linux-next/fs/erofs/decompressor.c
Chunhai Guo d9281660ff erofs: relaxed temporary buffers allocation on readahead
Even with inplace decompression, sometimes very few temporary buffers
may be still needed for a single decompression shot (e.g. 16 pages for
64k sliding window or 4 pages for 16k sliding window).  In low-memory
scenarios, it would be better to try to allocate with GFP_NOWAIT on
readahead first.  That can help reduce the time spent on page allocation
under durative memory pressure.

Here are detailed performance numbers under multi-app launch benchmark
workload [1] on ARM64 Android devices (8-core CPU and 8GB of memory)
running a 5.15 LTS kernel with EROFS of 4k pclusters:

+----------------------------------------------+
|      LZ4       | vanilla | patched |  diff   |
|----------------+---------+---------+---------|
|  Average (ms)  |  3364   |  2684   | -20.21% | [64k sliding window]
|----------------+---------+---------+---------|
|  Average (ms)  |  2079   |  1610   | -22.56% | [16k sliding window]
+----------------------------------------------+

The total size of system images for 4k pclusters is almost unchanged:
(64k sliding window)  9,117,044 KB
(16k sliding window)  9,113,096 KB

Therefore, in addition to switch the sliding window from 64k to 16k,
after applying this patch, it can eventually save 52.14% (3364 -> 1610)
on average with no memory reservation.  That is particularly useful for
embedded devices with limited resources.

[1] https://lore.kernel.org/r/20240109074143.4138783-1-guochunhai@vivo.com

Suggested-by: Gao Xiang <xiang@kernel.org>
Signed-off-by: Chunhai Guo <guochunhai@vivo.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Link: https://lore.kernel.org/r/20240126140142.201718-1-hsiangkao@linux.alibaba.com
2024-01-27 12:28:08 +08:00

455 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2019 HUAWEI, Inc.
* https://www.huawei.com/
*/
#include "compress.h"
#include <linux/lz4.h>
#ifndef LZ4_DISTANCE_MAX /* history window size */
#define LZ4_DISTANCE_MAX 65535 /* set to maximum value by default */
#endif
#define LZ4_MAX_DISTANCE_PAGES (DIV_ROUND_UP(LZ4_DISTANCE_MAX, PAGE_SIZE) + 1)
#ifndef LZ4_DECOMPRESS_INPLACE_MARGIN
#define LZ4_DECOMPRESS_INPLACE_MARGIN(srcsize) (((srcsize) >> 8) + 32)
#endif
struct z_erofs_lz4_decompress_ctx {
struct z_erofs_decompress_req *rq;
/* # of encoded, decoded pages */
unsigned int inpages, outpages;
/* decoded block total length (used for in-place decompression) */
unsigned int oend;
};
static int z_erofs_load_lz4_config(struct super_block *sb,
struct erofs_super_block *dsb, void *data, int size)
{
struct erofs_sb_info *sbi = EROFS_SB(sb);
struct z_erofs_lz4_cfgs *lz4 = data;
u16 distance;
if (lz4) {
if (size < sizeof(struct z_erofs_lz4_cfgs)) {
erofs_err(sb, "invalid lz4 cfgs, size=%u", size);
return -EINVAL;
}
distance = le16_to_cpu(lz4->max_distance);
sbi->lz4.max_pclusterblks = le16_to_cpu(lz4->max_pclusterblks);
if (!sbi->lz4.max_pclusterblks) {
sbi->lz4.max_pclusterblks = 1; /* reserved case */
} else if (sbi->lz4.max_pclusterblks >
erofs_blknr(sb, Z_EROFS_PCLUSTER_MAX_SIZE)) {
erofs_err(sb, "too large lz4 pclusterblks %u",
sbi->lz4.max_pclusterblks);
return -EINVAL;
}
} else {
distance = le16_to_cpu(dsb->u1.lz4_max_distance);
sbi->lz4.max_pclusterblks = 1;
}
sbi->lz4.max_distance_pages = distance ?
DIV_ROUND_UP(distance, PAGE_SIZE) + 1 :
LZ4_MAX_DISTANCE_PAGES;
return erofs_pcpubuf_growsize(sbi->lz4.max_pclusterblks);
}
/*
* Fill all gaps with bounce pages if it's a sparse page list. Also check if
* all physical pages are consecutive, which can be seen for moderate CR.
*/
static int z_erofs_lz4_prepare_dstpages(struct z_erofs_lz4_decompress_ctx *ctx,
struct page **pagepool)
{
struct z_erofs_decompress_req *rq = ctx->rq;
struct page *availables[LZ4_MAX_DISTANCE_PAGES] = { NULL };
unsigned long bounced[DIV_ROUND_UP(LZ4_MAX_DISTANCE_PAGES,
BITS_PER_LONG)] = { 0 };
unsigned int lz4_max_distance_pages =
EROFS_SB(rq->sb)->lz4.max_distance_pages;
void *kaddr = NULL;
unsigned int i, j, top;
top = 0;
for (i = j = 0; i < ctx->outpages; ++i, ++j) {
struct page *const page = rq->out[i];
struct page *victim;
if (j >= lz4_max_distance_pages)
j = 0;
/* 'valid' bounced can only be tested after a complete round */
if (!rq->fillgaps && test_bit(j, bounced)) {
DBG_BUGON(i < lz4_max_distance_pages);
DBG_BUGON(top >= lz4_max_distance_pages);
availables[top++] = rq->out[i - lz4_max_distance_pages];
}
if (page) {
__clear_bit(j, bounced);
if (!PageHighMem(page)) {
if (!i) {
kaddr = page_address(page);
continue;
}
if (kaddr &&
kaddr + PAGE_SIZE == page_address(page)) {
kaddr += PAGE_SIZE;
continue;
}
}
kaddr = NULL;
continue;
}
kaddr = NULL;
__set_bit(j, bounced);
if (top) {
victim = availables[--top];
get_page(victim);
} else {
victim = erofs_allocpage(pagepool, rq->gfp);
if (!victim)
return -ENOMEM;
set_page_private(victim, Z_EROFS_SHORTLIVED_PAGE);
}
rq->out[i] = victim;
}
return kaddr ? 1 : 0;
}
static void *z_erofs_lz4_handle_overlap(struct z_erofs_lz4_decompress_ctx *ctx,
void *inpage, void *out, unsigned int *inputmargin,
int *maptype, bool may_inplace)
{
struct z_erofs_decompress_req *rq = ctx->rq;
unsigned int omargin, total, i;
struct page **in;
void *src, *tmp;
if (rq->inplace_io) {
omargin = PAGE_ALIGN(ctx->oend) - ctx->oend;
if (rq->partial_decoding || !may_inplace ||
omargin < LZ4_DECOMPRESS_INPLACE_MARGIN(rq->inputsize))
goto docopy;
for (i = 0; i < ctx->inpages; ++i)
if (rq->out[ctx->outpages - ctx->inpages + i] !=
rq->in[i])
goto docopy;
kunmap_local(inpage);
*maptype = 3;
return out + ((ctx->outpages - ctx->inpages) << PAGE_SHIFT);
}
if (ctx->inpages <= 1) {
*maptype = 0;
return inpage;
}
kunmap_local(inpage);
src = erofs_vm_map_ram(rq->in, ctx->inpages);
if (!src)
return ERR_PTR(-ENOMEM);
*maptype = 1;
return src;
docopy:
/* Or copy compressed data which can be overlapped to per-CPU buffer */
in = rq->in;
src = erofs_get_pcpubuf(ctx->inpages);
if (!src) {
DBG_BUGON(1);
kunmap_local(inpage);
return ERR_PTR(-EFAULT);
}
tmp = src;
total = rq->inputsize;
while (total) {
unsigned int page_copycnt =
min_t(unsigned int, total, PAGE_SIZE - *inputmargin);
if (!inpage)
inpage = kmap_local_page(*in);
memcpy(tmp, inpage + *inputmargin, page_copycnt);
kunmap_local(inpage);
inpage = NULL;
tmp += page_copycnt;
total -= page_copycnt;
++in;
*inputmargin = 0;
}
*maptype = 2;
return src;
}
/*
* Get the exact inputsize with zero_padding feature.
* - For LZ4, it should work if zero_padding feature is on (5.3+);
* - For MicroLZMA, it'd be enabled all the time.
*/
int z_erofs_fixup_insize(struct z_erofs_decompress_req *rq, const char *padbuf,
unsigned int padbufsize)
{
const char *padend;
padend = memchr_inv(padbuf, 0, padbufsize);
if (!padend)
return -EFSCORRUPTED;
rq->inputsize -= padend - padbuf;
rq->pageofs_in += padend - padbuf;
return 0;
}
static int z_erofs_lz4_decompress_mem(struct z_erofs_lz4_decompress_ctx *ctx,
u8 *dst)
{
struct z_erofs_decompress_req *rq = ctx->rq;
bool support_0padding = false, may_inplace = false;
unsigned int inputmargin;
u8 *out, *headpage, *src;
int ret, maptype;
DBG_BUGON(*rq->in == NULL);
headpage = kmap_local_page(*rq->in);
/* LZ4 decompression inplace is only safe if zero_padding is enabled */
if (erofs_sb_has_zero_padding(EROFS_SB(rq->sb))) {
support_0padding = true;
ret = z_erofs_fixup_insize(rq, headpage + rq->pageofs_in,
min_t(unsigned int, rq->inputsize,
rq->sb->s_blocksize - rq->pageofs_in));
if (ret) {
kunmap_local(headpage);
return ret;
}
may_inplace = !((rq->pageofs_in + rq->inputsize) &
(rq->sb->s_blocksize - 1));
}
inputmargin = rq->pageofs_in;
src = z_erofs_lz4_handle_overlap(ctx, headpage, dst, &inputmargin,
&maptype, may_inplace);
if (IS_ERR(src))
return PTR_ERR(src);
out = dst + rq->pageofs_out;
/* legacy format could compress extra data in a pcluster. */
if (rq->partial_decoding || !support_0padding)
ret = LZ4_decompress_safe_partial(src + inputmargin, out,
rq->inputsize, rq->outputsize, rq->outputsize);
else
ret = LZ4_decompress_safe(src + inputmargin, out,
rq->inputsize, rq->outputsize);
if (ret != rq->outputsize) {
erofs_err(rq->sb, "failed to decompress %d in[%u, %u] out[%u]",
ret, rq->inputsize, inputmargin, rq->outputsize);
if (ret >= 0)
memset(out + ret, 0, rq->outputsize - ret);
ret = -EFSCORRUPTED;
} else {
ret = 0;
}
if (maptype == 0) {
kunmap_local(headpage);
} else if (maptype == 1) {
vm_unmap_ram(src, ctx->inpages);
} else if (maptype == 2) {
erofs_put_pcpubuf(src);
} else if (maptype != 3) {
DBG_BUGON(1);
return -EFAULT;
}
return ret;
}
static int z_erofs_lz4_decompress(struct z_erofs_decompress_req *rq,
struct page **pagepool)
{
struct z_erofs_lz4_decompress_ctx ctx;
unsigned int dst_maptype;
void *dst;
int ret;
ctx.rq = rq;
ctx.oend = rq->pageofs_out + rq->outputsize;
ctx.outpages = PAGE_ALIGN(ctx.oend) >> PAGE_SHIFT;
ctx.inpages = PAGE_ALIGN(rq->inputsize) >> PAGE_SHIFT;
/* one optimized fast path only for non bigpcluster cases yet */
if (ctx.inpages == 1 && ctx.outpages == 1 && !rq->inplace_io) {
DBG_BUGON(!*rq->out);
dst = kmap_local_page(*rq->out);
dst_maptype = 0;
goto dstmap_out;
}
/* general decoding path which can be used for all cases */
ret = z_erofs_lz4_prepare_dstpages(&ctx, pagepool);
if (ret < 0) {
return ret;
} else if (ret > 0) {
dst = page_address(*rq->out);
dst_maptype = 1;
} else {
dst = erofs_vm_map_ram(rq->out, ctx.outpages);
if (!dst)
return -ENOMEM;
dst_maptype = 2;
}
dstmap_out:
ret = z_erofs_lz4_decompress_mem(&ctx, dst);
if (!dst_maptype)
kunmap_local(dst);
else if (dst_maptype == 2)
vm_unmap_ram(dst, ctx.outpages);
return ret;
}
static int z_erofs_transform_plain(struct z_erofs_decompress_req *rq,
struct page **pagepool)
{
const unsigned int nrpages_in =
PAGE_ALIGN(rq->pageofs_in + rq->inputsize) >> PAGE_SHIFT;
const unsigned int nrpages_out =
PAGE_ALIGN(rq->pageofs_out + rq->outputsize) >> PAGE_SHIFT;
const unsigned int bs = rq->sb->s_blocksize;
unsigned int cur = 0, ni = 0, no, pi, po, insz, cnt;
u8 *kin;
DBG_BUGON(rq->outputsize > rq->inputsize);
if (rq->alg == Z_EROFS_COMPRESSION_INTERLACED) {
cur = bs - (rq->pageofs_out & (bs - 1));
pi = (rq->pageofs_in + rq->inputsize - cur) & ~PAGE_MASK;
cur = min(cur, rq->outputsize);
if (cur && rq->out[0]) {
kin = kmap_local_page(rq->in[nrpages_in - 1]);
if (rq->out[0] == rq->in[nrpages_in - 1]) {
memmove(kin + rq->pageofs_out, kin + pi, cur);
flush_dcache_page(rq->out[0]);
} else {
memcpy_to_page(rq->out[0], rq->pageofs_out,
kin + pi, cur);
}
kunmap_local(kin);
}
rq->outputsize -= cur;
}
for (; rq->outputsize; rq->pageofs_in = 0, cur += PAGE_SIZE, ni++) {
insz = min(PAGE_SIZE - rq->pageofs_in, rq->outputsize);
rq->outputsize -= insz;
if (!rq->in[ni])
continue;
kin = kmap_local_page(rq->in[ni]);
pi = 0;
do {
no = (rq->pageofs_out + cur + pi) >> PAGE_SHIFT;
po = (rq->pageofs_out + cur + pi) & ~PAGE_MASK;
DBG_BUGON(no >= nrpages_out);
cnt = min(insz - pi, PAGE_SIZE - po);
if (rq->out[no] == rq->in[ni]) {
memmove(kin + po,
kin + rq->pageofs_in + pi, cnt);
flush_dcache_page(rq->out[no]);
} else if (rq->out[no]) {
memcpy_to_page(rq->out[no], po,
kin + rq->pageofs_in + pi, cnt);
}
pi += cnt;
} while (pi < insz);
kunmap_local(kin);
}
DBG_BUGON(ni > nrpages_in);
return 0;
}
const struct z_erofs_decompressor erofs_decompressors[] = {
[Z_EROFS_COMPRESSION_SHIFTED] = {
.decompress = z_erofs_transform_plain,
.name = "shifted"
},
[Z_EROFS_COMPRESSION_INTERLACED] = {
.decompress = z_erofs_transform_plain,
.name = "interlaced"
},
[Z_EROFS_COMPRESSION_LZ4] = {
.config = z_erofs_load_lz4_config,
.decompress = z_erofs_lz4_decompress,
.name = "lz4"
},
#ifdef CONFIG_EROFS_FS_ZIP_LZMA
[Z_EROFS_COMPRESSION_LZMA] = {
.config = z_erofs_load_lzma_config,
.decompress = z_erofs_lzma_decompress,
.name = "lzma"
},
#endif
#ifdef CONFIG_EROFS_FS_ZIP_DEFLATE
[Z_EROFS_COMPRESSION_DEFLATE] = {
.config = z_erofs_load_deflate_config,
.decompress = z_erofs_deflate_decompress,
.name = "deflate"
},
#endif
};
int z_erofs_parse_cfgs(struct super_block *sb, struct erofs_super_block *dsb)
{
struct erofs_sb_info *sbi = EROFS_SB(sb);
struct erofs_buf buf = __EROFS_BUF_INITIALIZER;
unsigned int algs, alg;
erofs_off_t offset;
int size, ret = 0;
if (!erofs_sb_has_compr_cfgs(sbi)) {
sbi->available_compr_algs = 1 << Z_EROFS_COMPRESSION_LZ4;
return z_erofs_load_lz4_config(sb, dsb, NULL, 0);
}
sbi->available_compr_algs = le16_to_cpu(dsb->u1.available_compr_algs);
if (sbi->available_compr_algs & ~Z_EROFS_ALL_COMPR_ALGS) {
erofs_err(sb, "unidentified algorithms %x, please upgrade kernel",
sbi->available_compr_algs & ~Z_EROFS_ALL_COMPR_ALGS);
return -EOPNOTSUPP;
}
erofs_init_metabuf(&buf, sb);
offset = EROFS_SUPER_OFFSET + sbi->sb_size;
alg = 0;
for (algs = sbi->available_compr_algs; algs; algs >>= 1, ++alg) {
void *data;
if (!(algs & 1))
continue;
data = erofs_read_metadata(sb, &buf, &offset, &size);
if (IS_ERR(data)) {
ret = PTR_ERR(data);
break;
}
if (alg >= ARRAY_SIZE(erofs_decompressors) ||
!erofs_decompressors[alg].config) {
erofs_err(sb, "algorithm %d isn't enabled on this kernel",
alg);
ret = -EOPNOTSUPP;
} else {
ret = erofs_decompressors[alg].config(sb,
dsb, data, size);
}
kfree(data);
if (ret)
break;
}
erofs_put_metabuf(&buf);
return ret;
}