linux-next/mm/slab_common.c
Qiujun Huang b991cee567 mm, slab_common: fix a typo in comment "eariler"->"earlier"
There is a typo in comment, fix it.
s/eariler/earlier/

Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20200405160544.1246-1-hqjagain@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-10 15:36:20 -07:00

1794 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Slab allocator functions that are independent of the allocator strategy
*
* (C) 2012 Christoph Lameter <cl@linux.com>
*/
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/cache.h>
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/debugfs.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>
#define CREATE_TRACE_POINTS
#include <trace/events/kmem.h>
#include "slab.h"
enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
"WARN instead of reject usercopy whitelist violations");
#endif
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
slab_caches_to_rcu_destroy_workfn);
/*
* Set of flags that will prevent slab merging
*/
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
SLAB_FAILSLAB | SLAB_KASAN)
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
/*
* Merge control. If this is set then no merging of slab caches will occur.
*/
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
static int __init setup_slab_nomerge(char *str)
{
slab_nomerge = true;
return 1;
}
#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif
__setup("slab_nomerge", setup_slab_nomerge);
/*
* Determine the size of a slab object
*/
unsigned int kmem_cache_size(struct kmem_cache *s)
{
return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);
#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, unsigned int size)
{
if (!name || in_interrupt() || size < sizeof(void *) ||
size > KMALLOC_MAX_SIZE) {
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
return -EINVAL;
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
{
return 0;
}
#endif
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
size_t i;
for (i = 0; i < nr; i++) {
if (s)
kmem_cache_free(s, p[i]);
else
kfree(p[i]);
}
}
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
void **p)
{
size_t i;
for (i = 0; i < nr; i++) {
void *x = p[i] = kmem_cache_alloc(s, flags);
if (!x) {
__kmem_cache_free_bulk(s, i, p);
return 0;
}
}
return i;
}
#ifdef CONFIG_MEMCG_KMEM
LIST_HEAD(slab_root_caches);
static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
void slab_init_memcg_params(struct kmem_cache *s)
{
s->memcg_params.root_cache = NULL;
RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
INIT_LIST_HEAD(&s->memcg_params.children);
s->memcg_params.dying = false;
}
static int init_memcg_params(struct kmem_cache *s,
struct kmem_cache *root_cache)
{
struct memcg_cache_array *arr;
if (root_cache) {
int ret = percpu_ref_init(&s->memcg_params.refcnt,
kmemcg_cache_shutdown,
0, GFP_KERNEL);
if (ret)
return ret;
s->memcg_params.root_cache = root_cache;
INIT_LIST_HEAD(&s->memcg_params.children_node);
INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
return 0;
}
slab_init_memcg_params(s);
if (!memcg_nr_cache_ids)
return 0;
arr = kvzalloc(sizeof(struct memcg_cache_array) +
memcg_nr_cache_ids * sizeof(void *),
GFP_KERNEL);
if (!arr)
return -ENOMEM;
RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
return 0;
}
static void destroy_memcg_params(struct kmem_cache *s)
{
if (is_root_cache(s)) {
kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
} else {
mem_cgroup_put(s->memcg_params.memcg);
WRITE_ONCE(s->memcg_params.memcg, NULL);
percpu_ref_exit(&s->memcg_params.refcnt);
}
}
static void free_memcg_params(struct rcu_head *rcu)
{
struct memcg_cache_array *old;
old = container_of(rcu, struct memcg_cache_array, rcu);
kvfree(old);
}
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
{
struct memcg_cache_array *old, *new;
new = kvzalloc(sizeof(struct memcg_cache_array) +
new_array_size * sizeof(void *), GFP_KERNEL);
if (!new)
return -ENOMEM;
old = rcu_dereference_protected(s->memcg_params.memcg_caches,
lockdep_is_held(&slab_mutex));
if (old)
memcpy(new->entries, old->entries,
memcg_nr_cache_ids * sizeof(void *));
rcu_assign_pointer(s->memcg_params.memcg_caches, new);
if (old)
call_rcu(&old->rcu, free_memcg_params);
return 0;
}
int memcg_update_all_caches(int num_memcgs)
{
struct kmem_cache *s;
int ret = 0;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_root_caches, root_caches_node) {
ret = update_memcg_params(s, num_memcgs);
/*
* Instead of freeing the memory, we'll just leave the caches
* up to this point in an updated state.
*/
if (ret)
break;
}
mutex_unlock(&slab_mutex);
return ret;
}
void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
{
if (is_root_cache(s)) {
list_add(&s->root_caches_node, &slab_root_caches);
} else {
css_get(&memcg->css);
s->memcg_params.memcg = memcg;
list_add(&s->memcg_params.children_node,
&s->memcg_params.root_cache->memcg_params.children);
list_add(&s->memcg_params.kmem_caches_node,
&s->memcg_params.memcg->kmem_caches);
}
}
static void memcg_unlink_cache(struct kmem_cache *s)
{
if (is_root_cache(s)) {
list_del(&s->root_caches_node);
} else {
list_del(&s->memcg_params.children_node);
list_del(&s->memcg_params.kmem_caches_node);
}
}
#else
static inline int init_memcg_params(struct kmem_cache *s,
struct kmem_cache *root_cache)
{
return 0;
}
static inline void destroy_memcg_params(struct kmem_cache *s)
{
}
static inline void memcg_unlink_cache(struct kmem_cache *s)
{
}
#endif /* CONFIG_MEMCG_KMEM */
/*
* Figure out what the alignment of the objects will be given a set of
* flags, a user specified alignment and the size of the objects.
*/
static unsigned int calculate_alignment(slab_flags_t flags,
unsigned int align, unsigned int size)
{
/*
* If the user wants hardware cache aligned objects then follow that
* suggestion if the object is sufficiently large.
*
* The hardware cache alignment cannot override the specified
* alignment though. If that is greater then use it.
*/
if (flags & SLAB_HWCACHE_ALIGN) {
unsigned int ralign;
ralign = cache_line_size();
while (size <= ralign / 2)
ralign /= 2;
align = max(align, ralign);
}
if (align < ARCH_SLAB_MINALIGN)
align = ARCH_SLAB_MINALIGN;
return ALIGN(align, sizeof(void *));
}
/*
* Find a mergeable slab cache
*/
int slab_unmergeable(struct kmem_cache *s)
{
if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
return 1;
if (!is_root_cache(s))
return 1;
if (s->ctor)
return 1;
if (s->usersize)
return 1;
/*
* We may have set a slab to be unmergeable during bootstrap.
*/
if (s->refcount < 0)
return 1;
return 0;
}
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
slab_flags_t flags, const char *name, void (*ctor)(void *))
{
struct kmem_cache *s;
if (slab_nomerge)
return NULL;
if (ctor)
return NULL;
size = ALIGN(size, sizeof(void *));
align = calculate_alignment(flags, align, size);
size = ALIGN(size, align);
flags = kmem_cache_flags(size, flags, name, NULL);
if (flags & SLAB_NEVER_MERGE)
return NULL;
list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
if (slab_unmergeable(s))
continue;
if (size > s->size)
continue;
if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
continue;
/*
* Check if alignment is compatible.
* Courtesy of Adrian Drzewiecki
*/
if ((s->size & ~(align - 1)) != s->size)
continue;
if (s->size - size >= sizeof(void *))
continue;
if (IS_ENABLED(CONFIG_SLAB) && align &&
(align > s->align || s->align % align))
continue;
return s;
}
return NULL;
}
static struct kmem_cache *create_cache(const char *name,
unsigned int object_size, unsigned int align,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize, void (*ctor)(void *),
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
struct kmem_cache *s;
int err;
if (WARN_ON(useroffset + usersize > object_size))
useroffset = usersize = 0;
err = -ENOMEM;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (!s)
goto out;
s->name = name;
s->size = s->object_size = object_size;
s->align = align;
s->ctor = ctor;
s->useroffset = useroffset;
s->usersize = usersize;
err = init_memcg_params(s, root_cache);
if (err)
goto out_free_cache;
err = __kmem_cache_create(s, flags);
if (err)
goto out_free_cache;
s->refcount = 1;
list_add(&s->list, &slab_caches);
memcg_link_cache(s, memcg);
out:
if (err)
return ERR_PTR(err);
return s;
out_free_cache:
destroy_memcg_params(s);
kmem_cache_free(kmem_cache, s);
goto out;
}
/**
* kmem_cache_create_usercopy - Create a cache with a region suitable
* for copying to userspace
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @useroffset: Usercopy region offset
* @usersize: Usercopy region size
* @ctor: A constructor for the objects.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
struct kmem_cache *
kmem_cache_create_usercopy(const char *name,
unsigned int size, unsigned int align,
slab_flags_t flags,
unsigned int useroffset, unsigned int usersize,
void (*ctor)(void *))
{
struct kmem_cache *s = NULL;
const char *cache_name;
int err;
get_online_cpus();
get_online_mems();
memcg_get_cache_ids();
mutex_lock(&slab_mutex);
err = kmem_cache_sanity_check(name, size);
if (err) {
goto out_unlock;
}
/* Refuse requests with allocator specific flags */
if (flags & ~SLAB_FLAGS_PERMITTED) {
err = -EINVAL;
goto out_unlock;
}
/*
* Some allocators will constraint the set of valid flags to a subset
* of all flags. We expect them to define CACHE_CREATE_MASK in this
* case, and we'll just provide them with a sanitized version of the
* passed flags.
*/
flags &= CACHE_CREATE_MASK;
/* Fail closed on bad usersize of useroffset values. */
if (WARN_ON(!usersize && useroffset) ||
WARN_ON(size < usersize || size - usersize < useroffset))
usersize = useroffset = 0;
if (!usersize)
s = __kmem_cache_alias(name, size, align, flags, ctor);
if (s)
goto out_unlock;
cache_name = kstrdup_const(name, GFP_KERNEL);
if (!cache_name) {
err = -ENOMEM;
goto out_unlock;
}
s = create_cache(cache_name, size,
calculate_alignment(flags, align, size),
flags, useroffset, usersize, ctor, NULL, NULL);
if (IS_ERR(s)) {
err = PTR_ERR(s);
kfree_const(cache_name);
}
out_unlock:
mutex_unlock(&slab_mutex);
memcg_put_cache_ids();
put_online_mems();
put_online_cpus();
if (err) {
if (flags & SLAB_PANIC)
panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
name, err);
else {
pr_warn("kmem_cache_create(%s) failed with error %d\n",
name, err);
dump_stack();
}
return NULL;
}
return s;
}
EXPORT_SYMBOL(kmem_cache_create_usercopy);
/**
* kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @ctor: A constructor for the objects.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
struct kmem_cache *
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{
return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
ctor);
}
EXPORT_SYMBOL(kmem_cache_create);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
{
LIST_HEAD(to_destroy);
struct kmem_cache *s, *s2;
/*
* On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
* @slab_caches_to_rcu_destroy list. The slab pages are freed
* through RCU and and the associated kmem_cache are dereferenced
* while freeing the pages, so the kmem_caches should be freed only
* after the pending RCU operations are finished. As rcu_barrier()
* is a pretty slow operation, we batch all pending destructions
* asynchronously.
*/
mutex_lock(&slab_mutex);
list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
mutex_unlock(&slab_mutex);
if (list_empty(&to_destroy))
return;
rcu_barrier();
list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
sysfs_slab_release(s);
#else
slab_kmem_cache_release(s);
#endif
}
}
static int shutdown_cache(struct kmem_cache *s)
{
/* free asan quarantined objects */
kasan_cache_shutdown(s);
if (__kmem_cache_shutdown(s) != 0)
return -EBUSY;
memcg_unlink_cache(s);
list_del(&s->list);
if (s->flags & SLAB_TYPESAFE_BY_RCU) {
#ifdef SLAB_SUPPORTS_SYSFS
sysfs_slab_unlink(s);
#endif
list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
schedule_work(&slab_caches_to_rcu_destroy_work);
} else {
#ifdef SLAB_SUPPORTS_SYSFS
sysfs_slab_unlink(s);
sysfs_slab_release(s);
#else
slab_kmem_cache_release(s);
#endif
}
return 0;
}
#ifdef CONFIG_MEMCG_KMEM
/*
* memcg_create_kmem_cache - Create a cache for a memory cgroup.
* @memcg: The memory cgroup the new cache is for.
* @root_cache: The parent of the new cache.
*
* This function attempts to create a kmem cache that will serve allocation
* requests going from @memcg to @root_cache. The new cache inherits properties
* from its parent.
*/
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
struct kmem_cache *root_cache)
{
static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
struct cgroup_subsys_state *css = &memcg->css;
struct memcg_cache_array *arr;
struct kmem_cache *s = NULL;
char *cache_name;
int idx;
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
/*
* The memory cgroup could have been offlined while the cache
* creation work was pending.
*/
if (memcg->kmem_state != KMEM_ONLINE)
goto out_unlock;
idx = memcg_cache_id(memcg);
arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
lockdep_is_held(&slab_mutex));
/*
* Since per-memcg caches are created asynchronously on first
* allocation (see memcg_kmem_get_cache()), several threads can try to
* create the same cache, but only one of them may succeed.
*/
if (arr->entries[idx])
goto out_unlock;
cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
css->serial_nr, memcg_name_buf);
if (!cache_name)
goto out_unlock;
s = create_cache(cache_name, root_cache->object_size,
root_cache->align,
root_cache->flags & CACHE_CREATE_MASK,
root_cache->useroffset, root_cache->usersize,
root_cache->ctor, memcg, root_cache);
/*
* If we could not create a memcg cache, do not complain, because
* that's not critical at all as we can always proceed with the root
* cache.
*/
if (IS_ERR(s)) {
kfree(cache_name);
goto out_unlock;
}
/*
* Since readers won't lock (see memcg_kmem_get_cache()), we need a
* barrier here to ensure nobody will see the kmem_cache partially
* initialized.
*/
smp_wmb();
arr->entries[idx] = s;
out_unlock:
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
}
static void kmemcg_workfn(struct work_struct *work)
{
struct kmem_cache *s = container_of(work, struct kmem_cache,
memcg_params.work);
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
s->memcg_params.work_fn(s);
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
}
static void kmemcg_rcufn(struct rcu_head *head)
{
struct kmem_cache *s = container_of(head, struct kmem_cache,
memcg_params.rcu_head);
/*
* We need to grab blocking locks. Bounce to ->work. The
* work item shares the space with the RCU head and can't be
* initialized earlier.
*/
INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
}
static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
{
WARN_ON(shutdown_cache(s));
}
static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
{
struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
memcg_params.refcnt);
unsigned long flags;
spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
if (s->memcg_params.root_cache->memcg_params.dying)
goto unlock;
s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
unlock:
spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
}
static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
{
__kmemcg_cache_deactivate_after_rcu(s);
percpu_ref_kill(&s->memcg_params.refcnt);
}
static void kmemcg_cache_deactivate(struct kmem_cache *s)
{
if (WARN_ON_ONCE(is_root_cache(s)))
return;
__kmemcg_cache_deactivate(s);
s->flags |= SLAB_DEACTIVATED;
/*
* memcg_kmem_wq_lock is used to synchronize memcg_params.dying
* flag and make sure that no new kmem_cache deactivation tasks
* are queued (see flush_memcg_workqueue() ).
*/
spin_lock_irq(&memcg_kmem_wq_lock);
if (s->memcg_params.root_cache->memcg_params.dying)
goto unlock;
s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
unlock:
spin_unlock_irq(&memcg_kmem_wq_lock);
}
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
struct mem_cgroup *parent)
{
int idx;
struct memcg_cache_array *arr;
struct kmem_cache *s, *c;
unsigned int nr_reparented;
idx = memcg_cache_id(memcg);
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_root_caches, root_caches_node) {
arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
lockdep_is_held(&slab_mutex));
c = arr->entries[idx];
if (!c)
continue;
kmemcg_cache_deactivate(c);
arr->entries[idx] = NULL;
}
nr_reparented = 0;
list_for_each_entry(s, &memcg->kmem_caches,
memcg_params.kmem_caches_node) {
WRITE_ONCE(s->memcg_params.memcg, parent);
css_put(&memcg->css);
nr_reparented++;
}
if (nr_reparented) {
list_splice_init(&memcg->kmem_caches,
&parent->kmem_caches);
css_get_many(&parent->css, nr_reparented);
}
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
}
static int shutdown_memcg_caches(struct kmem_cache *s)
{
struct memcg_cache_array *arr;
struct kmem_cache *c, *c2;
LIST_HEAD(busy);
int i;
BUG_ON(!is_root_cache(s));
/*
* First, shutdown active caches, i.e. caches that belong to online
* memory cgroups.
*/
arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
lockdep_is_held(&slab_mutex));
for_each_memcg_cache_index(i) {
c = arr->entries[i];
if (!c)
continue;
if (shutdown_cache(c))
/*
* The cache still has objects. Move it to a temporary
* list so as not to try to destroy it for a second
* time while iterating over inactive caches below.
*/
list_move(&c->memcg_params.children_node, &busy);
else
/*
* The cache is empty and will be destroyed soon. Clear
* the pointer to it in the memcg_caches array so that
* it will never be accessed even if the root cache
* stays alive.
*/
arr->entries[i] = NULL;
}
/*
* Second, shutdown all caches left from memory cgroups that are now
* offline.
*/
list_for_each_entry_safe(c, c2, &s->memcg_params.children,
memcg_params.children_node)
shutdown_cache(c);
list_splice(&busy, &s->memcg_params.children);
/*
* A cache being destroyed must be empty. In particular, this means
* that all per memcg caches attached to it must be empty too.
*/
if (!list_empty(&s->memcg_params.children))
return -EBUSY;
return 0;
}
static void flush_memcg_workqueue(struct kmem_cache *s)
{
spin_lock_irq(&memcg_kmem_wq_lock);
s->memcg_params.dying = true;
spin_unlock_irq(&memcg_kmem_wq_lock);
/*
* SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
* sure all registered rcu callbacks have been invoked.
*/
rcu_barrier();
/*
* SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
* deactivates the memcg kmem_caches through workqueue. Make sure all
* previous workitems on workqueue are processed.
*/
if (likely(memcg_kmem_cache_wq))
flush_workqueue(memcg_kmem_cache_wq);
/*
* If we're racing with children kmem_cache deactivation, it might
* take another rcu grace period to complete their destruction.
* At this moment the corresponding percpu_ref_kill() call should be
* done, but it might take another rcu grace period to complete
* switching to the atomic mode.
* Please, note that we check without grabbing the slab_mutex. It's safe
* because at this moment the children list can't grow.
*/
if (!list_empty(&s->memcg_params.children))
rcu_barrier();
}
#else
static inline int shutdown_memcg_caches(struct kmem_cache *s)
{
return 0;
}
static inline void flush_memcg_workqueue(struct kmem_cache *s)
{
}
#endif /* CONFIG_MEMCG_KMEM */
void slab_kmem_cache_release(struct kmem_cache *s)
{
__kmem_cache_release(s);
destroy_memcg_params(s);
kfree_const(s->name);
kmem_cache_free(kmem_cache, s);
}
void kmem_cache_destroy(struct kmem_cache *s)
{
int err;
if (unlikely(!s))
return;
flush_memcg_workqueue(s);
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
s->refcount--;
if (s->refcount)
goto out_unlock;
err = shutdown_memcg_caches(s);
if (!err)
err = shutdown_cache(s);
if (err) {
pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
s->name);
dump_stack();
}
out_unlock:
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);
/**
* kmem_cache_shrink - Shrink a cache.
* @cachep: The cache to shrink.
*
* Releases as many slabs as possible for a cache.
* To help debugging, a zero exit status indicates all slabs were released.
*
* Return: %0 if all slabs were released, non-zero otherwise
*/
int kmem_cache_shrink(struct kmem_cache *cachep)
{
int ret;
get_online_cpus();
get_online_mems();
kasan_cache_shrink(cachep);
ret = __kmem_cache_shrink(cachep);
put_online_mems();
put_online_cpus();
return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);
/**
* kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
* @s: The cache pointer
*/
void kmem_cache_shrink_all(struct kmem_cache *s)
{
struct kmem_cache *c;
if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
kmem_cache_shrink(s);
return;
}
get_online_cpus();
get_online_mems();
kasan_cache_shrink(s);
__kmem_cache_shrink(s);
/*
* We have to take the slab_mutex to protect from the memcg list
* modification.
*/
mutex_lock(&slab_mutex);
for_each_memcg_cache(c, s) {
/*
* Don't need to shrink deactivated memcg caches.
*/
if (s->flags & SLAB_DEACTIVATED)
continue;
kasan_cache_shrink(c);
__kmem_cache_shrink(c);
}
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
}
bool slab_is_available(void)
{
return slab_state >= UP;
}
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize)
{
int err;
unsigned int align = ARCH_KMALLOC_MINALIGN;
s->name = name;
s->size = s->object_size = size;
/*
* For power of two sizes, guarantee natural alignment for kmalloc
* caches, regardless of SL*B debugging options.
*/
if (is_power_of_2(size))
align = max(align, size);
s->align = calculate_alignment(flags, align, size);
s->useroffset = useroffset;
s->usersize = usersize;
slab_init_memcg_params(s);
err = __kmem_cache_create(s, flags);
if (err)
panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
name, size, err);
s->refcount = -1; /* Exempt from merging for now */
}
struct kmem_cache *__init create_kmalloc_cache(const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize)
{
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
if (!s)
panic("Out of memory when creating slab %s\n", name);
create_boot_cache(s, name, size, flags, useroffset, usersize);
list_add(&s->list, &slab_caches);
memcg_link_cache(s, NULL);
s->refcount = 1;
return s;
}
struct kmem_cache *
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
EXPORT_SYMBOL(kmalloc_caches);
/*
* Conversion table for small slabs sizes / 8 to the index in the
* kmalloc array. This is necessary for slabs < 192 since we have non power
* of two cache sizes there. The size of larger slabs can be determined using
* fls.
*/
static u8 size_index[24] __ro_after_init = {
3, /* 8 */
4, /* 16 */
5, /* 24 */
5, /* 32 */
6, /* 40 */
6, /* 48 */
6, /* 56 */
6, /* 64 */
1, /* 72 */
1, /* 80 */
1, /* 88 */
1, /* 96 */
7, /* 104 */
7, /* 112 */
7, /* 120 */
7, /* 128 */
2, /* 136 */
2, /* 144 */
2, /* 152 */
2, /* 160 */
2, /* 168 */
2, /* 176 */
2, /* 184 */
2 /* 192 */
};
static inline unsigned int size_index_elem(unsigned int bytes)
{
return (bytes - 1) / 8;
}
/*
* Find the kmem_cache structure that serves a given size of
* allocation
*/
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
unsigned int index;
if (size <= 192) {
if (!size)
return ZERO_SIZE_PTR;
index = size_index[size_index_elem(size)];
} else {
if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
return NULL;
index = fls(size - 1);
}
return kmalloc_caches[kmalloc_type(flags)][index];
}
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size) \
{ \
.name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
.name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
.size = __size, \
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size) \
{ \
.name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
.size = __size, \
}
#endif
/*
* kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
* kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
* kmalloc-67108864.
*/
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
INIT_KMALLOC_INFO(0, 0),
INIT_KMALLOC_INFO(96, 96),
INIT_KMALLOC_INFO(192, 192),
INIT_KMALLOC_INFO(8, 8),
INIT_KMALLOC_INFO(16, 16),
INIT_KMALLOC_INFO(32, 32),
INIT_KMALLOC_INFO(64, 64),
INIT_KMALLOC_INFO(128, 128),
INIT_KMALLOC_INFO(256, 256),
INIT_KMALLOC_INFO(512, 512),
INIT_KMALLOC_INFO(1024, 1k),
INIT_KMALLOC_INFO(2048, 2k),
INIT_KMALLOC_INFO(4096, 4k),
INIT_KMALLOC_INFO(8192, 8k),
INIT_KMALLOC_INFO(16384, 16k),
INIT_KMALLOC_INFO(32768, 32k),
INIT_KMALLOC_INFO(65536, 64k),
INIT_KMALLOC_INFO(131072, 128k),
INIT_KMALLOC_INFO(262144, 256k),
INIT_KMALLOC_INFO(524288, 512k),
INIT_KMALLOC_INFO(1048576, 1M),
INIT_KMALLOC_INFO(2097152, 2M),
INIT_KMALLOC_INFO(4194304, 4M),
INIT_KMALLOC_INFO(8388608, 8M),
INIT_KMALLOC_INFO(16777216, 16M),
INIT_KMALLOC_INFO(33554432, 32M),
INIT_KMALLOC_INFO(67108864, 64M)
};
/*
* Patch up the size_index table if we have strange large alignment
* requirements for the kmalloc array. This is only the case for
* MIPS it seems. The standard arches will not generate any code here.
*
* Largest permitted alignment is 256 bytes due to the way we
* handle the index determination for the smaller caches.
*
* Make sure that nothing crazy happens if someone starts tinkering
* around with ARCH_KMALLOC_MINALIGN
*/
void __init setup_kmalloc_cache_index_table(void)
{
unsigned int i;
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
unsigned int elem = size_index_elem(i);
if (elem >= ARRAY_SIZE(size_index))
break;
size_index[elem] = KMALLOC_SHIFT_LOW;
}
if (KMALLOC_MIN_SIZE >= 64) {
/*
* The 96 byte size cache is not used if the alignment
* is 64 byte.
*/
for (i = 64 + 8; i <= 96; i += 8)
size_index[size_index_elem(i)] = 7;
}
if (KMALLOC_MIN_SIZE >= 128) {
/*
* The 192 byte sized cache is not used if the alignment
* is 128 byte. Redirect kmalloc to use the 256 byte cache
* instead.
*/
for (i = 128 + 8; i <= 192; i += 8)
size_index[size_index_elem(i)] = 8;
}
}
static void __init
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
{
if (type == KMALLOC_RECLAIM)
flags |= SLAB_RECLAIM_ACCOUNT;
kmalloc_caches[type][idx] = create_kmalloc_cache(
kmalloc_info[idx].name[type],
kmalloc_info[idx].size, flags, 0,
kmalloc_info[idx].size);
}
/*
* Create the kmalloc array. Some of the regular kmalloc arrays
* may already have been created because they were needed to
* enable allocations for slab creation.
*/
void __init create_kmalloc_caches(slab_flags_t flags)
{
int i;
enum kmalloc_cache_type type;
for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
if (!kmalloc_caches[type][i])
new_kmalloc_cache(i, type, flags);
/*
* Caches that are not of the two-to-the-power-of size.
* These have to be created immediately after the
* earlier power of two caches
*/
if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
!kmalloc_caches[type][1])
new_kmalloc_cache(1, type, flags);
if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
!kmalloc_caches[type][2])
new_kmalloc_cache(2, type, flags);
}
}
/* Kmalloc array is now usable */
slab_state = UP;
#ifdef CONFIG_ZONE_DMA
for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
if (s) {
kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
kmalloc_info[i].name[KMALLOC_DMA],
kmalloc_info[i].size,
SLAB_CACHE_DMA | flags, 0, 0);
}
}
#endif
}
#endif /* !CONFIG_SLOB */
/*
* To avoid unnecessary overhead, we pass through large allocation requests
* directly to the page allocator. We use __GFP_COMP, because we will need to
* know the allocation order to free the pages properly in kfree.
*/
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
void *ret = NULL;
struct page *page;
flags |= __GFP_COMP;
page = alloc_pages(flags, order);
if (likely(page)) {
ret = page_address(page);
mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1 << order);
}
ret = kasan_kmalloc_large(ret, size, flags);
/* As ret might get tagged, call kmemleak hook after KASAN. */
kmemleak_alloc(ret, size, 1, flags);
return ret;
}
EXPORT_SYMBOL(kmalloc_order);
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
void *ret = kmalloc_order(size, flags, order);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
unsigned int count)
{
unsigned int rand;
unsigned int i;
for (i = 0; i < count; i++)
list[i] = i;
/* Fisher-Yates shuffle */
for (i = count - 1; i > 0; i--) {
rand = prandom_u32_state(state);
rand %= (i + 1);
swap(list[i], list[rand]);
}
}
/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
gfp_t gfp)
{
struct rnd_state state;
if (count < 2 || cachep->random_seq)
return 0;
cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
if (!cachep->random_seq)
return -ENOMEM;
/* Get best entropy at this stage of boot */
prandom_seed_state(&state, get_random_long());
freelist_randomize(&state, cachep->random_seq, count);
return 0;
}
/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
kfree(cachep->random_seq);
cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (0600)
#else
#define SLABINFO_RIGHTS (0400)
#endif
static void print_slabinfo_header(struct seq_file *m)
{
/*
* Output format version, so at least we can change it
* without _too_ many complaints.
*/
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
seq_puts(m, "slabinfo - version: 2.1\n");
#endif
seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
seq_putc(m, '\n');
}
void *slab_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&slab_mutex);
return seq_list_start(&slab_root_caches, *pos);
}
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &slab_root_caches, pos);
}
void slab_stop(struct seq_file *m, void *p)
{
mutex_unlock(&slab_mutex);
}
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
struct kmem_cache *c;
struct slabinfo sinfo;
if (!is_root_cache(s))
return;
for_each_memcg_cache(c, s) {
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(c, &sinfo);
info->active_slabs += sinfo.active_slabs;
info->num_slabs += sinfo.num_slabs;
info->shared_avail += sinfo.shared_avail;
info->active_objs += sinfo.active_objs;
info->num_objs += sinfo.num_objs;
}
}
static void cache_show(struct kmem_cache *s, struct seq_file *m)
{
struct slabinfo sinfo;
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(s, &sinfo);
memcg_accumulate_slabinfo(s, &sinfo);
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
sinfo.objects_per_slab, (1 << sinfo.cache_order));
seq_printf(m, " : tunables %4u %4u %4u",
sinfo.limit, sinfo.batchcount, sinfo.shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
slabinfo_show_stats(m, s);
seq_putc(m, '\n');
}
static int slab_show(struct seq_file *m, void *p)
{
struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
if (p == slab_root_caches.next)
print_slabinfo_header(m);
cache_show(s, m);
return 0;
}
void dump_unreclaimable_slab(void)
{
struct kmem_cache *s, *s2;
struct slabinfo sinfo;
/*
* Here acquiring slab_mutex is risky since we don't prefer to get
* sleep in oom path. But, without mutex hold, it may introduce a
* risk of crash.
* Use mutex_trylock to protect the list traverse, dump nothing
* without acquiring the mutex.
*/
if (!mutex_trylock(&slab_mutex)) {
pr_warn("excessive unreclaimable slab but cannot dump stats\n");
return;
}
pr_info("Unreclaimable slab info:\n");
pr_info("Name Used Total\n");
list_for_each_entry_safe(s, s2, &slab_caches, list) {
if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
continue;
get_slabinfo(s, &sinfo);
if (sinfo.num_objs > 0)
pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
(sinfo.active_objs * s->size) / 1024,
(sinfo.num_objs * s->size) / 1024);
}
mutex_unlock(&slab_mutex);
}
#if defined(CONFIG_MEMCG_KMEM)
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
mutex_lock(&slab_mutex);
return seq_list_start(&memcg->kmem_caches, *pos);
}
void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
return seq_list_next(p, &memcg->kmem_caches, pos);
}
void memcg_slab_stop(struct seq_file *m, void *p)
{
mutex_unlock(&slab_mutex);
}
int memcg_slab_show(struct seq_file *m, void *p)
{
struct kmem_cache *s = list_entry(p, struct kmem_cache,
memcg_params.kmem_caches_node);
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
if (p == memcg->kmem_caches.next)
print_slabinfo_header(m);
cache_show(s, m);
return 0;
}
#endif
/*
* slabinfo_op - iterator that generates /proc/slabinfo
*
* Output layout:
* cache-name
* num-active-objs
* total-objs
* object size
* num-active-slabs
* total-slabs
* num-pages-per-slab
* + further values on SMP and with statistics enabled
*/
static const struct seq_operations slabinfo_op = {
.start = slab_start,
.next = slab_next,
.stop = slab_stop,
.show = slab_show,
};
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static const struct proc_ops slabinfo_proc_ops = {
.proc_flags = PROC_ENTRY_PERMANENT,
.proc_open = slabinfo_open,
.proc_read = seq_read,
.proc_write = slabinfo_write,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
};
static int __init slab_proc_init(void)
{
proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
return 0;
}
module_init(slab_proc_init);
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
* Display information about kmem caches that have child memcg caches.
*/
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
struct kmem_cache *s, *c;
struct slabinfo sinfo;
mutex_lock(&slab_mutex);
seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
seq_puts(m, " <active_slabs> <num_slabs>\n");
list_for_each_entry(s, &slab_root_caches, root_caches_node) {
/*
* Skip kmem caches that don't have any memcg children.
*/
if (list_empty(&s->memcg_params.children))
continue;
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(s, &sinfo);
seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
cache_name(s), sinfo.active_objs, sinfo.num_objs,
sinfo.active_slabs, sinfo.num_slabs);
for_each_memcg_cache(c, s) {
struct cgroup_subsys_state *css;
char *status = "";
css = &c->memcg_params.memcg->css;
if (!(css->flags & CSS_ONLINE))
status = ":dead";
else if (c->flags & SLAB_DEACTIVATED)
status = ":deact";
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(c, &sinfo);
seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
cache_name(c), css->id, status,
sinfo.active_objs, sinfo.num_objs,
sinfo.active_slabs, sinfo.num_slabs);
}
}
mutex_unlock(&slab_mutex);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
static int __init memcg_slabinfo_init(void)
{
debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
NULL, NULL, &memcg_slabinfo_fops);
return 0;
}
late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
static __always_inline void *__do_krealloc(const void *p, size_t new_size,
gfp_t flags)
{
void *ret;
size_t ks = 0;
if (p)
ks = ksize(p);
if (ks >= new_size) {
p = kasan_krealloc((void *)p, new_size, flags);
return (void *)p;
}
ret = kmalloc_track_caller(new_size, flags);
if (ret && p)
memcpy(ret, p, ks);
return ret;
}
/**
* krealloc - reallocate memory. The contents will remain unchanged.
* @p: object to reallocate memory for.
* @new_size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
* The contents of the object pointed to are preserved up to the
* lesser of the new and old sizes. If @p is %NULL, krealloc()
* behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
* %NULL pointer, the object pointed to is freed.
*
* Return: pointer to the allocated memory or %NULL in case of error
*/
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
if (unlikely(!new_size)) {
kfree(p);
return ZERO_SIZE_PTR;
}
ret = __do_krealloc(p, new_size, flags);
if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
kfree(p);
return ret;
}
EXPORT_SYMBOL(krealloc);
/**
* kzfree - like kfree but zero memory
* @p: object to free memory of
*
* The memory of the object @p points to is zeroed before freed.
* If @p is %NULL, kzfree() does nothing.
*
* Note: this function zeroes the whole allocated buffer which can be a good
* deal bigger than the requested buffer size passed to kmalloc(). So be
* careful when using this function in performance sensitive code.
*/
void kzfree(const void *p)
{
size_t ks;
void *mem = (void *)p;
if (unlikely(ZERO_OR_NULL_PTR(mem)))
return;
ks = ksize(mem);
memset(mem, 0, ks);
kfree(mem);
}
EXPORT_SYMBOL(kzfree);
/**
* ksize - get the actual amount of memory allocated for a given object
* @objp: Pointer to the object
*
* kmalloc may internally round up allocations and return more memory
* than requested. ksize() can be used to determine the actual amount of
* memory allocated. The caller may use this additional memory, even though
* a smaller amount of memory was initially specified with the kmalloc call.
* The caller must guarantee that objp points to a valid object previously
* allocated with either kmalloc() or kmem_cache_alloc(). The object
* must not be freed during the duration of the call.
*
* Return: size of the actual memory used by @objp in bytes
*/
size_t ksize(const void *objp)
{
size_t size;
if (WARN_ON_ONCE(!objp))
return 0;
/*
* We need to check that the pointed to object is valid, and only then
* unpoison the shadow memory below. We use __kasan_check_read(), to
* generate a more useful report at the time ksize() is called (rather
* than later where behaviour is undefined due to potential
* use-after-free or double-free).
*
* If the pointed to memory is invalid we return 0, to avoid users of
* ksize() writing to and potentially corrupting the memory region.
*
* We want to perform the check before __ksize(), to avoid potentially
* crashing in __ksize() due to accessing invalid metadata.
*/
if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
return 0;
size = __ksize(objp);
/*
* We assume that ksize callers could use whole allocated area,
* so we need to unpoison this area.
*/
kasan_unpoison_shadow(objp, size);
return size;
}
EXPORT_SYMBOL(ksize);
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
if (__should_failslab(s, gfpflags))
return -ENOMEM;
return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);