Stephen M. Cameron 0498cc2a9e cciss: Inform controller we are using 32-bit tags.
Controller will DMA only 32-bits of the tag per command
on completion if it knows we are only using 32-bit tags.

Signed-off-by: Stephen M. Cameron <scameron@beardog.cce.hp.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-12 10:02:16 +01:00

4972 lines
138 KiB
C

/*
* Disk Array driver for HP Smart Array controllers.
* (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307, USA.
*
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/dma-mapping.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#include <linux/completion.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <scsi/scsi_ioctl.h>
#include <linux/cdrom.h>
#include <linux/scatterlist.h>
#include <linux/kthread.h>
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION("3.6.26");
MODULE_LICENSE("GPL");
static DEFINE_MUTEX(cciss_mutex);
static struct proc_dir_entry *proc_cciss;
#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>
/* define the PCI info for the cards we can control */
static const struct pci_device_id cciss_pci_device_id[] = {
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
{0,}
};
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{0x40700E11, "Smart Array 5300", &SA5_access},
{0x40800E11, "Smart Array 5i", &SA5B_access},
{0x40820E11, "Smart Array 532", &SA5B_access},
{0x40830E11, "Smart Array 5312", &SA5B_access},
{0x409A0E11, "Smart Array 641", &SA5_access},
{0x409B0E11, "Smart Array 642", &SA5_access},
{0x409C0E11, "Smart Array 6400", &SA5_access},
{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
{0x40910E11, "Smart Array 6i", &SA5_access},
{0x3225103C, "Smart Array P600", &SA5_access},
{0x3223103C, "Smart Array P800", &SA5_access},
{0x3234103C, "Smart Array P400", &SA5_access},
{0x3235103C, "Smart Array P400i", &SA5_access},
{0x3211103C, "Smart Array E200i", &SA5_access},
{0x3212103C, "Smart Array E200", &SA5_access},
{0x3213103C, "Smart Array E200i", &SA5_access},
{0x3214103C, "Smart Array E200i", &SA5_access},
{0x3215103C, "Smart Array E200i", &SA5_access},
{0x3237103C, "Smart Array E500", &SA5_access},
{0x3223103C, "Smart Array P800", &SA5_access},
{0x3234103C, "Smart Array P400", &SA5_access},
{0x323D103C, "Smart Array P700m", &SA5_access},
};
/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000
/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3
#define MAX_CTLR 32
/* Originally cciss driver only supports 8 major numbers */
#define MAX_CTLR_ORIG 8
static ctlr_info_t *hba[MAX_CTLR];
static struct task_struct *cciss_scan_thread;
static DEFINE_MUTEX(scan_mutex);
static LIST_HEAD(scan_q);
static void do_cciss_request(struct request_queue *q);
static irqreturn_t do_cciss_intx(int irq, void *dev_id);
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
static int cciss_open(struct block_device *bdev, fmode_t mode);
static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
static int cciss_release(struct gendisk *disk, fmode_t mode);
static int do_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
static int cciss_revalidate(struct gendisk *disk);
static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
static int deregister_disk(ctlr_info_t *h, int drv_index,
int clear_all, int via_ioctl);
static void cciss_read_capacity(ctlr_info_t *h, int logvol,
sector_t *total_size, unsigned int *block_size);
static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
sector_t *total_size, unsigned int *block_size);
static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
sector_t total_size,
unsigned int block_size, InquiryData_struct *inq_buff,
drive_info_struct *drv);
static void __devinit cciss_interrupt_mode(ctlr_info_t *);
static void start_io(ctlr_info_t *h);
static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
__u8 page_code, unsigned char scsi3addr[],
int cmd_type);
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
int attempt_retry);
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
static int add_to_scan_list(struct ctlr_info *h);
static int scan_thread(void *data);
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
static void cciss_hba_release(struct device *dev);
static void cciss_device_release(struct device *dev);
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
static inline u32 next_command(ctlr_info_t *h);
static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
u64 *cfg_offset);
static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
unsigned long *memory_bar);
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
int *bucket_map);
static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
#ifdef CONFIG_PROC_FS
static void cciss_procinit(ctlr_info_t *h);
#else
static void cciss_procinit(ctlr_info_t *h)
{
}
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_COMPAT
static int cciss_compat_ioctl(struct block_device *, fmode_t,
unsigned, unsigned long);
#endif
static const struct block_device_operations cciss_fops = {
.owner = THIS_MODULE,
.open = cciss_unlocked_open,
.release = cciss_release,
.ioctl = do_ioctl,
.getgeo = cciss_getgeo,
#ifdef CONFIG_COMPAT
.compat_ioctl = cciss_compat_ioctl,
#endif
.revalidate_disk = cciss_revalidate,
};
/* set_performant_mode: Modify the tag for cciss performant
* set bit 0 for pull model, bits 3-1 for block fetch
* register number
*/
static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
{
if (likely(h->transMethod & CFGTBL_Trans_Performant))
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
}
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(struct list_head *list, CommandList_struct *c)
{
list_add_tail(&c->list, list);
}
static inline void removeQ(CommandList_struct *c)
{
/*
* After kexec/dump some commands might still
* be in flight, which the firmware will try
* to complete. Resetting the firmware doesn't work
* with old fw revisions, so we have to mark
* them off as 'stale' to prevent the driver from
* falling over.
*/
if (WARN_ON(list_empty(&c->list))) {
c->cmd_type = CMD_MSG_STALE;
return;
}
list_del_init(&c->list);
}
static void enqueue_cmd_and_start_io(ctlr_info_t *h,
CommandList_struct *c)
{
unsigned long flags;
set_performant_mode(h, c);
spin_lock_irqsave(&h->lock, flags);
addQ(&h->reqQ, c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
start_io(h);
spin_unlock_irqrestore(&h->lock, flags);
}
static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
int nr_cmds)
{
int i;
if (!cmd_sg_list)
return;
for (i = 0; i < nr_cmds; i++) {
kfree(cmd_sg_list[i]);
cmd_sg_list[i] = NULL;
}
kfree(cmd_sg_list);
}
static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
ctlr_info_t *h, int chainsize, int nr_cmds)
{
int j;
SGDescriptor_struct **cmd_sg_list;
if (chainsize <= 0)
return NULL;
cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
if (!cmd_sg_list)
return NULL;
/* Build up chain blocks for each command */
for (j = 0; j < nr_cmds; j++) {
/* Need a block of chainsized s/g elements. */
cmd_sg_list[j] = kmalloc((chainsize *
sizeof(*cmd_sg_list[j])), GFP_KERNEL);
if (!cmd_sg_list[j]) {
dev_err(&h->pdev->dev, "Cannot get memory "
"for s/g chains.\n");
goto clean;
}
}
return cmd_sg_list;
clean:
cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
return NULL;
}
static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
{
SGDescriptor_struct *chain_sg;
u64bit temp64;
if (c->Header.SGTotal <= h->max_cmd_sgentries)
return;
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
temp64.val32.lower = chain_sg->Addr.lower;
temp64.val32.upper = chain_sg->Addr.upper;
pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}
static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
SGDescriptor_struct *chain_block, int len)
{
SGDescriptor_struct *chain_sg;
u64bit temp64;
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
chain_sg->Ext = CCISS_SG_CHAIN;
chain_sg->Len = len;
temp64.val = pci_map_single(h->pdev, chain_block, len,
PCI_DMA_TODEVICE);
chain_sg->Addr.lower = temp64.val32.lower;
chain_sg->Addr.upper = temp64.val32.upper;
}
#include "cciss_scsi.c" /* For SCSI tape support */
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
"UNKNOWN"
};
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
#ifdef CONFIG_PROC_FS
/*
* Report information about this controller.
*/
#define ENG_GIG 1000000000
#define ENG_GIG_FACTOR (ENG_GIG/512)
#define ENGAGE_SCSI "engage scsi"
static void cciss_seq_show_header(struct seq_file *seq)
{
ctlr_info_t *h = seq->private;
seq_printf(seq, "%s: HP %s Controller\n"
"Board ID: 0x%08lx\n"
"Firmware Version: %c%c%c%c\n"
"IRQ: %d\n"
"Logical drives: %d\n"
"Current Q depth: %d\n"
"Current # commands on controller: %d\n"
"Max Q depth since init: %d\n"
"Max # commands on controller since init: %d\n"
"Max SG entries since init: %d\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
h->num_luns,
h->Qdepth, h->commands_outstanding,
h->maxQsinceinit, h->max_outstanding, h->maxSG);
#ifdef CONFIG_CISS_SCSI_TAPE
cciss_seq_tape_report(seq, h);
#endif /* CONFIG_CISS_SCSI_TAPE */
}
static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
{
ctlr_info_t *h = seq->private;
unsigned long flags;
/* prevent displaying bogus info during configuration
* or deconfiguration of a logical volume
*/
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return ERR_PTR(-EBUSY);
}
h->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
if (*pos == 0)
cciss_seq_show_header(seq);
return pos;
}
static int cciss_seq_show(struct seq_file *seq, void *v)
{
sector_t vol_sz, vol_sz_frac;
ctlr_info_t *h = seq->private;
unsigned ctlr = h->ctlr;
loff_t *pos = v;
drive_info_struct *drv = h->drv[*pos];
if (*pos > h->highest_lun)
return 0;
if (drv == NULL) /* it's possible for h->drv[] to have holes. */
return 0;
if (drv->heads == 0)
return 0;
vol_sz = drv->nr_blocks;
vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
vol_sz_frac *= 100;
sector_div(vol_sz_frac, ENG_GIG_FACTOR);
if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
drv->raid_level = RAID_UNKNOWN;
seq_printf(seq, "cciss/c%dd%d:"
"\t%4u.%02uGB\tRAID %s\n",
ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
raid_label[drv->raid_level]);
return 0;
}
static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
ctlr_info_t *h = seq->private;
if (*pos > h->highest_lun)
return NULL;
*pos += 1;
return pos;
}
static void cciss_seq_stop(struct seq_file *seq, void *v)
{
ctlr_info_t *h = seq->private;
/* Only reset h->busy_configuring if we succeeded in setting
* it during cciss_seq_start. */
if (v == ERR_PTR(-EBUSY))
return;
h->busy_configuring = 0;
}
static const struct seq_operations cciss_seq_ops = {
.start = cciss_seq_start,
.show = cciss_seq_show,
.next = cciss_seq_next,
.stop = cciss_seq_stop,
};
static int cciss_seq_open(struct inode *inode, struct file *file)
{
int ret = seq_open(file, &cciss_seq_ops);
struct seq_file *seq = file->private_data;
if (!ret)
seq->private = PDE(inode)->data;
return ret;
}
static ssize_t
cciss_proc_write(struct file *file, const char __user *buf,
size_t length, loff_t *ppos)
{
int err;
char *buffer;
#ifndef CONFIG_CISS_SCSI_TAPE
return -EINVAL;
#endif
if (!buf || length > PAGE_SIZE - 1)
return -EINVAL;
buffer = (char *)__get_free_page(GFP_KERNEL);
if (!buffer)
return -ENOMEM;
err = -EFAULT;
if (copy_from_user(buffer, buf, length))
goto out;
buffer[length] = '\0';
#ifdef CONFIG_CISS_SCSI_TAPE
if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
struct seq_file *seq = file->private_data;
ctlr_info_t *h = seq->private;
err = cciss_engage_scsi(h);
if (err == 0)
err = length;
} else
#endif /* CONFIG_CISS_SCSI_TAPE */
err = -EINVAL;
/* might be nice to have "disengage" too, but it's not
safely possible. (only 1 module use count, lock issues.) */
out:
free_page((unsigned long)buffer);
return err;
}
static const struct file_operations cciss_proc_fops = {
.owner = THIS_MODULE,
.open = cciss_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
.write = cciss_proc_write,
};
static void __devinit cciss_procinit(ctlr_info_t *h)
{
struct proc_dir_entry *pde;
if (proc_cciss == NULL)
proc_cciss = proc_mkdir("driver/cciss", NULL);
if (!proc_cciss)
return;
pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
S_IROTH, proc_cciss,
&cciss_proc_fops, h);
}
#endif /* CONFIG_PROC_FS */
#define MAX_PRODUCT_NAME_LEN 19
#define to_hba(n) container_of(n, struct ctlr_info, dev)
#define to_drv(n) container_of(n, drive_info_struct, dev)
/* List of controllers which cannot be reset on kexec with reset_devices */
static u32 unresettable_controller[] = {
0x324a103C, /* Smart Array P712m */
0x324b103C, /* SmartArray P711m */
0x3223103C, /* Smart Array P800 */
0x3234103C, /* Smart Array P400 */
0x3235103C, /* Smart Array P400i */
0x3211103C, /* Smart Array E200i */
0x3212103C, /* Smart Array E200 */
0x3213103C, /* Smart Array E200i */
0x3214103C, /* Smart Array E200i */
0x3215103C, /* Smart Array E200i */
0x3237103C, /* Smart Array E500 */
0x323D103C, /* Smart Array P700m */
0x409C0E11, /* Smart Array 6400 */
0x409D0E11, /* Smart Array 6400 EM */
};
static int ctlr_is_resettable(struct ctlr_info *h)
{
int i;
for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
if (unresettable_controller[i] == h->board_id)
return 0;
return 1;
}
static ssize_t host_show_resettable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ctlr_info *h = to_hba(dev);
return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
}
static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
static ssize_t host_store_rescan(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ctlr_info *h = to_hba(dev);
add_to_scan_list(h);
wake_up_process(cciss_scan_thread);
wait_for_completion_interruptible(&h->scan_wait);
return count;
}
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
static ssize_t dev_show_unique_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
__u8 sn[16];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(sn, drv->serial_no, sizeof(sn));
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, 16 * 2 + 2,
"%02X%02X%02X%02X%02X%02X%02X%02X"
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
sn[0], sn[1], sn[2], sn[3],
sn[4], sn[5], sn[6], sn[7],
sn[8], sn[9], sn[10], sn[11],
sn[12], sn[13], sn[14], sn[15]);
}
static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
static ssize_t dev_show_vendor(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char vendor[VENDOR_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
}
static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
static ssize_t dev_show_model(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char model[MODEL_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(model, drv->model, MODEL_LEN + 1);
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
}
static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
static ssize_t dev_show_rev(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char rev[REV_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(rev, drv->rev, REV_LEN + 1);
spin_unlock_irqrestore(&h->lock, flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
}
static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
static ssize_t cciss_show_lunid(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
unsigned long flags;
unsigned char lunid[8];
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
if (!drv->heads) {
spin_unlock_irqrestore(&h->lock, flags);
return -ENOTTY;
}
memcpy(lunid, drv->LunID, sizeof(lunid));
spin_unlock_irqrestore(&h->lock, flags);
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
lunid[0], lunid[1], lunid[2], lunid[3],
lunid[4], lunid[5], lunid[6], lunid[7]);
}
static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
static ssize_t cciss_show_raid_level(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
int raid;
unsigned long flags;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
raid = drv->raid_level;
spin_unlock_irqrestore(&h->lock, flags);
if (raid < 0 || raid > RAID_UNKNOWN)
raid = RAID_UNKNOWN;
return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
raid_label[raid]);
}
static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
static ssize_t cciss_show_usage_count(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
unsigned long flags;
int count;
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
count = drv->usage_count;
spin_unlock_irqrestore(&h->lock, flags);
return snprintf(buf, 20, "%d\n", count);
}
static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
static struct attribute *cciss_host_attrs[] = {
&dev_attr_rescan.attr,
&dev_attr_resettable.attr,
NULL
};
static struct attribute_group cciss_host_attr_group = {
.attrs = cciss_host_attrs,
};
static const struct attribute_group *cciss_host_attr_groups[] = {
&cciss_host_attr_group,
NULL
};
static struct device_type cciss_host_type = {
.name = "cciss_host",
.groups = cciss_host_attr_groups,
.release = cciss_hba_release,
};
static struct attribute *cciss_dev_attrs[] = {
&dev_attr_unique_id.attr,
&dev_attr_model.attr,
&dev_attr_vendor.attr,
&dev_attr_rev.attr,
&dev_attr_lunid.attr,
&dev_attr_raid_level.attr,
&dev_attr_usage_count.attr,
NULL
};
static struct attribute_group cciss_dev_attr_group = {
.attrs = cciss_dev_attrs,
};
static const struct attribute_group *cciss_dev_attr_groups[] = {
&cciss_dev_attr_group,
NULL
};
static struct device_type cciss_dev_type = {
.name = "cciss_device",
.groups = cciss_dev_attr_groups,
.release = cciss_device_release,
};
static struct bus_type cciss_bus_type = {
.name = "cciss",
};
/*
* cciss_hba_release is called when the reference count
* of h->dev goes to zero.
*/
static void cciss_hba_release(struct device *dev)
{
/*
* nothing to do, but need this to avoid a warning
* about not having a release handler from lib/kref.c.
*/
}
/*
* Initialize sysfs entry for each controller. This sets up and registers
* the 'cciss#' directory for each individual controller under
* /sys/bus/pci/devices/<dev>/.
*/
static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
{
device_initialize(&h->dev);
h->dev.type = &cciss_host_type;
h->dev.bus = &cciss_bus_type;
dev_set_name(&h->dev, "%s", h->devname);
h->dev.parent = &h->pdev->dev;
return device_add(&h->dev);
}
/*
* Remove sysfs entries for an hba.
*/
static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
{
device_del(&h->dev);
put_device(&h->dev); /* final put. */
}
/* cciss_device_release is called when the reference count
* of h->drv[x]dev goes to zero.
*/
static void cciss_device_release(struct device *dev)
{
drive_info_struct *drv = to_drv(dev);
kfree(drv);
}
/*
* Initialize sysfs for each logical drive. This sets up and registers
* the 'c#d#' directory for each individual logical drive under
* /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
* /sys/block/cciss!c#d# to this entry.
*/
static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
int drv_index)
{
struct device *dev;
if (h->drv[drv_index]->device_initialized)
return 0;
dev = &h->drv[drv_index]->dev;
device_initialize(dev);
dev->type = &cciss_dev_type;
dev->bus = &cciss_bus_type;
dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
dev->parent = &h->dev;
h->drv[drv_index]->device_initialized = 1;
return device_add(dev);
}
/*
* Remove sysfs entries for a logical drive.
*/
static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
int ctlr_exiting)
{
struct device *dev = &h->drv[drv_index]->dev;
/* special case for c*d0, we only destroy it on controller exit */
if (drv_index == 0 && !ctlr_exiting)
return;
device_del(dev);
put_device(dev); /* the "final" put. */
h->drv[drv_index] = NULL;
}
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use.
*/
static CommandList_struct *cmd_alloc(ctlr_info_t *h)
{
CommandList_struct *c;
int i;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
do {
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
if (i == h->nr_cmds)
return NULL;
} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
c = h->cmd_pool + i;
memset(c, 0, sizeof(CommandList_struct));
cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
err_dma_handle = h->errinfo_pool_dhandle
+ i * sizeof(ErrorInfo_struct);
h->nr_allocs++;
c->cmdindex = i;
INIT_LIST_HEAD(&c->list);
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
/* allocate a command using pci_alloc_consistent, used for ioctls,
* etc., not for the main i/o path.
*/
static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
{
CommandList_struct *c;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
sizeof(CommandList_struct), &cmd_dma_handle);
if (c == NULL)
return NULL;
memset(c, 0, sizeof(CommandList_struct));
c->cmdindex = -1;
c->err_info = (ErrorInfo_struct *)
pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
&err_dma_handle);
if (c->err_info == NULL) {
pci_free_consistent(h->pdev,
sizeof(CommandList_struct), c, cmd_dma_handle);
return NULL;
}
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
INIT_LIST_HEAD(&c->list);
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
{
int i;
i = c - h->cmd_pool;
clear_bit(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG));
h->nr_frees++;
}
static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
{
u64bit temp64;
temp64.val32.lower = c->ErrDesc.Addr.lower;
temp64.val32.upper = c->ErrDesc.Addr.upper;
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
c->err_info, (dma_addr_t) temp64.val);
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
c, (dma_addr_t) c->busaddr);
}
static inline ctlr_info_t *get_host(struct gendisk *disk)
{
return disk->queue->queuedata;
}
static inline drive_info_struct *get_drv(struct gendisk *disk)
{
return disk->private_data;
}
/*
* Open. Make sure the device is really there.
*/
static int cciss_open(struct block_device *bdev, fmode_t mode)
{
ctlr_info_t *h = get_host(bdev->bd_disk);
drive_info_struct *drv = get_drv(bdev->bd_disk);
dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
if (drv->busy_configuring)
return -EBUSY;
/*
* Root is allowed to open raw volume zero even if it's not configured
* so array config can still work. Root is also allowed to open any
* volume that has a LUN ID, so it can issue IOCTL to reread the
* disk information. I don't think I really like this
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (drv->heads == 0) {
if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
/* if not node 0 make sure it is a partition = 0 */
if (MINOR(bdev->bd_dev) & 0x0f) {
return -ENXIO;
/* if it is, make sure we have a LUN ID */
} else if (memcmp(drv->LunID, CTLR_LUNID,
sizeof(drv->LunID))) {
return -ENXIO;
}
}
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
}
drv->usage_count++;
h->usage_count++;
return 0;
}
static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
{
int ret;
mutex_lock(&cciss_mutex);
ret = cciss_open(bdev, mode);
mutex_unlock(&cciss_mutex);
return ret;
}
/*
* Close. Sync first.
*/
static int cciss_release(struct gendisk *disk, fmode_t mode)
{
ctlr_info_t *h;
drive_info_struct *drv;
mutex_lock(&cciss_mutex);
h = get_host(disk);
drv = get_drv(disk);
dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
drv->usage_count--;
h->usage_count--;
mutex_unlock(&cciss_mutex);
return 0;
}
static int do_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
int ret;
mutex_lock(&cciss_mutex);
ret = cciss_ioctl(bdev, mode, cmd, arg);
mutex_unlock(&cciss_mutex);
return ret;
}
#ifdef CONFIG_COMPAT
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg);
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg);
static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
switch (cmd) {
case CCISS_GETPCIINFO:
case CCISS_GETINTINFO:
case CCISS_SETINTINFO:
case CCISS_GETNODENAME:
case CCISS_SETNODENAME:
case CCISS_GETHEARTBEAT:
case CCISS_GETBUSTYPES:
case CCISS_GETFIRMVER:
case CCISS_GETDRIVVER:
case CCISS_REVALIDVOLS:
case CCISS_DEREGDISK:
case CCISS_REGNEWDISK:
case CCISS_REGNEWD:
case CCISS_RESCANDISK:
case CCISS_GETLUNINFO:
return do_ioctl(bdev, mode, cmd, arg);
case CCISS_PASSTHRU32:
return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
case CCISS_BIG_PASSTHRU32:
return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
default:
return -ENOIOCTLCMD;
}
}
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
IOCTL32_Command_struct __user *arg32 =
(IOCTL32_Command_struct __user *) arg;
IOCTL_Command_struct arg64;
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |=
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |=
copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |=
copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
if (err)
return err;
err |=
copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
BIG_IOCTL32_Command_struct __user *arg32 =
(BIG_IOCTL32_Command_struct __user *) arg;
BIG_IOCTL_Command_struct arg64;
BIG_IOCTL_Command_struct __user *p =
compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
memset(&arg64, 0, sizeof(arg64));
err = 0;
err |=
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |=
copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |=
copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
if (err)
return err;
err |=
copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
#endif
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
drive_info_struct *drv = get_drv(bdev->bd_disk);
if (!drv->cylinders)
return -ENXIO;
geo->heads = drv->heads;
geo->sectors = drv->sectors;
geo->cylinders = drv->cylinders;
return 0;
}
static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
{
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
(void)check_for_unit_attention(h, c);
}
static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
{
cciss_pci_info_struct pciinfo;
if (!argp)
return -EINVAL;
pciinfo.domain = pci_domain_nr(h->pdev->bus);
pciinfo.bus = h->pdev->bus->number;
pciinfo.dev_fn = h->pdev->devfn;
pciinfo.board_id = h->board_id;
if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
return -EFAULT;
return 0;
}
static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
{
cciss_coalint_struct intinfo;
if (!argp)
return -EINVAL;
intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
if (copy_to_user
(argp, &intinfo, sizeof(cciss_coalint_struct)))
return -EFAULT;
return 0;
}
static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
{
cciss_coalint_struct intinfo;
unsigned long flags;
int i;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
return -EFAULT;
if ((intinfo.delay == 0) && (intinfo.count == 0))
return -EINVAL;
spin_lock_irqsave(&h->lock, flags);
/* Update the field, and then ring the doorbell */
writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
udelay(1000); /* delay and try again */
}
spin_unlock_irqrestore(&h->lock, flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return 0;
}
static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
{
NodeName_type NodeName;
int i;
if (!argp)
return -EINVAL;
for (i = 0; i < 16; i++)
NodeName[i] = readb(&h->cfgtable->ServerName[i]);
if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
return -EFAULT;
return 0;
}
static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
{
NodeName_type NodeName;
unsigned long flags;
int i;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
return -EFAULT;
spin_lock_irqsave(&h->lock, flags);
/* Update the field, and then ring the doorbell */
for (i = 0; i < 16; i++)
writeb(NodeName[i], &h->cfgtable->ServerName[i]);
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
udelay(1000); /* delay and try again */
}
spin_unlock_irqrestore(&h->lock, flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return 0;
}
static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
{
Heartbeat_type heartbeat;
if (!argp)
return -EINVAL;
heartbeat = readl(&h->cfgtable->HeartBeat);
if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
return -EFAULT;
return 0;
}
static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
{
BusTypes_type BusTypes;
if (!argp)
return -EINVAL;
BusTypes = readl(&h->cfgtable->BusTypes);
if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
return -EFAULT;
return 0;
}
static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
{
FirmwareVer_type firmware;
if (!argp)
return -EINVAL;
memcpy(firmware, h->firm_ver, 4);
if (copy_to_user
(argp, firmware, sizeof(FirmwareVer_type)))
return -EFAULT;
return 0;
}
static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
{
DriverVer_type DriverVer = DRIVER_VERSION;
if (!argp)
return -EINVAL;
if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
return -EFAULT;
return 0;
}
static int cciss_getluninfo(ctlr_info_t *h,
struct gendisk *disk, void __user *argp)
{
LogvolInfo_struct luninfo;
drive_info_struct *drv = get_drv(disk);
if (!argp)
return -EINVAL;
memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
luninfo.num_opens = drv->usage_count;
luninfo.num_parts = 0;
if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
return -EFAULT;
return 0;
}
static int cciss_passthru(ctlr_info_t *h, void __user *argp)
{
IOCTL_Command_struct iocommand;
CommandList_struct *c;
char *buff = NULL;
u64bit temp64;
DECLARE_COMPLETION_ONSTACK(wait);
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (copy_from_user
(&iocommand, argp, sizeof(IOCTL_Command_struct)))
return -EFAULT;
if ((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE)) {
return -EINVAL;
}
if (iocommand.buf_size > 0) {
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if (buff == NULL)
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_WRITE) {
/* Copy the data into the buffer we created */
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
kfree(buff);
return -EFAULT;
}
} else {
memset(buff, 0, iocommand.buf_size);
}
c = cmd_special_alloc(h);
if (!c) {
kfree(buff);
return -ENOMEM;
}
/* Fill in the command type */
c->cmd_type = CMD_IOCTL_PEND;
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (iocommand.buf_size > 0) { /* buffer to fill */
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else { /* no buffers to fill */
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.LUN = iocommand.LUN_info;
/* use the kernel address the cmd block for tag */
c->Header.Tag.lower = c->busaddr;
/* Fill in Request block */
c->Request = iocommand.Request;
/* Fill in the scatter gather information */
if (iocommand.buf_size > 0) {
temp64.val = pci_map_single(h->pdev, buff,
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; /* we are not chaining */
}
c->waiting = &wait;
enqueue_cmd_and_start_io(h, c);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
temp64.val32.lower = c->SG[0].Addr.lower;
temp64.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
PCI_DMA_BIDIRECTIONAL);
check_ioctl_unit_attention(h, c);
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
kfree(buff);
cmd_special_free(h, c);
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
kfree(buff);
cmd_special_free(h, c);
return -EFAULT;
}
}
kfree(buff);
cmd_special_free(h, c);
return 0;
}
static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
{
BIG_IOCTL_Command_struct *ioc;
CommandList_struct *c;
unsigned char **buff = NULL;
int *buff_size = NULL;
u64bit temp64;
BYTE sg_used = 0;
int status = 0;
int i;
DECLARE_COMPLETION_ONSTACK(wait);
__u32 left;
__u32 sz;
BYTE __user *data_ptr;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
ioc = (BIG_IOCTL_Command_struct *)
kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc) {
status = -ENOMEM;
goto cleanup1;
}
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
status = -EFAULT;
goto cleanup1;
}
if ((ioc->buf_size < 1) &&
(ioc->Request.Type.Direction != XFER_NONE)) {
status = -EINVAL;
goto cleanup1;
}
/* Check kmalloc limits using all SGs */
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
status = -EINVAL;
goto cleanup1;
}
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
status = -EINVAL;
goto cleanup1;
}
buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
if (!buff) {
status = -ENOMEM;
goto cleanup1;
}
buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
if (!buff_size) {
status = -ENOMEM;
goto cleanup1;
}
left = ioc->buf_size;
data_ptr = ioc->buf;
while (left) {
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
buff_size[sg_used] = sz;
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
if (buff[sg_used] == NULL) {
status = -ENOMEM;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_WRITE) {
if (copy_from_user(buff[sg_used], data_ptr, sz)) {
status = -EFAULT;
goto cleanup1;
}
} else {
memset(buff[sg_used], 0, sz);
}
left -= sz;
data_ptr += sz;
sg_used++;
}
c = cmd_special_alloc(h);
if (!c) {
status = -ENOMEM;
goto cleanup1;
}
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
c->Header.SGList = sg_used;
c->Header.SGTotal = sg_used;
c->Header.LUN = ioc->LUN_info;
c->Header.Tag.lower = c->busaddr;
c->Request = ioc->Request;
for (i = 0; i < sg_used; i++) {
temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
PCI_DMA_BIDIRECTIONAL);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Len = buff_size[i];
c->SG[i].Ext = 0; /* we are not chaining */
}
c->waiting = &wait;
enqueue_cmd_and_start_io(h, c);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
for (i = 0; i < sg_used; i++) {
temp64.val32.lower = c->SG[i].Addr.lower;
temp64.val32.upper = c->SG[i].Addr.upper;
pci_unmap_single(h->pdev,
(dma_addr_t) temp64.val, buff_size[i],
PCI_DMA_BIDIRECTIONAL);
}
check_ioctl_unit_attention(h, c);
/* Copy the error information out */
ioc->error_info = *(c->err_info);
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
cmd_special_free(h, c);
status = -EFAULT;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
BYTE __user *ptr = ioc->buf;
for (i = 0; i < sg_used; i++) {
if (copy_to_user(ptr, buff[i], buff_size[i])) {
cmd_special_free(h, c);
status = -EFAULT;
goto cleanup1;
}
ptr += buff_size[i];
}
}
cmd_special_free(h, c);
status = 0;
cleanup1:
if (buff) {
for (i = 0; i < sg_used; i++)
kfree(buff[i]);
kfree(buff);
}
kfree(buff_size);
kfree(ioc);
return status;
}
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct gendisk *disk = bdev->bd_disk;
ctlr_info_t *h = get_host(disk);
void __user *argp = (void __user *)arg;
dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
cmd, arg);
switch (cmd) {
case CCISS_GETPCIINFO:
return cciss_getpciinfo(h, argp);
case CCISS_GETINTINFO:
return cciss_getintinfo(h, argp);
case CCISS_SETINTINFO:
return cciss_setintinfo(h, argp);
case CCISS_GETNODENAME:
return cciss_getnodename(h, argp);
case CCISS_SETNODENAME:
return cciss_setnodename(h, argp);
case CCISS_GETHEARTBEAT:
return cciss_getheartbeat(h, argp);
case CCISS_GETBUSTYPES:
return cciss_getbustypes(h, argp);
case CCISS_GETFIRMVER:
return cciss_getfirmver(h, argp);
case CCISS_GETDRIVVER:
return cciss_getdrivver(h, argp);
case CCISS_DEREGDISK:
case CCISS_REGNEWD:
case CCISS_REVALIDVOLS:
return rebuild_lun_table(h, 0, 1);
case CCISS_GETLUNINFO:
return cciss_getluninfo(h, disk, argp);
case CCISS_PASSTHRU:
return cciss_passthru(h, argp);
case CCISS_BIG_PASSTHRU:
return cciss_bigpassthru(h, argp);
/* scsi_cmd_ioctl handles these, below, though some are not */
/* very meaningful for cciss. SG_IO is the main one people want. */
case SG_GET_VERSION_NUM:
case SG_SET_TIMEOUT:
case SG_GET_TIMEOUT:
case SG_GET_RESERVED_SIZE:
case SG_SET_RESERVED_SIZE:
case SG_EMULATED_HOST:
case SG_IO:
case SCSI_IOCTL_SEND_COMMAND:
return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
/* scsi_cmd_ioctl would normally handle these, below, but */
/* they aren't a good fit for cciss, as CD-ROMs are */
/* not supported, and we don't have any bus/target/lun */
/* which we present to the kernel. */
case CDROM_SEND_PACKET:
case CDROMCLOSETRAY:
case CDROMEJECT:
case SCSI_IOCTL_GET_IDLUN:
case SCSI_IOCTL_GET_BUS_NUMBER:
default:
return -ENOTTY;
}
}
static void cciss_check_queues(ctlr_info_t *h)
{
int start_queue = h->next_to_run;
int i;
/* check to see if we have maxed out the number of commands that can
* be placed on the queue. If so then exit. We do this check here
* in case the interrupt we serviced was from an ioctl and did not
* free any new commands.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
return;
/* We have room on the queue for more commands. Now we need to queue
* them up. We will also keep track of the next queue to run so
* that every queue gets a chance to be started first.
*/
for (i = 0; i < h->highest_lun + 1; i++) {
int curr_queue = (start_queue + i) % (h->highest_lun + 1);
/* make sure the disk has been added and the drive is real
* because this can be called from the middle of init_one.
*/
if (!h->drv[curr_queue])
continue;
if (!(h->drv[curr_queue]->queue) ||
!(h->drv[curr_queue]->heads))
continue;
blk_start_queue(h->gendisk[curr_queue]->queue);
/* check to see if we have maxed out the number of commands
* that can be placed on the queue.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
if (curr_queue == start_queue) {
h->next_to_run =
(start_queue + 1) % (h->highest_lun + 1);
break;
} else {
h->next_to_run = curr_queue;
break;
}
}
}
}
static void cciss_softirq_done(struct request *rq)
{
CommandList_struct *c = rq->completion_data;
ctlr_info_t *h = hba[c->ctlr];
SGDescriptor_struct *curr_sg = c->SG;
u64bit temp64;
unsigned long flags;
int i, ddir;
int sg_index = 0;
if (c->Request.Type.Direction == XFER_READ)
ddir = PCI_DMA_FROMDEVICE;
else
ddir = PCI_DMA_TODEVICE;
/* command did not need to be retried */
/* unmap the DMA mapping for all the scatter gather elements */
for (i = 0; i < c->Header.SGList; i++) {
if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
cciss_unmap_sg_chain_block(h, c);
/* Point to the next block */
curr_sg = h->cmd_sg_list[c->cmdindex];
sg_index = 0;
}
temp64.val32.lower = curr_sg[sg_index].Addr.lower;
temp64.val32.upper = curr_sg[sg_index].Addr.upper;
pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
ddir);
++sg_index;
}
dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
/* set the residual count for pc requests */
if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
rq->resid_len = c->err_info->ResidualCnt;
blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
spin_lock_irqsave(&h->lock, flags);
cmd_free(h, c);
cciss_check_queues(h);
spin_unlock_irqrestore(&h->lock, flags);
}
static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
unsigned char scsi3addr[], uint32_t log_unit)
{
memcpy(scsi3addr, h->drv[log_unit]->LunID,
sizeof(h->drv[log_unit]->LunID));
}
/* This function gets the SCSI vendor, model, and revision of a logical drive
* via the inquiry page 0. Model, vendor, and rev are set to empty strings if
* they cannot be read.
*/
static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
char *vendor, char *model, char *rev)
{
int rc;
InquiryData_struct *inq_buf;
unsigned char scsi3addr[8];
*vendor = '\0';
*model = '\0';
*rev = '\0';
inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (!inq_buf)
return;
log_unit_to_scsi3addr(h, scsi3addr, logvol);
rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
scsi3addr, TYPE_CMD);
if (rc == IO_OK) {
memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
vendor[VENDOR_LEN] = '\0';
memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
model[MODEL_LEN] = '\0';
memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
rev[REV_LEN] = '\0';
}
kfree(inq_buf);
return;
}
/* This function gets the serial number of a logical drive via
* inquiry page 0x83. Serial no. is 16 bytes. If the serial
* number cannot be had, for whatever reason, 16 bytes of 0xff
* are returned instead.
*/
static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
unsigned char *serial_no, int buflen)
{
#define PAGE_83_INQ_BYTES 64
int rc;
unsigned char *buf;
unsigned char scsi3addr[8];
if (buflen > 16)
buflen = 16;
memset(serial_no, 0xff, buflen);
buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
if (!buf)
return;
memset(serial_no, 0, buflen);
log_unit_to_scsi3addr(h, scsi3addr, logvol);
rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
if (rc == IO_OK)
memcpy(serial_no, &buf[8], buflen);
kfree(buf);
return;
}
/*
* cciss_add_disk sets up the block device queue for a logical drive
*/
static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
int drv_index)
{
disk->queue = blk_init_queue(do_cciss_request, &h->lock);
if (!disk->queue)
goto init_queue_failure;
sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
disk->major = h->major;
disk->first_minor = drv_index << NWD_SHIFT;
disk->fops = &cciss_fops;
if (cciss_create_ld_sysfs_entry(h, drv_index))
goto cleanup_queue;
disk->private_data = h->drv[drv_index];
disk->driverfs_dev = &h->drv[drv_index]->dev;
/* Set up queue information */
blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
/* This is a hardware imposed limit. */
blk_queue_max_segments(disk->queue, h->maxsgentries);
blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
blk_queue_softirq_done(disk->queue, cciss_softirq_done);
disk->queue->queuedata = h;
blk_queue_logical_block_size(disk->queue,
h->drv[drv_index]->block_size);
/* Make sure all queue data is written out before */
/* setting h->drv[drv_index]->queue, as setting this */
/* allows the interrupt handler to start the queue */
wmb();
h->drv[drv_index]->queue = disk->queue;
add_disk(disk);
return 0;
cleanup_queue:
blk_cleanup_queue(disk->queue);
disk->queue = NULL;
init_queue_failure:
return -1;
}
/* This function will check the usage_count of the drive to be updated/added.
* If the usage_count is zero and it is a heretofore unknown drive, or,
* the drive's capacity, geometry, or serial number has changed,
* then the drive information will be updated and the disk will be
* re-registered with the kernel. If these conditions don't hold,
* then it will be left alone for the next reboot. The exception to this
* is disk 0 which will always be left registered with the kernel since it
* is also the controller node. Any changes to disk 0 will show up on
* the next reboot.
*/
static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
int first_time, int via_ioctl)
{
struct gendisk *disk;
InquiryData_struct *inq_buff = NULL;
unsigned int block_size;
sector_t total_size;
unsigned long flags = 0;
int ret = 0;
drive_info_struct *drvinfo;
/* Get information about the disk and modify the driver structure */
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
if (inq_buff == NULL || drvinfo == NULL)
goto mem_msg;
/* testing to see if 16-byte CDBs are already being used */
if (h->cciss_read == CCISS_READ_16) {
cciss_read_capacity_16(h, drv_index,
&total_size, &block_size);
} else {
cciss_read_capacity(h, drv_index, &total_size, &block_size);
/* if read_capacity returns all F's this volume is >2TB */
/* in size so we switch to 16-byte CDB's for all */
/* read/write ops */
if (total_size == 0xFFFFFFFFULL) {
cciss_read_capacity_16(h, drv_index,
&total_size, &block_size);
h->cciss_read = CCISS_READ_16;
h->cciss_write = CCISS_WRITE_16;
} else {
h->cciss_read = CCISS_READ_10;
h->cciss_write = CCISS_WRITE_10;
}
}
cciss_geometry_inquiry(h, drv_index, total_size, block_size,
inq_buff, drvinfo);
drvinfo->block_size = block_size;
drvinfo->nr_blocks = total_size + 1;
cciss_get_device_descr(h, drv_index, drvinfo->vendor,
drvinfo->model, drvinfo->rev);
cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
sizeof(drvinfo->serial_no));
/* Save the lunid in case we deregister the disk, below. */
memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
sizeof(drvinfo->LunID));
/* Is it the same disk we already know, and nothing's changed? */
if (h->drv[drv_index]->raid_level != -1 &&
((memcmp(drvinfo->serial_no,
h->drv[drv_index]->serial_no, 16) == 0) &&
drvinfo->block_size == h->drv[drv_index]->block_size &&
drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
drvinfo->heads == h->drv[drv_index]->heads &&
drvinfo->sectors == h->drv[drv_index]->sectors &&
drvinfo->cylinders == h->drv[drv_index]->cylinders))
/* The disk is unchanged, nothing to update */
goto freeret;
/* If we get here it's not the same disk, or something's changed,
* so we need to * deregister it, and re-register it, if it's not
* in use.
* If the disk already exists then deregister it before proceeding
* (unless it's the first disk (for the controller node).
*/
if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
spin_lock_irqsave(&h->lock, flags);
h->drv[drv_index]->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
/* deregister_disk sets h->drv[drv_index]->queue = NULL
* which keeps the interrupt handler from starting
* the queue.
*/
ret = deregister_disk(h, drv_index, 0, via_ioctl);
}
/* If the disk is in use return */
if (ret)
goto freeret;
/* Save the new information from cciss_geometry_inquiry
* and serial number inquiry. If the disk was deregistered
* above, then h->drv[drv_index] will be NULL.
*/
if (h->drv[drv_index] == NULL) {
drvinfo->device_initialized = 0;
h->drv[drv_index] = drvinfo;
drvinfo = NULL; /* so it won't be freed below. */
} else {
/* special case for cxd0 */
h->drv[drv_index]->block_size = drvinfo->block_size;
h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
h->drv[drv_index]->heads = drvinfo->heads;
h->drv[drv_index]->sectors = drvinfo->sectors;
h->drv[drv_index]->cylinders = drvinfo->cylinders;
h->drv[drv_index]->raid_level = drvinfo->raid_level;
memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
VENDOR_LEN + 1);
memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
}
++h->num_luns;
disk = h->gendisk[drv_index];
set_capacity(disk, h->drv[drv_index]->nr_blocks);
/* If it's not disk 0 (drv_index != 0)
* or if it was disk 0, but there was previously
* no actual corresponding configured logical drive
* (raid_leve == -1) then we want to update the
* logical drive's information.
*/
if (drv_index || first_time) {
if (cciss_add_disk(h, disk, drv_index) != 0) {
cciss_free_gendisk(h, drv_index);
cciss_free_drive_info(h, drv_index);
dev_warn(&h->pdev->dev, "could not update disk %d\n",
drv_index);
--h->num_luns;
}
}
freeret:
kfree(inq_buff);
kfree(drvinfo);
return;
mem_msg:
dev_err(&h->pdev->dev, "out of memory\n");
goto freeret;
}
/* This function will find the first index of the controllers drive array
* that has a null drv pointer and allocate the drive info struct and
* will return that index This is where new drives will be added.
* If the index to be returned is greater than the highest_lun index for
* the controller then highest_lun is set * to this new index.
* If there are no available indexes or if tha allocation fails, then -1
* is returned. * "controller_node" is used to know if this is a real
* logical drive, or just the controller node, which determines if this
* counts towards highest_lun.
*/
static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
{
int i;
drive_info_struct *drv;
/* Search for an empty slot for our drive info */
for (i = 0; i < CISS_MAX_LUN; i++) {
/* if not cxd0 case, and it's occupied, skip it. */
if (h->drv[i] && i != 0)
continue;
/*
* If it's cxd0 case, and drv is alloc'ed already, and a
* disk is configured there, skip it.
*/
if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
continue;
/*
* We've found an empty slot. Update highest_lun
* provided this isn't just the fake cxd0 controller node.
*/
if (i > h->highest_lun && !controller_node)
h->highest_lun = i;
/* If adding a real disk at cxd0, and it's already alloc'ed */
if (i == 0 && h->drv[i] != NULL)
return i;
/*
* Found an empty slot, not already alloc'ed. Allocate it.
* Mark it with raid_level == -1, so we know it's new later on.
*/
drv = kzalloc(sizeof(*drv), GFP_KERNEL);
if (!drv)
return -1;
drv->raid_level = -1; /* so we know it's new */
h->drv[i] = drv;
return i;
}
return -1;
}
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
{
kfree(h->drv[drv_index]);
h->drv[drv_index] = NULL;
}
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
{
put_disk(h->gendisk[drv_index]);
h->gendisk[drv_index] = NULL;
}
/* cciss_add_gendisk finds a free hba[]->drv structure
* and allocates a gendisk if needed, and sets the lunid
* in the drvinfo structure. It returns the index into
* the ->drv[] array, or -1 if none are free.
* is_controller_node indicates whether highest_lun should
* count this disk, or if it's only being added to provide
* a means to talk to the controller in case no logical
* drives have yet been configured.
*/
static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
int controller_node)
{
int drv_index;
drv_index = cciss_alloc_drive_info(h, controller_node);
if (drv_index == -1)
return -1;
/*Check if the gendisk needs to be allocated */
if (!h->gendisk[drv_index]) {
h->gendisk[drv_index] =
alloc_disk(1 << NWD_SHIFT);
if (!h->gendisk[drv_index]) {
dev_err(&h->pdev->dev,
"could not allocate a new disk %d\n",
drv_index);
goto err_free_drive_info;
}
}
memcpy(h->drv[drv_index]->LunID, lunid,
sizeof(h->drv[drv_index]->LunID));
if (cciss_create_ld_sysfs_entry(h, drv_index))
goto err_free_disk;
/* Don't need to mark this busy because nobody */
/* else knows about this disk yet to contend */
/* for access to it. */
h->drv[drv_index]->busy_configuring = 0;
wmb();
return drv_index;
err_free_disk:
cciss_free_gendisk(h, drv_index);
err_free_drive_info:
cciss_free_drive_info(h, drv_index);
return -1;
}
/* This is for the special case of a controller which
* has no logical drives. In this case, we still need
* to register a disk so the controller can be accessed
* by the Array Config Utility.
*/
static void cciss_add_controller_node(ctlr_info_t *h)
{
struct gendisk *disk;
int drv_index;
if (h->gendisk[0] != NULL) /* already did this? Then bail. */
return;
drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
if (drv_index == -1)
goto error;
h->drv[drv_index]->block_size = 512;
h->drv[drv_index]->nr_blocks = 0;
h->drv[drv_index]->heads = 0;
h->drv[drv_index]->sectors = 0;
h->drv[drv_index]->cylinders = 0;
h->drv[drv_index]->raid_level = -1;
memset(h->drv[drv_index]->serial_no, 0, 16);
disk = h->gendisk[drv_index];
if (cciss_add_disk(h, disk, drv_index) == 0)
return;
cciss_free_gendisk(h, drv_index);
cciss_free_drive_info(h, drv_index);
error:
dev_warn(&h->pdev->dev, "could not add disk 0.\n");
return;
}
/* This function will add and remove logical drives from the Logical
* drive array of the controller and maintain persistency of ordering
* so that mount points are preserved until the next reboot. This allows
* for the removal of logical drives in the middle of the drive array
* without a re-ordering of those drives.
* INPUT
* h = The controller to perform the operations on
*/
static int rebuild_lun_table(ctlr_info_t *h, int first_time,
int via_ioctl)
{
int num_luns;
ReportLunData_struct *ld_buff = NULL;
int return_code;
int listlength = 0;
int i;
int drv_found;
int drv_index = 0;
unsigned char lunid[8] = CTLR_LUNID;
unsigned long flags;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
/* Set busy_configuring flag for this operation */
spin_lock_irqsave(&h->lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&h->lock, flags);
return -EBUSY;
}
h->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
goto mem_msg;
return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
sizeof(ReportLunData_struct),
0, CTLR_LUNID, TYPE_CMD);
if (return_code == IO_OK)
listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
else { /* reading number of logical volumes failed */
dev_warn(&h->pdev->dev,
"report logical volume command failed\n");
listlength = 0;
goto freeret;
}
num_luns = listlength / 8; /* 8 bytes per entry */
if (num_luns > CISS_MAX_LUN) {
num_luns = CISS_MAX_LUN;
dev_warn(&h->pdev->dev, "more luns configured"
" on controller than can be handled by"
" this driver.\n");
}
if (num_luns == 0)
cciss_add_controller_node(h);
/* Compare controller drive array to driver's drive array
* to see if any drives are missing on the controller due
* to action of Array Config Utility (user deletes drive)
* and deregister logical drives which have disappeared.
*/
for (i = 0; i <= h->highest_lun; i++) {
int j;
drv_found = 0;
/* skip holes in the array from already deleted drives */
if (h->drv[i] == NULL)
continue;
for (j = 0; j < num_luns; j++) {
memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
if (memcmp(h->drv[i]->LunID, lunid,
sizeof(lunid)) == 0) {
drv_found = 1;
break;
}
}
if (!drv_found) {
/* Deregister it from the OS, it's gone. */
spin_lock_irqsave(&h->lock, flags);
h->drv[i]->busy_configuring = 1;
spin_unlock_irqrestore(&h->lock, flags);
return_code = deregister_disk(h, i, 1, via_ioctl);
if (h->drv[i] != NULL)
h->drv[i]->busy_configuring = 0;
}
}
/* Compare controller drive array to driver's drive array.
* Check for updates in the drive information and any new drives
* on the controller due to ACU adding logical drives, or changing
* a logical drive's size, etc. Reregister any new/changed drives
*/
for (i = 0; i < num_luns; i++) {
int j;
drv_found = 0;
memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
/* Find if the LUN is already in the drive array
* of the driver. If so then update its info
* if not in use. If it does not exist then find
* the first free index and add it.
*/
for (j = 0; j <= h->highest_lun; j++) {
if (h->drv[j] != NULL &&
memcmp(h->drv[j]->LunID, lunid,
sizeof(h->drv[j]->LunID)) == 0) {
drv_index = j;
drv_found = 1;
break;
}
}
/* check if the drive was found already in the array */
if (!drv_found) {
drv_index = cciss_add_gendisk(h, lunid, 0);
if (drv_index == -1)
goto freeret;
}
cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
} /* end for */
freeret:
kfree(ld_buff);
h->busy_configuring = 0;
/* We return -1 here to tell the ACU that we have registered/updated
* all of the drives that we can and to keep it from calling us
* additional times.
*/
return -1;
mem_msg:
dev_err(&h->pdev->dev, "out of memory\n");
h->busy_configuring = 0;
goto freeret;
}
static void cciss_clear_drive_info(drive_info_struct *drive_info)
{
/* zero out the disk size info */
drive_info->nr_blocks = 0;
drive_info->block_size = 0;
drive_info->heads = 0;
drive_info->sectors = 0;
drive_info->cylinders = 0;
drive_info->raid_level = -1;
memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
memset(drive_info->model, 0, sizeof(drive_info->model));
memset(drive_info->rev, 0, sizeof(drive_info->rev));
memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
/*
* don't clear the LUNID though, we need to remember which
* one this one is.
*/
}
/* This function will deregister the disk and it's queue from the
* kernel. It must be called with the controller lock held and the
* drv structures busy_configuring flag set. It's parameters are:
*
* disk = This is the disk to be deregistered
* drv = This is the drive_info_struct associated with the disk to be
* deregistered. It contains information about the disk used
* by the driver.
* clear_all = This flag determines whether or not the disk information
* is going to be completely cleared out and the highest_lun
* reset. Sometimes we want to clear out information about
* the disk in preparation for re-adding it. In this case
* the highest_lun should be left unchanged and the LunID
* should not be cleared.
* via_ioctl
* This indicates whether we've reached this path via ioctl.
* This affects the maximum usage count allowed for c0d0 to be messed with.
* If this path is reached via ioctl(), then the max_usage_count will
* be 1, as the process calling ioctl() has got to have the device open.
* If we get here via sysfs, then the max usage count will be zero.
*/
static int deregister_disk(ctlr_info_t *h, int drv_index,
int clear_all, int via_ioctl)
{
int i;
struct gendisk *disk;
drive_info_struct *drv;
int recalculate_highest_lun;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
drv = h->drv[drv_index];
disk = h->gendisk[drv_index];
/* make sure logical volume is NOT is use */
if (clear_all || (h->gendisk[0] == disk)) {
if (drv->usage_count > via_ioctl)
return -EBUSY;
} else if (drv->usage_count > 0)
return -EBUSY;
recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
/* invalidate the devices and deregister the disk. If it is disk
* zero do not deregister it but just zero out it's values. This
* allows us to delete disk zero but keep the controller registered.
*/
if (h->gendisk[0] != disk) {
struct request_queue *q = disk->queue;
if (disk->flags & GENHD_FL_UP) {
cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
del_gendisk(disk);
}
if (q)
blk_cleanup_queue(q);
/* If clear_all is set then we are deleting the logical
* drive, not just refreshing its info. For drives
* other than disk 0 we will call put_disk. We do not
* do this for disk 0 as we need it to be able to
* configure the controller.
*/
if (clear_all){
/* This isn't pretty, but we need to find the
* disk in our array and NULL our the pointer.
* This is so that we will call alloc_disk if
* this index is used again later.
*/
for (i=0; i < CISS_MAX_LUN; i++){
if (h->gendisk[i] == disk) {
h->gendisk[i] = NULL;
break;
}
}
put_disk(disk);
}
} else {
set_capacity(disk, 0);
cciss_clear_drive_info(drv);
}
--h->num_luns;
/* if it was the last disk, find the new hightest lun */
if (clear_all && recalculate_highest_lun) {
int newhighest = -1;
for (i = 0; i <= h->highest_lun; i++) {
/* if the disk has size > 0, it is available */
if (h->drv[i] && h->drv[i]->heads)
newhighest = i;
}
h->highest_lun = newhighest;
}
return 0;
}
static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
size_t size, __u8 page_code, unsigned char *scsi3addr,
int cmd_type)
{
u64bit buff_dma_handle;
int status = IO_OK;
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if (buff != NULL) {
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else {
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.Tag.lower = c->busaddr;
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
c->Request.Type.Type = cmd_type;
if (cmd_type == TYPE_CMD) {
switch (cmd) {
case CISS_INQUIRY:
/* are we trying to read a vital product page */
if (page_code != 0) {
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
case CISS_REPORT_PHYS:
/* Talking to controller so It's a physical command
mode = 00 target = 0. Nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Request.CDBLen = 10;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
case CCISS_READ_CAPACITY_16:
c->Request.CDBLen = 16;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[1] = 0x10;
c->Request.CDB[10] = (size >> 24) & 0xFF;
c->Request.CDB[11] = (size >> 16) & 0xFF;
c->Request.CDB[12] = (size >> 8) & 0xFF;
c->Request.CDB[13] = size & 0xFF;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
case CCISS_CACHE_FLUSH:
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = BMIC_WRITE;
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
break;
case TEST_UNIT_READY:
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0;
break;
default:
dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
return IO_ERROR;
}
} else if (cmd_type == TYPE_MSG) {
switch (cmd) {
case 0: /* ABORT message */
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd; /* abort */
c->Request.CDB[1] = 0; /* abort a command */
/* buff contains the tag of the command to abort */
memcpy(&c->Request.CDB[4], buff, 8);
break;
case 1: /* RESET message */
c->Request.CDBLen = 16;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0;
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
c->Request.CDB[0] = cmd; /* reset */
c->Request.CDB[1] = 0x03; /* reset a target */
break;
case 3: /* No-Op message */
c->Request.CDBLen = 1;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
default:
dev_warn(&h->pdev->dev,
"unknown message type %d\n", cmd);
return IO_ERROR;
}
} else {
dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
return IO_ERROR;
}
/* Fill in the scatter gather information */
if (size > 0) {
buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
buff, size,
PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; /* we are not chaining */
}
return status;
}
static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
{
switch (c->err_info->ScsiStatus) {
case SAM_STAT_GOOD:
return IO_OK;
case SAM_STAT_CHECK_CONDITION:
switch (0xf & c->err_info->SenseInfo[2]) {
case 0: return IO_OK; /* no sense */
case 1: return IO_OK; /* recovered error */
default:
if (check_for_unit_attention(h, c))
return IO_NEEDS_RETRY;
dev_warn(&h->pdev->dev, "cmd 0x%02x "
"check condition, sense key = 0x%02x\n",
c->Request.CDB[0], c->err_info->SenseInfo[2]);
}
break;
default:
dev_warn(&h->pdev->dev, "cmd 0x%02x"
"scsi status = 0x%02x\n",
c->Request.CDB[0], c->err_info->ScsiStatus);
break;
}
return IO_ERROR;
}
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
{
int return_status = IO_OK;
if (c->err_info->CommandStatus == CMD_SUCCESS)
return IO_OK;
switch (c->err_info->CommandStatus) {
case CMD_TARGET_STATUS:
return_status = check_target_status(h, c);
break;
case CMD_DATA_UNDERRUN:
case CMD_DATA_OVERRUN:
/* expected for inquiry and report lun commands */
break;
case CMD_INVALID:
dev_warn(&h->pdev->dev, "cmd 0x%02x is "
"reported invalid\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_PROTOCOL_ERR:
dev_warn(&h->pdev->dev, "cmd 0x%02x has "
"protocol error\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_HARDWARE_ERR:
dev_warn(&h->pdev->dev, "cmd 0x%02x had "
" hardware error\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_CONNECTION_LOST:
dev_warn(&h->pdev->dev, "cmd 0x%02x had "
"connection lost\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_ABORTED:
dev_warn(&h->pdev->dev, "cmd 0x%02x was "
"aborted\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_ABORT_FAILED:
dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
"abort failed\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_UNSOLICITED_ABORT:
dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
c->Request.CDB[0]);
return_status = IO_NEEDS_RETRY;
break;
default:
dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
"unknown status %x\n", c->Request.CDB[0],
c->err_info->CommandStatus);
return_status = IO_ERROR;
}
return return_status;
}
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
int attempt_retry)
{
DECLARE_COMPLETION_ONSTACK(wait);
u64bit buff_dma_handle;
int return_status = IO_OK;
resend_cmd2:
c->waiting = &wait;
enqueue_cmd_and_start_io(h, c);
wait_for_completion(&wait);
if (c->err_info->CommandStatus == 0 || !attempt_retry)
goto command_done;
return_status = process_sendcmd_error(h, c);
if (return_status == IO_NEEDS_RETRY &&
c->retry_count < MAX_CMD_RETRIES) {
dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
c->Request.CDB[0]);
c->retry_count++;
/* erase the old error information */
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
return_status = IO_OK;
INIT_COMPLETION(wait);
goto resend_cmd2;
}
command_done:
/* unlock the buffers from DMA */
buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
return return_status;
}
static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
__u8 page_code, unsigned char scsi3addr[],
int cmd_type)
{
CommandList_struct *c;
int return_status;
c = cmd_special_alloc(h);
if (!c)
return -ENOMEM;
return_status = fill_cmd(h, c, cmd, buff, size, page_code,
scsi3addr, cmd_type);
if (return_status == IO_OK)
return_status = sendcmd_withirq_core(h, c, 1);
cmd_special_free(h, c);
return return_status;
}
static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
sector_t total_size,
unsigned int block_size,
InquiryData_struct *inq_buff,
drive_info_struct *drv)
{
int return_code;
unsigned long t;
unsigned char scsi3addr[8];
memset(inq_buff, 0, sizeof(InquiryData_struct));
log_unit_to_scsi3addr(h, scsi3addr, logvol);
return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
if (inq_buff->data_byte[8] == 0xFF) {
dev_warn(&h->pdev->dev,
"reading geometry failed, volume "
"does not support reading geometry\n");
drv->heads = 255;
drv->sectors = 32; /* Sectors per track */
drv->cylinders = total_size + 1;
drv->raid_level = RAID_UNKNOWN;
} else {
drv->heads = inq_buff->data_byte[6];
drv->sectors = inq_buff->data_byte[7];
drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
drv->cylinders += inq_buff->data_byte[5];
drv->raid_level = inq_buff->data_byte[8];
}
drv->block_size = block_size;
drv->nr_blocks = total_size + 1;
t = drv->heads * drv->sectors;
if (t > 1) {
sector_t real_size = total_size + 1;
unsigned long rem = sector_div(real_size, t);
if (rem)
real_size++;
drv->cylinders = real_size;
}
} else { /* Get geometry failed */
dev_warn(&h->pdev->dev, "reading geometry failed\n");
}
}
static void
cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
unsigned int *block_size)
{
ReadCapdata_struct *buf;
int return_code;
unsigned char scsi3addr[8];
buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
if (!buf) {
dev_warn(&h->pdev->dev, "out of memory\n");
return;
}
log_unit_to_scsi3addr(h, scsi3addr, logvol);
return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
} else { /* read capacity command failed */
dev_warn(&h->pdev->dev, "read capacity failed\n");
*total_size = 0;
*block_size = BLOCK_SIZE;
}
kfree(buf);
}
static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
sector_t *total_size, unsigned int *block_size)
{
ReadCapdata_struct_16 *buf;
int return_code;
unsigned char scsi3addr[8];
buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
if (!buf) {
dev_warn(&h->pdev->dev, "out of memory\n");
return;
}
log_unit_to_scsi3addr(h, scsi3addr, logvol);
return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
buf, sizeof(ReadCapdata_struct_16),
0, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
} else { /* read capacity command failed */
dev_warn(&h->pdev->dev, "read capacity failed\n");
*total_size = 0;
*block_size = BLOCK_SIZE;
}
dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
(unsigned long long)*total_size+1, *block_size);
kfree(buf);
}
static int cciss_revalidate(struct gendisk *disk)
{
ctlr_info_t *h = get_host(disk);
drive_info_struct *drv = get_drv(disk);
int logvol;
int FOUND = 0;
unsigned int block_size;
sector_t total_size;
InquiryData_struct *inq_buff = NULL;
for (logvol = 0; logvol <= h->highest_lun; logvol++) {
if (!h->drv[logvol])
continue;
if (memcmp(h->drv[logvol]->LunID, drv->LunID,
sizeof(drv->LunID)) == 0) {
FOUND = 1;
break;
}
}
if (!FOUND)
return 1;
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL) {
dev_warn(&h->pdev->dev, "out of memory\n");
return 1;
}
if (h->cciss_read == CCISS_READ_10) {
cciss_read_capacity(h, logvol,
&total_size, &block_size);
} else {
cciss_read_capacity_16(h, logvol,
&total_size, &block_size);
}
cciss_geometry_inquiry(h, logvol, total_size, block_size,
inq_buff, drv);
blk_queue_logical_block_size(drv->queue, drv->block_size);
set_capacity(disk, drv->nr_blocks);
kfree(inq_buff);
return 0;
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
void __iomem *page_remapped = ioremap(page_base, page_offs + size);
return page_remapped ? (page_remapped + page_offs) : NULL;
}
/*
* Takes jobs of the Q and sends them to the hardware, then puts it on
* the Q to wait for completion.
*/
static void start_io(ctlr_info_t *h)
{
CommandList_struct *c;
while (!list_empty(&h->reqQ)) {
c = list_entry(h->reqQ.next, CommandList_struct, list);
/* can't do anything if fifo is full */
if ((h->access.fifo_full(h))) {
dev_warn(&h->pdev->dev, "fifo full\n");
break;
}
/* Get the first entry from the Request Q */
removeQ(c);
h->Qdepth--;
/* Tell the controller execute command */
h->access.submit_command(h, c);
/* Put job onto the completed Q */
addQ(&h->cmpQ, c);
}
}
/* Assumes that h->lock is held. */
/* Zeros out the error record and then resends the command back */
/* to the controller */
static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
{
/* erase the old error information */
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
/* add it to software queue and then send it to the controller */
addQ(&h->reqQ, c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
start_io(h);
}
static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
unsigned int msg_byte, unsigned int host_byte,
unsigned int driver_byte)
{
/* inverse of macros in scsi.h */
return (scsi_status_byte & 0xff) |
((msg_byte & 0xff) << 8) |
((host_byte & 0xff) << 16) |
((driver_byte & 0xff) << 24);
}
static inline int evaluate_target_status(ctlr_info_t *h,
CommandList_struct *cmd, int *retry_cmd)
{
unsigned char sense_key;
unsigned char status_byte, msg_byte, host_byte, driver_byte;
int error_value;
*retry_cmd = 0;
/* If we get in here, it means we got "target status", that is, scsi status */
status_byte = cmd->err_info->ScsiStatus;
driver_byte = DRIVER_OK;
msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
host_byte = DID_PASSTHROUGH;
else
host_byte = DID_OK;
error_value = make_status_bytes(status_byte, msg_byte,
host_byte, driver_byte);
if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
dev_warn(&h->pdev->dev, "cmd %p "
"has SCSI Status 0x%x\n",
cmd, cmd->err_info->ScsiStatus);
return error_value;
}
/* check the sense key */
sense_key = 0xf & cmd->err_info->SenseInfo[2];
/* no status or recovered error */
if (((sense_key == 0x0) || (sense_key == 0x1)) &&
(cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
error_value = 0;
if (check_for_unit_attention(h, cmd)) {
*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
return 0;
}
/* Not SG_IO or similar? */
if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
if (error_value != 0)
dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
" sense key = 0x%x\n", cmd, sense_key);
return error_value;
}
/* SG_IO or similar, copy sense data back */
if (cmd->rq->sense) {
if (cmd->rq->sense_len > cmd->err_info->SenseLen)
cmd->rq->sense_len = cmd->err_info->SenseLen;
memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
cmd->rq->sense_len);
} else
cmd->rq->sense_len = 0;
return error_value;
}
/* checks the status of the job and calls complete buffers to mark all
* buffers for the completed job. Note that this function does not need
* to hold the hba/queue lock.
*/
static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
int timeout)
{
int retry_cmd = 0;
struct request *rq = cmd->rq;
rq->errors = 0;
if (timeout)
rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
goto after_error_processing;
switch (cmd->err_info->CommandStatus) {
case CMD_TARGET_STATUS:
rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
break;
case CMD_DATA_UNDERRUN:
if (cmd->rq->cmd_type == REQ_TYPE_FS) {
dev_warn(&h->pdev->dev, "cmd %p has"
" completed with data underrun "
"reported\n", cmd);
cmd->rq->resid_len = cmd->err_info->ResidualCnt;
}
break;
case CMD_DATA_OVERRUN:
if (cmd->rq->cmd_type == REQ_TYPE_FS)
dev_warn(&h->pdev->dev, "cciss: cmd %p has"
" completed with data overrun "
"reported\n", cmd);
break;
case CMD_INVALID:
dev_warn(&h->pdev->dev, "cciss: cmd %p is "
"reported invalid\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_PROTOCOL_ERR:
dev_warn(&h->pdev->dev, "cciss: cmd %p has "
"protocol error\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_HARDWARE_ERR:
dev_warn(&h->pdev->dev, "cciss: cmd %p had "
" hardware error\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_CONNECTION_LOST:
dev_warn(&h->pdev->dev, "cciss: cmd %p had "
"connection lost\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_ABORTED:
dev_warn(&h->pdev->dev, "cciss: cmd %p was "
"aborted\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ABORT);
break;
case CMD_ABORT_FAILED:
dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
"abort failed\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
case CMD_UNSOLICITED_ABORT:
dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
"abort %p\n", h->ctlr, cmd);
if (cmd->retry_count < MAX_CMD_RETRIES) {
retry_cmd = 1;
dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
cmd->retry_count++;
} else
dev_warn(&h->pdev->dev,
"%p retried too many times\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ABORT);
break;
case CMD_TIMEOUT:
dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
break;
default:
dev_warn(&h->pdev->dev, "cmd %p returned "
"unknown status %x\n", cmd,
cmd->err_info->CommandStatus);
rq->errors = make_status_bytes(SAM_STAT_GOOD,
cmd->err_info->CommandStatus, DRIVER_OK,
(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
DID_PASSTHROUGH : DID_ERROR);
}
after_error_processing:
/* We need to return this command */
if (retry_cmd) {
resend_cciss_cmd(h, cmd);
return;
}
cmd->rq->completion_data = cmd;
blk_complete_request(cmd->rq);
}
static inline u32 cciss_tag_contains_index(u32 tag)
{
#define DIRECT_LOOKUP_BIT 0x10
return tag & DIRECT_LOOKUP_BIT;
}
static inline u32 cciss_tag_to_index(u32 tag)
{
#define DIRECT_LOOKUP_SHIFT 5
return tag >> DIRECT_LOOKUP_SHIFT;
}
static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
{
#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define CCISS_SIMPLE_ERROR_BITS 0x03
if (likely(h->transMethod & CFGTBL_Trans_Performant))
return tag & ~CCISS_PERF_ERROR_BITS;
return tag & ~CCISS_SIMPLE_ERROR_BITS;
}
static inline void cciss_mark_tag_indexed(u32 *tag)
{
*tag |= DIRECT_LOOKUP_BIT;
}
static inline void cciss_set_tag_index(u32 *tag, u32 index)
{
*tag |= (index << DIRECT_LOOKUP_SHIFT);
}
/*
* Get a request and submit it to the controller.
*/
static void do_cciss_request(struct request_queue *q)
{
ctlr_info_t *h = q->queuedata;
CommandList_struct *c;
sector_t start_blk;
int seg;
struct request *creq;
u64bit temp64;
struct scatterlist *tmp_sg;
SGDescriptor_struct *curr_sg;
drive_info_struct *drv;
int i, dir;
int sg_index = 0;
int chained = 0;
queue:
creq = blk_peek_request(q);
if (!creq)
goto startio;
BUG_ON(creq->nr_phys_segments > h->maxsgentries);
c = cmd_alloc(h);
if (!c)
goto full;
blk_start_request(creq);
tmp_sg = h->scatter_list[c->cmdindex];
spin_unlock_irq(q->queue_lock);
c->cmd_type = CMD_RWREQ;
c->rq = creq;
/* fill in the request */
drv = creq->rq_disk->private_data;
c->Header.ReplyQueue = 0; /* unused in simple mode */
/* got command from pool, so use the command block index instead */
/* for direct lookups. */
/* The first 2 bits are reserved for controller error reporting. */
cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
cciss_mark_tag_indexed(&c->Header.Tag.lower);
memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction =
(rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] =
(rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
start_blk = blk_rq_pos(creq);
dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
(int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
sg_init_table(tmp_sg, h->maxsgentries);
seg = blk_rq_map_sg(q, creq, tmp_sg);
/* get the DMA records for the setup */
if (c->Request.Type.Direction == XFER_READ)
dir = PCI_DMA_FROMDEVICE;
else
dir = PCI_DMA_TODEVICE;
curr_sg = c->SG;
sg_index = 0;
chained = 0;
for (i = 0; i < seg; i++) {
if (((sg_index+1) == (h->max_cmd_sgentries)) &&
!chained && ((seg - i) > 1)) {
/* Point to next chain block. */
curr_sg = h->cmd_sg_list[c->cmdindex];
sg_index = 0;
chained = 1;
}
curr_sg[sg_index].Len = tmp_sg[i].length;
temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
tmp_sg[i].offset,
tmp_sg[i].length, dir);
curr_sg[sg_index].Addr.lower = temp64.val32.lower;
curr_sg[sg_index].Addr.upper = temp64.val32.upper;
curr_sg[sg_index].Ext = 0; /* we are not chaining */
++sg_index;
}
if (chained)
cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
(seg - (h->max_cmd_sgentries - 1)) *
sizeof(SGDescriptor_struct));
/* track how many SG entries we are using */
if (seg > h->maxSG)
h->maxSG = seg;
dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
"chained[%d]\n",
blk_rq_sectors(creq), seg, chained);
c->Header.SGTotal = seg + chained;
if (seg <= h->max_cmd_sgentries)
c->Header.SGList = c->Header.SGTotal;
else
c->Header.SGList = h->max_cmd_sgentries;
set_performant_mode(h, c);
if (likely(creq->cmd_type == REQ_TYPE_FS)) {
if(h->cciss_read == CCISS_READ_10) {
c->Request.CDB[1] = 0;
c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
c->Request.CDB[3] = (start_blk >> 16) & 0xff;
c->Request.CDB[4] = (start_blk >> 8) & 0xff;
c->Request.CDB[5] = start_blk & 0xff;
c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
} else {
u32 upper32 = upper_32_bits(start_blk);
c->Request.CDBLen = 16;
c->Request.CDB[1]= 0;
c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
c->Request.CDB[3]= (upper32 >> 16) & 0xff;
c->Request.CDB[4]= (upper32 >> 8) & 0xff;
c->Request.CDB[5]= upper32 & 0xff;
c->Request.CDB[6]= (start_blk >> 24) & 0xff;
c->Request.CDB[7]= (start_blk >> 16) & 0xff;
c->Request.CDB[8]= (start_blk >> 8) & 0xff;
c->Request.CDB[9]= start_blk & 0xff;
c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
c->Request.CDB[14] = c->Request.CDB[15] = 0;
}
} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
c->Request.CDBLen = creq->cmd_len;
memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
} else {
dev_warn(&h->pdev->dev, "bad request type %d\n",
creq->cmd_type);
BUG();
}
spin_lock_irq(q->queue_lock);
addQ(&h->reqQ, c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
goto queue;
full:
blk_stop_queue(q);
startio:
/* We will already have the driver lock here so not need
* to lock it.
*/
start_io(h);
}
static inline unsigned long get_next_completion(ctlr_info_t *h)
{
return h->access.command_completed(h);
}
static inline int interrupt_pending(ctlr_info_t *h)
{
return h->access.intr_pending(h);
}
static inline long interrupt_not_for_us(ctlr_info_t *h)
{
return ((h->access.intr_pending(h) == 0) ||
(h->interrupts_enabled == 0));
}
static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
u32 raw_tag)
{
if (unlikely(tag_index >= h->nr_cmds)) {
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
return 1;
}
return 0;
}
static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
u32 raw_tag)
{
removeQ(c);
if (likely(c->cmd_type == CMD_RWREQ))
complete_command(h, c, 0);
else if (c->cmd_type == CMD_IOCTL_PEND)
complete(c->waiting);
#ifdef CONFIG_CISS_SCSI_TAPE
else if (c->cmd_type == CMD_SCSI)
complete_scsi_command(c, 0, raw_tag);
#endif
}
static inline u32 next_command(ctlr_info_t *h)
{
u32 a;
if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
return h->access.command_completed(h);
if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
a = *(h->reply_pool_head); /* Next cmd in ring buffer */
(h->reply_pool_head)++;
h->commands_outstanding--;
} else {
a = FIFO_EMPTY;
}
/* Check for wraparound */
if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
h->reply_pool_head = h->reply_pool;
h->reply_pool_wraparound ^= 1;
}
return a;
}
/* process completion of an indexed ("direct lookup") command */
static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
{
u32 tag_index;
CommandList_struct *c;
tag_index = cciss_tag_to_index(raw_tag);
if (bad_tag(h, tag_index, raw_tag))
return next_command(h);
c = h->cmd_pool + tag_index;
finish_cmd(h, c, raw_tag);
return next_command(h);
}
/* process completion of a non-indexed command */
static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
{
CommandList_struct *c = NULL;
__u32 busaddr_masked, tag_masked;
tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
list_for_each_entry(c, &h->cmpQ, list) {
busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
if (busaddr_masked == tag_masked) {
finish_cmd(h, c, raw_tag);
return next_command(h);
}
}
bad_tag(h, h->nr_cmds + 1, raw_tag);
return next_command(h);
}
static irqreturn_t do_cciss_intx(int irq, void *dev_id)
{
ctlr_info_t *h = dev_id;
unsigned long flags;
u32 raw_tag;
if (interrupt_not_for_us(h))
return IRQ_NONE;
spin_lock_irqsave(&h->lock, flags);
while (interrupt_pending(h)) {
raw_tag = get_next_completion(h);
while (raw_tag != FIFO_EMPTY) {
if (cciss_tag_contains_index(raw_tag))
raw_tag = process_indexed_cmd(h, raw_tag);
else
raw_tag = process_nonindexed_cmd(h, raw_tag);
}
}
spin_unlock_irqrestore(&h->lock, flags);
return IRQ_HANDLED;
}
/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
* check the interrupt pending register because it is not set.
*/
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
{
ctlr_info_t *h = dev_id;
unsigned long flags;
u32 raw_tag;
spin_lock_irqsave(&h->lock, flags);
raw_tag = get_next_completion(h);
while (raw_tag != FIFO_EMPTY) {
if (cciss_tag_contains_index(raw_tag))
raw_tag = process_indexed_cmd(h, raw_tag);
else
raw_tag = process_nonindexed_cmd(h, raw_tag);
}
spin_unlock_irqrestore(&h->lock, flags);
return IRQ_HANDLED;
}
/**
* add_to_scan_list() - add controller to rescan queue
* @h: Pointer to the controller.
*
* Adds the controller to the rescan queue if not already on the queue.
*
* returns 1 if added to the queue, 0 if skipped (could be on the
* queue already, or the controller could be initializing or shutting
* down).
**/
static int add_to_scan_list(struct ctlr_info *h)
{
struct ctlr_info *test_h;
int found = 0;
int ret = 0;
if (h->busy_initializing)
return 0;
if (!mutex_trylock(&h->busy_shutting_down))
return 0;
mutex_lock(&scan_mutex);
list_for_each_entry(test_h, &scan_q, scan_list) {
if (test_h == h) {
found = 1;
break;
}
}
if (!found && !h->busy_scanning) {
INIT_COMPLETION(h->scan_wait);
list_add_tail(&h->scan_list, &scan_q);
ret = 1;
}
mutex_unlock(&scan_mutex);
mutex_unlock(&h->busy_shutting_down);
return ret;
}
/**
* remove_from_scan_list() - remove controller from rescan queue
* @h: Pointer to the controller.
*
* Removes the controller from the rescan queue if present. Blocks if
* the controller is currently conducting a rescan. The controller
* can be in one of three states:
* 1. Doesn't need a scan
* 2. On the scan list, but not scanning yet (we remove it)
* 3. Busy scanning (and not on the list). In this case we want to wait for
* the scan to complete to make sure the scanning thread for this
* controller is completely idle.
**/
static void remove_from_scan_list(struct ctlr_info *h)
{
struct ctlr_info *test_h, *tmp_h;
mutex_lock(&scan_mutex);
list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
if (test_h == h) { /* state 2. */
list_del(&h->scan_list);
complete_all(&h->scan_wait);
mutex_unlock(&scan_mutex);
return;
}
}
if (h->busy_scanning) { /* state 3. */
mutex_unlock(&scan_mutex);
wait_for_completion(&h->scan_wait);
} else { /* state 1, nothing to do. */
mutex_unlock(&scan_mutex);
}
}
/**
* scan_thread() - kernel thread used to rescan controllers
* @data: Ignored.
*
* A kernel thread used scan for drive topology changes on
* controllers. The thread processes only one controller at a time
* using a queue. Controllers are added to the queue using
* add_to_scan_list() and removed from the queue either after done
* processing or using remove_from_scan_list().
*
* returns 0.
**/
static int scan_thread(void *data)
{
struct ctlr_info *h;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
schedule();
if (kthread_should_stop())
break;
while (1) {
mutex_lock(&scan_mutex);
if (list_empty(&scan_q)) {
mutex_unlock(&scan_mutex);
break;
}
h = list_entry(scan_q.next,
struct ctlr_info,
scan_list);
list_del(&h->scan_list);
h->busy_scanning = 1;
mutex_unlock(&scan_mutex);
rebuild_lun_table(h, 0, 0);
complete_all(&h->scan_wait);
mutex_lock(&scan_mutex);
h->busy_scanning = 0;
mutex_unlock(&scan_mutex);
}
}
return 0;
}
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
{
if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
return 0;
switch (c->err_info->SenseInfo[12]) {
case STATE_CHANGED:
dev_warn(&h->pdev->dev, "a state change "
"detected, command retried\n");
return 1;
break;
case LUN_FAILED:
dev_warn(&h->pdev->dev, "LUN failure "
"detected, action required\n");
return 1;
break;
case REPORT_LUNS_CHANGED:
dev_warn(&h->pdev->dev, "report LUN data changed\n");
/*
* Here, we could call add_to_scan_list and wake up the scan thread,
* except that it's quite likely that we will get more than one
* REPORT_LUNS_CHANGED condition in quick succession, which means
* that those which occur after the first one will likely happen
* *during* the scan_thread's rescan. And the rescan code is not
* robust enough to restart in the middle, undoing what it has already
* done, and it's not clear that it's even possible to do this, since
* part of what it does is notify the block layer, which starts
* doing it's own i/o to read partition tables and so on, and the
* driver doesn't have visibility to know what might need undoing.
* In any event, if possible, it is horribly complicated to get right
* so we just don't do it for now.
*
* Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
*/
return 1;
break;
case POWER_OR_RESET:
dev_warn(&h->pdev->dev,
"a power on or device reset detected\n");
return 1;
break;
case UNIT_ATTENTION_CLEARED:
dev_warn(&h->pdev->dev,
"unit attention cleared by another initiator\n");
return 1;
break;
default:
dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
return 1;
}
}
/*
* We cannot read the structure directly, for portability we must use
* the io functions.
* This is for debug only.
*/
static void print_cfg_table(ctlr_info_t *h)
{
int i;
char temp_name[17];
CfgTable_struct *tb = h->cfgtable;
dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
dev_dbg(&h->pdev->dev, "------------------------------------\n");
for (i = 0; i < 4; i++)
temp_name[i] = readb(&(tb->Signature[i]));
temp_name[4] = '\0';
dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
readl(&(tb->SpecValence)));
dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
readl(&(tb->TransportSupport)));
dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
readl(&(tb->TransportActive)));
dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
readl(&(tb->HostWrite.TransportRequest)));
dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
readl(&(tb->HostWrite.CoalIntDelay)));
dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
readl(&(tb->HostWrite.CoalIntCount)));
dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
readl(&(tb->CmdsOutMax)));
dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
readl(&(tb->BusTypes)));
for (i = 0; i < 16; i++)
temp_name[i] = readb(&(tb->ServerName[i]));
temp_name[16] = '\0';
dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
readl(&(tb->HeartBeat)));
}
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
int i, offset, mem_type, bar_type;
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
return 0;
offset = 0;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
offset += 4;
else {
mem_type = pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
offset += 4; /* 32 bit */
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
offset += 8;
break;
default: /* reserved in PCI 2.2 */
dev_warn(&pdev->dev,
"Base address is invalid\n");
return -1;
break;
}
}
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
return i + 1;
}
return -1;
}
/* Fill in bucket_map[], given nsgs (the max number of
* scatter gather elements supported) and bucket[],
* which is an array of 8 integers. The bucket[] array
* contains 8 different DMA transfer sizes (in 16
* byte increments) which the controller uses to fetch
* commands. This function fills in bucket_map[], which
* maps a given number of scatter gather elements to one of
* the 8 DMA transfer sizes. The point of it is to allow the
* controller to only do as much DMA as needed to fetch the
* command, with the DMA transfer size encoded in the lower
* bits of the command address.
*/
static void calc_bucket_map(int bucket[], int num_buckets,
int nsgs, int *bucket_map)
{
int i, j, b, size;
/* even a command with 0 SGs requires 4 blocks */
#define MINIMUM_TRANSFER_BLOCKS 4
#define NUM_BUCKETS 8
/* Note, bucket_map must have nsgs+1 entries. */
for (i = 0; i <= nsgs; i++) {
/* Compute size of a command with i SG entries */
size = i + MINIMUM_TRANSFER_BLOCKS;
b = num_buckets; /* Assume the biggest bucket */
/* Find the bucket that is just big enough */
for (j = 0; j < 8; j++) {
if (bucket[j] >= size) {
b = j;
break;
}
}
/* for a command with i SG entries, use bucket b. */
bucket_map[i] = b;
}
}
static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
{
int i;
/* under certain very rare conditions, this can take awhile.
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
* as we enter this code.) */
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
usleep_range(10000, 20000);
}
}
static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
u32 use_short_tags)
{
/* This is a bit complicated. There are 8 registers on
* the controller which we write to to tell it 8 different
* sizes of commands which there may be. It's a way of
* reducing the DMA done to fetch each command. Encoded into
* each command's tag are 3 bits which communicate to the controller
* which of the eight sizes that command fits within. The size of
* each command depends on how many scatter gather entries there are.
* Each SG entry requires 16 bytes. The eight registers are programmed
* with the number of 16-byte blocks a command of that size requires.
* The smallest command possible requires 5 such 16 byte blocks.
* the largest command possible requires MAXSGENTRIES + 4 16-byte
* blocks. Note, this only extends to the SG entries contained
* within the command block, and does not extend to chained blocks
* of SG elements. bft[] contains the eight values we write to
* the registers. They are not evenly distributed, but have more
* sizes for small commands, and fewer sizes for larger commands.
*/
__u32 trans_offset;
int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
/*
* 5 = 1 s/g entry or 4k
* 6 = 2 s/g entry or 8k
* 8 = 4 s/g entry or 16k
* 10 = 6 s/g entry or 24k
*/
unsigned long register_value;
BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
h->reply_pool_wraparound = 1; /* spec: init to 1 */
/* Controller spec: zero out this buffer. */
memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
h->reply_pool_head = h->reply_pool;
trans_offset = readl(&(h->cfgtable->TransMethodOffset));
calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
h->blockFetchTable);
writel(bft[0], &h->transtable->BlockFetch0);
writel(bft[1], &h->transtable->BlockFetch1);
writel(bft[2], &h->transtable->BlockFetch2);
writel(bft[3], &h->transtable->BlockFetch3);
writel(bft[4], &h->transtable->BlockFetch4);
writel(bft[5], &h->transtable->BlockFetch5);
writel(bft[6], &h->transtable->BlockFetch6);
writel(bft[7], &h->transtable->BlockFetch7);
/* size of controller ring buffer */
writel(h->max_commands, &h->transtable->RepQSize);
writel(1, &h->transtable->RepQCount);
writel(0, &h->transtable->RepQCtrAddrLow32);
writel(0, &h->transtable->RepQCtrAddrHigh32);
writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
writel(0, &h->transtable->RepQAddr0High32);
writel(CFGTBL_Trans_Performant | use_short_tags,
&(h->cfgtable->HostWrite.TransportRequest));
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
cciss_wait_for_mode_change_ack(h);
register_value = readl(&(h->cfgtable->TransportActive));
if (!(register_value & CFGTBL_Trans_Performant))
dev_warn(&h->pdev->dev, "cciss: unable to get board into"
" performant mode\n");
}
static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
{
__u32 trans_support;
dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
/* Attempt to put controller into performant mode if supported */
/* Does board support performant mode? */
trans_support = readl(&(h->cfgtable->TransportSupport));
if (!(trans_support & PERFORMANT_MODE))
return;
dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
/* Performant mode demands commands on a 32 byte boundary
* pci_alloc_consistent aligns on page boundarys already.
* Just need to check if divisible by 32
*/
if ((sizeof(CommandList_struct) % 32) != 0) {
dev_warn(&h->pdev->dev, "%s %d %s\n",
"cciss info: command size[",
(int)sizeof(CommandList_struct),
"] not divisible by 32, no performant mode..\n");
return;
}
/* Performant mode ring buffer and supporting data structures */
h->reply_pool = (__u64 *)pci_alloc_consistent(
h->pdev, h->max_commands * sizeof(__u64),
&(h->reply_pool_dhandle));
/* Need a block fetch table for performant mode */
h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
sizeof(__u32)), GFP_KERNEL);
if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
goto clean_up;
cciss_enter_performant_mode(h,
trans_support & CFGTBL_Trans_use_short_tags);
/* Change the access methods to the performant access methods */
h->access = SA5_performant_access;
h->transMethod = CFGTBL_Trans_Performant;
return;
clean_up:
kfree(h->blockFetchTable);
if (h->reply_pool)
pci_free_consistent(h->pdev,
h->max_commands * sizeof(__u64),
h->reply_pool,
h->reply_pool_dhandle);
return;
} /* cciss_put_controller_into_performant_mode */
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
* controllers that are capable. If not, we use IO-APIC mode.
*/
static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
{
#ifdef CONFIG_PCI_MSI
int err;
struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
{0, 2}, {0, 3}
};
/* Some boards advertise MSI but don't really support it */
if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
(h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
goto default_int_mode;
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
if (!err) {
h->intr[0] = cciss_msix_entries[0].vector;
h->intr[1] = cciss_msix_entries[1].vector;
h->intr[2] = cciss_msix_entries[2].vector;
h->intr[3] = cciss_msix_entries[3].vector;
h->msix_vector = 1;
return;
}
if (err > 0) {
dev_warn(&h->pdev->dev,
"only %d MSI-X vectors available\n", err);
goto default_int_mode;
} else {
dev_warn(&h->pdev->dev,
"MSI-X init failed %d\n", err);
goto default_int_mode;
}
}
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
if (!pci_enable_msi(h->pdev))
h->msi_vector = 1;
else
dev_warn(&h->pdev->dev, "MSI init failed\n");
}
default_int_mode:
#endif /* CONFIG_PCI_MSI */
/* if we get here we're going to use the default interrupt mode */
h->intr[PERF_MODE_INT] = h->pdev->irq;
return;
}
static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
{
int i;
u32 subsystem_vendor_id, subsystem_device_id;
subsystem_vendor_id = pdev->subsystem_vendor;
subsystem_device_id = pdev->subsystem_device;
*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
subsystem_vendor_id;
for (i = 0; i < ARRAY_SIZE(products); i++)
if (*board_id == products[i].board_id)
return i;
dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
*board_id);
return -ENODEV;
}
static inline bool cciss_board_disabled(ctlr_info_t *h)
{
u16 command;
(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
return ((command & PCI_COMMAND_MEMORY) == 0);
}
static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
unsigned long *memory_bar)
{
int i;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
/* addressing mode bits already removed */
*memory_bar = pci_resource_start(pdev, i);
dev_dbg(&pdev->dev, "memory BAR = %lx\n",
*memory_bar);
return 0;
}
dev_warn(&pdev->dev, "no memory BAR found\n");
return -ENODEV;
}
static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
void __iomem *vaddr, int wait_for_ready)
#define BOARD_READY 1
#define BOARD_NOT_READY 0
{
int i, iterations;
u32 scratchpad;
if (wait_for_ready)
iterations = CCISS_BOARD_READY_ITERATIONS;
else
iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
for (i = 0; i < iterations; i++) {
scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
if (wait_for_ready) {
if (scratchpad == CCISS_FIRMWARE_READY)
return 0;
} else {
if (scratchpad != CCISS_FIRMWARE_READY)
return 0;
}
msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
}
dev_warn(&pdev->dev, "board not ready, timed out.\n");
return -ENODEV;
}
static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
u64 *cfg_offset)
{
*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
*cfg_base_addr &= (u32) 0x0000ffff;
*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
if (*cfg_base_addr_index == -1) {
dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
return -ENODEV;
}
return 0;
}
static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
{
u64 cfg_offset;
u32 cfg_base_addr;
u64 cfg_base_addr_index;
u32 trans_offset;
int rc;
rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
&cfg_base_addr_index, &cfg_offset);
if (rc)
return rc;
h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
if (!h->cfgtable)
return -ENOMEM;
/* Find performant mode table. */
trans_offset = readl(&h->cfgtable->TransMethodOffset);
h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
cfg_base_addr_index)+cfg_offset+trans_offset,
sizeof(*h->transtable));
if (!h->transtable)
return -ENOMEM;
return 0;
}
static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
{
h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
/* Limit commands in memory limited kdump scenario. */
if (reset_devices && h->max_commands > 32)
h->max_commands = 32;
if (h->max_commands < 16) {
dev_warn(&h->pdev->dev, "Controller reports "
"max supported commands of %d, an obvious lie. "
"Using 16. Ensure that firmware is up to date.\n",
h->max_commands);
h->max_commands = 16;
}
}
/* Interrogate the hardware for some limits:
* max commands, max SG elements without chaining, and with chaining,
* SG chain block size, etc.
*/
static void __devinit cciss_find_board_params(ctlr_info_t *h)
{
cciss_get_max_perf_mode_cmds(h);
h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
/*
* Limit in-command s/g elements to 32 save dma'able memory.
* Howvever spec says if 0, use 31
*/
h->max_cmd_sgentries = 31;
if (h->maxsgentries > 512) {
h->max_cmd_sgentries = 32;
h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
h->maxsgentries--; /* save one for chain pointer */
} else {
h->maxsgentries = 31; /* default to traditional values */
h->chainsize = 0;
}
}
static inline bool CISS_signature_present(ctlr_info_t *h)
{
if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
(readb(&h->cfgtable->Signature[1]) != 'I') ||
(readb(&h->cfgtable->Signature[2]) != 'S') ||
(readb(&h->cfgtable->Signature[3]) != 'S')) {
dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
return false;
}
return true;
}
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
{
#ifdef CONFIG_X86
u32 prefetch;
prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
prefetch |= 0x100;
writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
#endif
}
/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
* in a prefetch beyond physical memory.
*/
static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
{
u32 dma_prefetch;
__u32 dma_refetch;
if (h->board_id != 0x3225103C)
return;
dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
dma_prefetch |= 0x8000;
writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
dma_refetch |= 0x1;
pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
}
static int __devinit cciss_pci_init(ctlr_info_t *h)
{
int prod_index, err;
prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
if (prod_index < 0)
return -ENODEV;
h->product_name = products[prod_index].product_name;
h->access = *(products[prod_index].access);
if (cciss_board_disabled(h)) {
dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
return -ENODEV;
}
err = pci_enable_device(h->pdev);
if (err) {
dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
return err;
}
err = pci_request_regions(h->pdev, "cciss");
if (err) {
dev_warn(&h->pdev->dev,
"Cannot obtain PCI resources, aborting\n");
return err;
}
dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
* else we use the IO-APIC interrupt assigned to us by system ROM.
*/
cciss_interrupt_mode(h);
err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
if (err)
goto err_out_free_res;
h->vaddr = remap_pci_mem(h->paddr, 0x250);
if (!h->vaddr) {
err = -ENOMEM;
goto err_out_free_res;
}
err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
if (err)
goto err_out_free_res;
err = cciss_find_cfgtables(h);
if (err)
goto err_out_free_res;
print_cfg_table(h);
cciss_find_board_params(h);
if (!CISS_signature_present(h)) {
err = -ENODEV;
goto err_out_free_res;
}
cciss_enable_scsi_prefetch(h);
cciss_p600_dma_prefetch_quirk(h);
cciss_put_controller_into_performant_mode(h);
return 0;
err_out_free_res:
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
if (h->transtable)
iounmap(h->transtable);
if (h->cfgtable)
iounmap(h->cfgtable);
if (h->vaddr)
iounmap(h->vaddr);
pci_release_regions(h->pdev);
return err;
}
/* Function to find the first free pointer into our hba[] array
* Returns -1 if no free entries are left.
*/
static int alloc_cciss_hba(struct pci_dev *pdev)
{
int i;
for (i = 0; i < MAX_CTLR; i++) {
if (!hba[i]) {
ctlr_info_t *h;
h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
if (!h)
goto Enomem;
hba[i] = h;
return i;
}
}
dev_warn(&pdev->dev, "This driver supports a maximum"
" of %d controllers.\n", MAX_CTLR);
return -1;
Enomem:
dev_warn(&pdev->dev, "out of memory.\n");
return -1;
}
static void free_hba(ctlr_info_t *h)
{
int i;
hba[h->ctlr] = NULL;
for (i = 0; i < h->highest_lun + 1; i++)
if (h->gendisk[i] != NULL)
put_disk(h->gendisk[i]);
kfree(h);
}
/* Send a message CDB to the firmware. */
static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
{
typedef struct {
CommandListHeader_struct CommandHeader;
RequestBlock_struct Request;
ErrDescriptor_struct ErrorDescriptor;
} Command;
static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
Command *cmd;
dma_addr_t paddr64;
uint32_t paddr32, tag;
void __iomem *vaddr;
int i, err;
vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
if (vaddr == NULL)
return -ENOMEM;
/* The Inbound Post Queue only accepts 32-bit physical addresses for the
CCISS commands, so they must be allocated from the lower 4GiB of
memory. */
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
iounmap(vaddr);
return -ENOMEM;
}
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
if (cmd == NULL) {
iounmap(vaddr);
return -ENOMEM;
}
/* This must fit, because of the 32-bit consistent DMA mask. Also,
although there's no guarantee, we assume that the address is at
least 4-byte aligned (most likely, it's page-aligned). */
paddr32 = paddr64;
cmd->CommandHeader.ReplyQueue = 0;
cmd->CommandHeader.SGList = 0;
cmd->CommandHeader.SGTotal = 0;
cmd->CommandHeader.Tag.lower = paddr32;
cmd->CommandHeader.Tag.upper = 0;
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
cmd->Request.CDBLen = 16;
cmd->Request.Type.Type = TYPE_MSG;
cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
cmd->Request.Type.Direction = XFER_NONE;
cmd->Request.Timeout = 0; /* Don't time out */
cmd->Request.CDB[0] = opcode;
cmd->Request.CDB[1] = type;
memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
cmd->ErrorDescriptor.Addr.upper = 0;
cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
for (i = 0; i < 10; i++) {
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
if ((tag & ~3) == paddr32)
break;
schedule_timeout_uninterruptible(HZ);
}
iounmap(vaddr);
/* we leak the DMA buffer here ... no choice since the controller could
still complete the command. */
if (i == 10) {
dev_err(&pdev->dev,
"controller message %02x:%02x timed out\n",
opcode, type);
return -ETIMEDOUT;
}
pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
if (tag & 2) {
dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
opcode, type);
return -EIO;
}
dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
opcode, type);
return 0;
}
#define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
#define cciss_noop(p) cciss_message(p, 3, 0)
static int cciss_controller_hard_reset(struct pci_dev *pdev,
void * __iomem vaddr, bool use_doorbell)
{
u16 pmcsr;
int pos;
if (use_doorbell) {
/* For everything after the P600, the PCI power state method
* of resetting the controller doesn't work, so we have this
* other way using the doorbell register.
*/
dev_info(&pdev->dev, "using doorbell to reset controller\n");
writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
msleep(1000);
} else { /* Try to do it the PCI power state way */
/* Quoting from the Open CISS Specification: "The Power
* Management Control/Status Register (CSR) controls the power
* state of the device. The normal operating state is D0,
* CSR=00h. The software off state is D3, CSR=03h. To reset
* the controller, place the interface device in D3 then to D0,
* this causes a secondary PCI reset which will reset the
* controller." */
pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pos == 0) {
dev_err(&pdev->dev,
"cciss_controller_hard_reset: "
"PCI PM not supported\n");
return -ENODEV;
}
dev_info(&pdev->dev, "using PCI PM to reset controller\n");
/* enter the D3hot power management state */
pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pmcsr |= PCI_D3hot;
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
msleep(500);
/* enter the D0 power management state */
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pmcsr |= PCI_D0;
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
msleep(500);
}
return 0;
}
/* This does a hard reset of the controller using PCI power management
* states or using the doorbell register. */
static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
{
u64 cfg_offset;
u32 cfg_base_addr;
u64 cfg_base_addr_index;
void __iomem *vaddr;
unsigned long paddr;
u32 misc_fw_support, active_transport;
int rc;
CfgTable_struct __iomem *cfgtable;
bool use_doorbell;
u32 board_id;
u16 command_register;
/* For controllers as old a the p600, this is very nearly
* the same thing as
*
* pci_save_state(pci_dev);
* pci_set_power_state(pci_dev, PCI_D3hot);
* pci_set_power_state(pci_dev, PCI_D0);
* pci_restore_state(pci_dev);
*
* For controllers newer than the P600, the pci power state
* method of resetting doesn't work so we have another way
* using the doorbell register.
*/
/* Exclude 640x boards. These are two pci devices in one slot
* which share a battery backed cache module. One controls the
* cache, the other accesses the cache through the one that controls
* it. If we reset the one controlling the cache, the other will
* likely not be happy. Just forbid resetting this conjoined mess.
*/
cciss_lookup_board_id(pdev, &board_id);
if (board_id == 0x409C0E11 || board_id == 0x409D0E11) {
dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
"due to shared cache module.");
return -ENODEV;
}
/* Save the PCI command register */
pci_read_config_word(pdev, 4, &command_register);
/* Turn the board off. This is so that later pci_restore_state()
* won't turn the board on before the rest of config space is ready.
*/
pci_disable_device(pdev);
pci_save_state(pdev);
/* find the first memory BAR, so we can find the cfg table */
rc = cciss_pci_find_memory_BAR(pdev, &paddr);
if (rc)
return rc;
vaddr = remap_pci_mem(paddr, 0x250);
if (!vaddr)
return -ENOMEM;
/* find cfgtable in order to check if reset via doorbell is supported */
rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
&cfg_base_addr_index, &cfg_offset);
if (rc)
goto unmap_vaddr;
cfgtable = remap_pci_mem(pci_resource_start(pdev,
cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
if (!cfgtable) {
rc = -ENOMEM;
goto unmap_vaddr;
}
/* If reset via doorbell register is supported, use that. */
misc_fw_support = readl(&cfgtable->misc_fw_support);
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
/* The doorbell reset seems to cause lockups on some Smart
* Arrays (e.g. P410, P410i, maybe others). Until this is
* fixed or at least isolated, avoid the doorbell reset.
*/
use_doorbell = 0;
rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
if (rc)
goto unmap_cfgtable;
pci_restore_state(pdev);
rc = pci_enable_device(pdev);
if (rc) {
dev_warn(&pdev->dev, "failed to enable device.\n");
goto unmap_cfgtable;
}
pci_write_config_word(pdev, 4, command_register);
/* Some devices (notably the HP Smart Array 5i Controller)
need a little pause here */
msleep(CCISS_POST_RESET_PAUSE_MSECS);
/* Wait for board to become not ready, then ready. */
dev_info(&pdev->dev, "Waiting for board to become ready.\n");
rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
if (rc) /* Don't bail, might be E500, etc. which can't be reset */
dev_warn(&pdev->dev,
"failed waiting for board to become not ready\n");
rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
if (rc) {
dev_warn(&pdev->dev,
"failed waiting for board to become ready\n");
goto unmap_cfgtable;
}
dev_info(&pdev->dev, "board ready.\n");
/* Controller should be in simple mode at this point. If it's not,
* It means we're on one of those controllers which doesn't support
* the doorbell reset method and on which the PCI power management reset
* method doesn't work (P800, for example.)
* In those cases, don't try to proceed, as it generally doesn't work.
*/
active_transport = readl(&cfgtable->TransportActive);
if (active_transport & PERFORMANT_MODE) {
dev_warn(&pdev->dev, "Unable to successfully reset controller,"
" Ignoring controller.\n");
rc = -ENODEV;
}
unmap_cfgtable:
iounmap(cfgtable);
unmap_vaddr:
iounmap(vaddr);
return rc;
}
static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
{
int rc, i;
if (!reset_devices)
return 0;
/* Reset the controller with a PCI power-cycle or via doorbell */
rc = cciss_kdump_hard_reset_controller(pdev);
/* -ENOTSUPP here means we cannot reset the controller
* but it's already (and still) up and running in
* "performant mode". Or, it might be 640x, which can't reset
* due to concerns about shared bbwc between 6402/6404 pair.
*/
if (rc == -ENOTSUPP)
return 0; /* just try to do the kdump anyhow. */
if (rc)
return -ENODEV;
/* Now try to get the controller to respond to a no-op */
for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
if (cciss_noop(pdev) == 0)
break;
else
dev_warn(&pdev->dev, "no-op failed%s\n",
(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
"; re-trying" : ""));
msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
}
return 0;
}
/*
* This is it. Find all the controllers and register them. I really hate
* stealing all these major device numbers.
* returns the number of block devices registered.
*/
static int __devinit cciss_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int i;
int j = 0;
int k = 0;
int rc;
int dac, return_code;
InquiryData_struct *inq_buff;
ctlr_info_t *h;
rc = cciss_init_reset_devices(pdev);
if (rc)
return rc;
i = alloc_cciss_hba(pdev);
if (i < 0)
return -1;
h = hba[i];
h->pdev = pdev;
h->busy_initializing = 1;
INIT_LIST_HEAD(&h->cmpQ);
INIT_LIST_HEAD(&h->reqQ);
mutex_init(&h->busy_shutting_down);
if (cciss_pci_init(h) != 0)
goto clean_no_release_regions;
sprintf(h->devname, "cciss%d", i);
h->ctlr = i;
init_completion(&h->scan_wait);
if (cciss_create_hba_sysfs_entry(h))
goto clean0;
/* configure PCI DMA stuff */
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
dac = 1;
else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
dac = 0;
else {
dev_err(&h->pdev->dev, "no suitable DMA available\n");
goto clean1;
}
/*
* register with the major number, or get a dynamic major number
* by passing 0 as argument. This is done for greater than
* 8 controller support.
*/
if (i < MAX_CTLR_ORIG)
h->major = COMPAQ_CISS_MAJOR + i;
rc = register_blkdev(h->major, h->devname);
if (rc == -EBUSY || rc == -EINVAL) {
dev_err(&h->pdev->dev,
"Unable to get major number %d for %s "
"on hba %d\n", h->major, h->devname, i);
goto clean1;
} else {
if (i >= MAX_CTLR_ORIG)
h->major = rc;
}
/* make sure the board interrupts are off */
h->access.set_intr_mask(h, CCISS_INTR_OFF);
if (h->msi_vector || h->msix_vector) {
if (request_irq(h->intr[PERF_MODE_INT],
do_cciss_msix_intr,
IRQF_DISABLED, h->devname, h)) {
dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
h->intr[PERF_MODE_INT], h->devname);
goto clean2;
}
} else {
if (request_irq(h->intr[PERF_MODE_INT], do_cciss_intx,
IRQF_DISABLED, h->devname, h)) {
dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
h->intr[PERF_MODE_INT], h->devname);
goto clean2;
}
}
dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
h->devname, pdev->device, pci_name(pdev),
h->intr[PERF_MODE_INT], dac ? "" : " not");
h->cmd_pool_bits =
kmalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
* sizeof(unsigned long), GFP_KERNEL);
h->cmd_pool = (CommandList_struct *)
pci_alloc_consistent(h->pdev,
h->nr_cmds * sizeof(CommandList_struct),
&(h->cmd_pool_dhandle));
h->errinfo_pool = (ErrorInfo_struct *)
pci_alloc_consistent(h->pdev,
h->nr_cmds * sizeof(ErrorInfo_struct),
&(h->errinfo_pool_dhandle));
if ((h->cmd_pool_bits == NULL)
|| (h->cmd_pool == NULL)
|| (h->errinfo_pool == NULL)) {
dev_err(&h->pdev->dev, "out of memory");
goto clean4;
}
/* Need space for temp scatter list */
h->scatter_list = kmalloc(h->max_commands *
sizeof(struct scatterlist *),
GFP_KERNEL);
if (!h->scatter_list)
goto clean4;
for (k = 0; k < h->nr_cmds; k++) {
h->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
h->maxsgentries,
GFP_KERNEL);
if (h->scatter_list[k] == NULL) {
dev_err(&h->pdev->dev,
"could not allocate s/g lists\n");
goto clean4;
}
}
h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
h->chainsize, h->nr_cmds);
if (!h->cmd_sg_list && h->chainsize > 0)
goto clean4;
spin_lock_init(&h->lock);
/* Initialize the pdev driver private data.
have it point to h. */
pci_set_drvdata(pdev, h);
/* command and error info recs zeroed out before
they are used */
memset(h->cmd_pool_bits, 0,
DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
* sizeof(unsigned long));
h->num_luns = 0;
h->highest_lun = -1;
for (j = 0; j < CISS_MAX_LUN; j++) {
h->drv[j] = NULL;
h->gendisk[j] = NULL;
}
cciss_scsi_setup(h);
/* Turn the interrupts on so we can service requests */
h->access.set_intr_mask(h, CCISS_INTR_ON);
/* Get the firmware version */
inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL) {
dev_err(&h->pdev->dev, "out of memory\n");
goto clean4;
}
return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
if (return_code == IO_OK) {
h->firm_ver[0] = inq_buff->data_byte[32];
h->firm_ver[1] = inq_buff->data_byte[33];
h->firm_ver[2] = inq_buff->data_byte[34];
h->firm_ver[3] = inq_buff->data_byte[35];
} else { /* send command failed */
dev_warn(&h->pdev->dev, "unable to determine firmware"
" version of controller\n");
}
kfree(inq_buff);
cciss_procinit(h);
h->cciss_max_sectors = 8192;
rebuild_lun_table(h, 1, 0);
h->busy_initializing = 0;
return 1;
clean4:
kfree(h->cmd_pool_bits);
/* Free up sg elements */
for (k-- ; k >= 0; k--)
kfree(h->scatter_list[k]);
kfree(h->scatter_list);
cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
if (h->cmd_pool)
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(CommandList_struct),
h->cmd_pool, h->cmd_pool_dhandle);
if (h->errinfo_pool)
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(ErrorInfo_struct),
h->errinfo_pool,
h->errinfo_pool_dhandle);
free_irq(h->intr[PERF_MODE_INT], h);
clean2:
unregister_blkdev(h->major, h->devname);
clean1:
cciss_destroy_hba_sysfs_entry(h);
clean0:
pci_release_regions(pdev);
clean_no_release_regions:
h->busy_initializing = 0;
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
pci_set_drvdata(pdev, NULL);
free_hba(h);
return -1;
}
static void cciss_shutdown(struct pci_dev *pdev)
{
ctlr_info_t *h;
char *flush_buf;
int return_code;
h = pci_get_drvdata(pdev);
flush_buf = kzalloc(4, GFP_KERNEL);
if (!flush_buf) {
dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
return;
}
/* write all data in the battery backed cache to disk */
memset(flush_buf, 0, 4);
return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
4, 0, CTLR_LUNID, TYPE_CMD);
kfree(flush_buf);
if (return_code != IO_OK)
dev_warn(&h->pdev->dev, "Error flushing cache\n");
h->access.set_intr_mask(h, CCISS_INTR_OFF);
free_irq(h->intr[PERF_MODE_INT], h);
}
static void __devexit cciss_remove_one(struct pci_dev *pdev)
{
ctlr_info_t *h;
int i, j;
if (pci_get_drvdata(pdev) == NULL) {
dev_err(&pdev->dev, "Unable to remove device\n");
return;
}
h = pci_get_drvdata(pdev);
i = h->ctlr;
if (hba[i] == NULL) {
dev_err(&pdev->dev, "device appears to already be removed\n");
return;
}
mutex_lock(&h->busy_shutting_down);
remove_from_scan_list(h);
remove_proc_entry(h->devname, proc_cciss);
unregister_blkdev(h->major, h->devname);
/* remove it from the disk list */
for (j = 0; j < CISS_MAX_LUN; j++) {
struct gendisk *disk = h->gendisk[j];
if (disk) {
struct request_queue *q = disk->queue;
if (disk->flags & GENHD_FL_UP) {
cciss_destroy_ld_sysfs_entry(h, j, 1);
del_gendisk(disk);
}
if (q)
blk_cleanup_queue(q);
}
}
#ifdef CONFIG_CISS_SCSI_TAPE
cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
#endif
cciss_shutdown(pdev);
#ifdef CONFIG_PCI_MSI
if (h->msix_vector)
pci_disable_msix(h->pdev);
else if (h->msi_vector)
pci_disable_msi(h->pdev);
#endif /* CONFIG_PCI_MSI */
iounmap(h->transtable);
iounmap(h->cfgtable);
iounmap(h->vaddr);
pci_free_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct),
h->cmd_pool, h->cmd_pool_dhandle);
pci_free_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct),
h->errinfo_pool, h->errinfo_pool_dhandle);
kfree(h->cmd_pool_bits);
/* Free up sg elements */
for (j = 0; j < h->nr_cmds; j++)
kfree(h->scatter_list[j]);
kfree(h->scatter_list);
cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
cciss_destroy_hba_sysfs_entry(h);
mutex_unlock(&h->busy_shutting_down);
free_hba(h);
}
static struct pci_driver cciss_pci_driver = {
.name = "cciss",
.probe = cciss_init_one,
.remove = __devexit_p(cciss_remove_one),
.id_table = cciss_pci_device_id, /* id_table */
.shutdown = cciss_shutdown,
};
/*
* This is it. Register the PCI driver information for the cards we control
* the OS will call our registered routines when it finds one of our cards.
*/
static int __init cciss_init(void)
{
int err;
/*
* The hardware requires that commands are aligned on a 64-bit
* boundary. Given that we use pci_alloc_consistent() to allocate an
* array of them, the size must be a multiple of 8 bytes.
*/
BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
printk(KERN_INFO DRIVER_NAME "\n");
err = bus_register(&cciss_bus_type);
if (err)
return err;
/* Start the scan thread */
cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
if (IS_ERR(cciss_scan_thread)) {
err = PTR_ERR(cciss_scan_thread);
goto err_bus_unregister;
}
/* Register for our PCI devices */
err = pci_register_driver(&cciss_pci_driver);
if (err)
goto err_thread_stop;
return err;
err_thread_stop:
kthread_stop(cciss_scan_thread);
err_bus_unregister:
bus_unregister(&cciss_bus_type);
return err;
}
static void __exit cciss_cleanup(void)
{
int i;
pci_unregister_driver(&cciss_pci_driver);
/* double check that all controller entrys have been removed */
for (i = 0; i < MAX_CTLR; i++) {
if (hba[i] != NULL) {
dev_warn(&hba[i]->pdev->dev,
"had to remove controller\n");
cciss_remove_one(hba[i]->pdev);
}
}
kthread_stop(cciss_scan_thread);
if (proc_cciss)
remove_proc_entry("driver/cciss", NULL);
bus_unregister(&cciss_bus_type);
}
module_init(cciss_init);
module_exit(cciss_cleanup);