sector limit if set. There may be
|
|
* an impact on performance for when the size of a request exceeds this
|
|
* host limit.
|
|
*/
|
|
lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
|
|
if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
|
|
lim.io_opt = min_not_zero(lim.io_opt,
|
|
logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
|
|
}
|
|
|
|
sdkp->first_scan = 0;
|
|
|
|
set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
|
|
sd_config_write_same(sdkp, &lim);
|
|
kfree(buffer);
|
|
|
|
blk_mq_freeze_queue(sdkp->disk->queue);
|
|
err = queue_limits_commit_update(sdkp->disk->queue, &lim);
|
|
blk_mq_unfreeze_queue(sdkp->disk->queue);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Query concurrent positioning ranges after
|
|
* queue_limits_commit_update() unlocked q->limits_lock to avoid
|
|
* deadlock with q->sysfs_dir_lock and q->sysfs_lock.
|
|
*/
|
|
if (sdkp->media_present && scsi_device_supports_vpd(sdp))
|
|
sd_read_cpr(sdkp);
|
|
|
|
/*
|
|
* For a zoned drive, revalidating the zones can be done only once
|
|
* the gendisk capacity is set. So if this fails, set back the gendisk
|
|
* capacity to 0.
|
|
*/
|
|
if (sd_zbc_revalidate_zones(sdkp))
|
|
set_capacity_and_notify(disk, 0);
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_unlock_native_capacity - unlock native capacity
|
|
* @disk: struct gendisk to set capacity for
|
|
*
|
|
* Block layer calls this function if it detects that partitions
|
|
* on @disk reach beyond the end of the device. If the SCSI host
|
|
* implements ->unlock_native_capacity() method, it's invoked to
|
|
* give it a chance to adjust the device capacity.
|
|
*
|
|
* CONTEXT:
|
|
* Defined by block layer. Might sleep.
|
|
*/
|
|
static void sd_unlock_native_capacity(struct gendisk *disk)
|
|
{
|
|
struct scsi_device *sdev = scsi_disk(disk)->device;
|
|
|
|
if (sdev->host->hostt->unlock_native_capacity)
|
|
sdev->host->hostt->unlock_native_capacity(sdev);
|
|
}
|
|
|
|
/**
|
|
* sd_format_disk_name - format disk name
|
|
* @prefix: name prefix - ie. "sd" for SCSI disks
|
|
* @index: index of the disk to format name for
|
|
* @buf: output buffer
|
|
* @buflen: length of the output buffer
|
|
*
|
|
* SCSI disk names starts at sda. The 26th device is sdz and the
|
|
* 27th is sdaa. The last one for two lettered suffix is sdzz
|
|
* which is followed by sdaaa.
|
|
*
|
|
* This is basically 26 base counting with one extra 'nil' entry
|
|
* at the beginning from the second digit on and can be
|
|
* determined using similar method as 26 base conversion with the
|
|
* index shifted -1 after each digit is computed.
|
|
*
|
|
* CONTEXT:
|
|
* Don't care.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
|
|
{
|
|
const int base = 'z' - 'a' + 1;
|
|
char *begin = buf + strlen(prefix);
|
|
char *end = buf + buflen;
|
|
char *p;
|
|
int unit;
|
|
|
|
p = end - 1;
|
|
*p = '\0';
|
|
unit = base;
|
|
do {
|
|
if (p == begin)
|
|
return -EINVAL;
|
|
*--p = 'a' + (index % unit);
|
|
index = (index / unit) - 1;
|
|
} while (index >= 0);
|
|
|
|
memmove(begin, p, end - p);
|
|
memcpy(buf, prefix, strlen(prefix));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_probe - called during driver initialization and whenever a
|
|
* new scsi device is attached to the system. It is called once
|
|
* for each scsi device (not just disks) present.
|
|
* @dev: pointer to device object
|
|
*
|
|
* Returns 0 if successful (or not interested in this scsi device
|
|
* (e.g. scanner)); 1 when there is an error.
|
|
*
|
|
* Note: this function is invoked from the scsi mid-level.
|
|
* This function sets up the mapping between a given
|
|
* <host,channel,id,lun> (found in sdp) and new device name
|
|
* (e.g. /dev/sda). More precisely it is the block device major
|
|
* and minor number that is chosen here.
|
|
*
|
|
* Assume sd_probe is not re-entrant (for time being)
|
|
* Also think about sd_probe() and sd_remove() running coincidentally.
|
|
**/
|
|
static int sd_probe(struct device *dev)
|
|
{
|
|
struct scsi_device *sdp = to_scsi_device(dev);
|
|
struct scsi_disk *sdkp;
|
|
struct gendisk *gd;
|
|
int index;
|
|
int error;
|
|
|
|
scsi_autopm_get_device(sdp);
|
|
error = -ENODEV;
|
|
if (sdp->type != TYPE_DISK &&
|
|
sdp->type != TYPE_ZBC &&
|
|
sdp->type != TYPE_MOD &&
|
|
sdp->type != TYPE_RBC)
|
|
goto out;
|
|
|
|
if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
|
|
sdev_printk(KERN_WARNING, sdp,
|
|
"Unsupported ZBC host-managed device.\n");
|
|
goto out;
|
|
}
|
|
|
|
SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
|
|
"sd_probe\n"));
|
|
|
|
error = -ENOMEM;
|
|
sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
|
|
if (!sdkp)
|
|
goto out;
|
|
|
|
gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
|
|
&sd_bio_compl_lkclass);
|
|
if (!gd)
|
|
goto out_free;
|
|
|
|
index = ida_alloc(&sd_index_ida, GFP_KERNEL);
|
|
if (index < 0) {
|
|
sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
|
|
goto out_put;
|
|
}
|
|
|
|
error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
|
|
if (error) {
|
|
sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
|
|
goto out_free_index;
|
|
}
|
|
|
|
sdkp->device = sdp;
|
|
sdkp->disk = gd;
|
|
sdkp->index = index;
|
|
sdkp->max_retries = SD_MAX_RETRIES;
|
|
atomic_set(&sdkp->openers, 0);
|
|
atomic_set(&sdkp->device->ioerr_cnt, 0);
|
|
|
|
if (!sdp->request_queue->rq_timeout) {
|
|
if (sdp->type != TYPE_MOD)
|
|
blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
|
|
else
|
|
blk_queue_rq_timeout(sdp->request_queue,
|
|
SD_MOD_TIMEOUT);
|
|
}
|
|
|
|
device_initialize(&sdkp->disk_dev);
|
|
sdkp->disk_dev.parent = get_device(dev);
|
|
sdkp->disk_dev.class = &sd_disk_class;
|
|
dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
|
|
|
|
error = device_add(&sdkp->disk_dev);
|
|
if (error) {
|
|
put_device(&sdkp->disk_dev);
|
|
goto out;
|
|
}
|
|
|
|
dev_set_drvdata(dev, sdkp);
|
|
|
|
gd->major = sd_major((index & 0xf0) >> 4);
|
|
gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
|
|
gd->minors = SD_MINORS;
|
|
|
|
gd->fops = &sd_fops;
|
|
gd->private_data = sdkp;
|
|
|
|
/* defaults, until the device tells us otherwise */
|
|
sdp->sector_size = 512;
|
|
sdkp->capacity = 0;
|
|
sdkp->media_present = 1;
|
|
sdkp->write_prot = 0;
|
|
sdkp->cache_override = 0;
|
|
sdkp->WCE = 0;
|
|
sdkp->RCD = 0;
|
|
sdkp->ATO = 0;
|
|
sdkp->first_scan = 1;
|
|
sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
|
|
|
|
sd_revalidate_disk(gd);
|
|
|
|
if (sdp->removable) {
|
|
gd->flags |= GENHD_FL_REMOVABLE;
|
|
gd->events |= DISK_EVENT_MEDIA_CHANGE;
|
|
gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
|
|
}
|
|
|
|
blk_pm_runtime_init(sdp->request_queue, dev);
|
|
if (sdp->rpm_autosuspend) {
|
|
pm_runtime_set_autosuspend_delay(dev,
|
|
sdp->host->rpm_autosuspend_delay);
|
|
}
|
|
|
|
error = device_add_disk(dev, gd, NULL);
|
|
if (error) {
|
|
device_unregister(&sdkp->disk_dev);
|
|
put_disk(gd);
|
|
goto out;
|
|
}
|
|
|
|
if (sdkp->security) {
|
|
sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
|
|
if (sdkp->opal_dev)
|
|
sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
|
|
}
|
|
|
|
sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
|
|
sdp->removable ? "removable " : "");
|
|
scsi_autopm_put_device(sdp);
|
|
|
|
return 0;
|
|
|
|
out_free_index:
|
|
ida_free(&sd_index_ida, index);
|
|
out_put:
|
|
put_disk(gd);
|
|
out_free:
|
|
kfree(sdkp);
|
|
out:
|
|
scsi_autopm_put_device(sdp);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* sd_remove - called whenever a scsi disk (previously recognized by
|
|
* sd_probe) is detached from the system. It is called (potentially
|
|
* multiple times) during sd module unload.
|
|
* @dev: pointer to device object
|
|
*
|
|
* Note: this function is invoked from the scsi mid-level.
|
|
* This function potentially frees up a device name (e.g. /dev/sdc)
|
|
* that could be re-used by a subsequent sd_probe().
|
|
* This function is not called when the built-in sd driver is "exit-ed".
|
|
**/
|
|
static int sd_remove(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
|
|
scsi_autopm_get_device(sdkp->device);
|
|
|
|
device_del(&sdkp->disk_dev);
|
|
del_gendisk(sdkp->disk);
|
|
if (!sdkp->suspended)
|
|
sd_shutdown(dev);
|
|
|
|
put_disk(sdkp->disk);
|
|
return 0;
|
|
}
|
|
|
|
static void scsi_disk_release(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
ida_free(&sd_index_ida, sdkp->index);
|
|
put_device(&sdkp->device->sdev_gendev);
|
|
free_opal_dev(sdkp->opal_dev);
|
|
|
|
kfree(sdkp);
|
|
}
|
|
|
|
static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
|
|
{
|
|
unsigned char cmd[6] = { START_STOP }; /* START_VALID */
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_failure failure_defs[] = {
|
|
{
|
|
/* Power on, reset, or bus device reset occurred */
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = 0x29,
|
|
.ascq = 0,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
{
|
|
/* Power on occurred */
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = 0x29,
|
|
.ascq = 1,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
{
|
|
/* SCSI bus reset */
|
|
.sense = UNIT_ATTENTION,
|
|
.asc = 0x29,
|
|
.ascq = 2,
|
|
.result = SAM_STAT_CHECK_CONDITION,
|
|
},
|
|
{}
|
|
};
|
|
struct scsi_failures failures = {
|
|
.total_allowed = 3,
|
|
.failure_definitions = failure_defs,
|
|
};
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = &sshdr,
|
|
.req_flags = BLK_MQ_REQ_PM,
|
|
.failures = &failures,
|
|
};
|
|
struct scsi_device *sdp = sdkp->device;
|
|
int res;
|
|
|
|
if (start)
|
|
cmd[4] |= 1; /* START */
|
|
|
|
if (sdp->start_stop_pwr_cond)
|
|
cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
|
|
|
|
if (!scsi_device_online(sdp))
|
|
return -ENODEV;
|
|
|
|
res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
|
|
sdkp->max_retries, &exec_args);
|
|
if (res) {
|
|
sd_print_result(sdkp, "Start/Stop Unit failed", res);
|
|
if (res > 0 && scsi_sense_valid(&sshdr)) {
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
/* 0x3a is medium not present */
|
|
if (sshdr.asc == 0x3a)
|
|
res = 0;
|
|
}
|
|
}
|
|
|
|
/* SCSI error codes must not go to the generic layer */
|
|
if (res)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send a SYNCHRONIZE CACHE instruction down to the device through
|
|
* the normal SCSI command structure. Wait for the command to
|
|
* complete.
|
|
*/
|
|
static void sd_shutdown(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
|
|
if (!sdkp)
|
|
return; /* this can happen */
|
|
|
|
if (pm_runtime_suspended(dev))
|
|
return;
|
|
|
|
if (sdkp->WCE && sdkp->media_present) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
|
|
sd_sync_cache(sdkp);
|
|
}
|
|
|
|
if ((system_state != SYSTEM_RESTART &&
|
|
sdkp->device->manage_system_start_stop) ||
|
|
(system_state == SYSTEM_POWER_OFF &&
|
|
sdkp->device->manage_shutdown)) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
|
|
sd_start_stop_device(sdkp, 0);
|
|
}
|
|
}
|
|
|
|
static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
|
|
{
|
|
return (sdev->manage_system_start_stop && !runtime) ||
|
|
(sdev->manage_runtime_start_stop && runtime);
|
|
}
|
|
|
|
static int sd_suspend_common(struct device *dev, bool runtime)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
int ret = 0;
|
|
|
|
if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
|
|
return 0;
|
|
|
|
if (sdkp->WCE && sdkp->media_present) {
|
|
if (!sdkp->device->silence_suspend)
|
|
sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
|
|
ret = sd_sync_cache(sdkp);
|
|
/* ignore OFFLINE device */
|
|
if (ret == -ENODEV)
|
|
return 0;
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (sd_do_start_stop(sdkp->device, runtime)) {
|
|
if (!sdkp->device->silence_suspend)
|
|
sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
|
|
/* an error is not worth aborting a system sleep */
|
|
ret = sd_start_stop_device(sdkp, 0);
|
|
if (!runtime)
|
|
ret = 0;
|
|
}
|
|
|
|
if (!ret)
|
|
sdkp->suspended = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sd_suspend_system(struct device *dev)
|
|
{
|
|
if (pm_runtime_suspended(dev))
|
|
return 0;
|
|
|
|
return sd_suspend_common(dev, false);
|
|
}
|
|
|
|
static int sd_suspend_runtime(struct device *dev)
|
|
{
|
|
return sd_suspend_common(dev, true);
|
|
}
|
|
|
|
static int sd_resume(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
|
|
sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
|
|
|
|
if (opal_unlock_from_suspend(sdkp->opal_dev)) {
|
|
sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sd_resume_common(struct device *dev, bool runtime)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
|
|
return 0;
|
|
|
|
if (!sd_do_start_stop(sdkp->device, runtime)) {
|
|
sdkp->suspended = false;
|
|
return 0;
|
|
}
|
|
|
|
sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
|
|
ret = sd_start_stop_device(sdkp, 1);
|
|
if (!ret) {
|
|
sd_resume(dev);
|
|
sdkp->suspended = false;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sd_resume_system(struct device *dev)
|
|
{
|
|
if (pm_runtime_suspended(dev)) {
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
|
|
|
|
if (sdp && sdp->force_runtime_start_on_system_start)
|
|
pm_request_resume(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return sd_resume_common(dev, false);
|
|
}
|
|
|
|
static int sd_resume_runtime(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
struct scsi_device *sdp;
|
|
|
|
if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
|
|
return 0;
|
|
|
|
sdp = sdkp->device;
|
|
|
|
if (sdp->ignore_media_change) {
|
|
/* clear the device's sense data */
|
|
static const u8 cmd[10] = { REQUEST_SENSE };
|
|
const struct scsi_exec_args exec_args = {
|
|
.req_flags = BLK_MQ_REQ_PM,
|
|
};
|
|
|
|
if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
|
|
sdp->request_queue->rq_timeout, 1,
|
|
&exec_args))
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Failed to clear sense data\n");
|
|
}
|
|
|
|
return sd_resume_common(dev, true);
|
|
}
|
|
|
|
static const struct dev_pm_ops sd_pm_ops = {
|
|
.suspend = sd_suspend_system,
|
|
.resume = sd_resume_system,
|
|
.poweroff = sd_suspend_system,
|
|
.restore = sd_resume_system,
|
|
.runtime_suspend = sd_suspend_runtime,
|
|
.runtime_resume = sd_resume_runtime,
|
|
};
|
|
|
|
static struct scsi_driver sd_template = {
|
|
.gendrv = {
|
|
.name = "sd",
|
|
.probe = sd_probe,
|
|
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
|
|
.remove = sd_remove,
|
|
.shutdown = sd_shutdown,
|
|
.pm = &sd_pm_ops,
|
|
},
|
|
.rescan = sd_rescan,
|
|
.resume = sd_resume,
|
|
.init_command = sd_init_command,
|
|
.uninit_command = sd_uninit_command,
|
|
.done = sd_done,
|
|
.eh_action = sd_eh_action,
|
|
.eh_reset = sd_eh_reset,
|
|
};
|
|
|
|
/**
|
|
* init_sd - entry point for this driver (both when built in or when
|
|
* a module).
|
|
*
|
|
* Note: this function registers this driver with the scsi mid-level.
|
|
**/
|
|
static int __init init_sd(void)
|
|
{
|
|
int majors = 0, i, err;
|
|
|
|
SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
|
|
|
|
for (i = 0; i < SD_MAJORS; i++) {
|
|
if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
|
|
continue;
|
|
majors++;
|
|
}
|
|
|
|
if (!majors)
|
|
return -ENODEV;
|
|
|
|
err = class_register(&sd_disk_class);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
|
|
if (!sd_page_pool) {
|
|
printk(KERN_ERR "sd: can't init discard page pool\n");
|
|
err = -ENOMEM;
|
|
goto err_out_class;
|
|
}
|
|
|
|
err = scsi_register_driver(&sd_template.gendrv);
|
|
if (err)
|
|
goto err_out_driver;
|
|
|
|
return 0;
|
|
|
|
err_out_driver:
|
|
mempool_destroy(sd_page_pool);
|
|
err_out_class:
|
|
class_unregister(&sd_disk_class);
|
|
err_out:
|
|
for (i = 0; i < SD_MAJORS; i++)
|
|
unregister_blkdev(sd_major(i), "sd");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* exit_sd - exit point for this driver (when it is a module).
|
|
*
|
|
* Note: this function unregisters this driver from the scsi mid-level.
|
|
**/
|
|
static void __exit exit_sd(void)
|
|
{
|
|
int i;
|
|
|
|
SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
|
|
|
|
scsi_unregister_driver(&sd_template.gendrv);
|
|
mempool_destroy(sd_page_pool);
|
|
|
|
class_unregister(&sd_disk_class);
|
|
|
|
for (i = 0; i < SD_MAJORS; i++)
|
|
unregister_blkdev(sd_major(i), "sd");
|
|
}
|
|
|
|
module_init(init_sd);
|
|
module_exit(exit_sd);
|
|
|
|
void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
|
|
{
|
|
scsi_print_sense_hdr(sdkp->device,
|
|
sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
|
|
}
|
|
|
|
void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
|
|
{
|
|
const char *hb_string = scsi_hostbyte_string(result);
|
|
|
|
if (hb_string)
|
|
sd_printk(KERN_INFO, sdkp,
|
|
"%s: Result: hostbyte=%s driverbyte=%s\n", msg,
|
|
hb_string ? hb_string : "invalid",
|
|
"DRIVER_OK");
|
|
else
|
|
sd_printk(KERN_INFO, sdkp,
|
|
"%s: Result: hostbyte=0x%02x driverbyte=%s\n",
|
|
msg, host_byte(result), "DRIVER_OK");
|
|
}
|