mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-18 06:15:12 +00:00
39aa3cb3e8
So it can be used by all that need to check for that. Signed-off-by: Stefan Bader <stefan.bader@canonical.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1502 lines
50 KiB
C
1502 lines
50 KiB
C
#ifndef _LINUX_MM_H
|
|
#define _LINUX_MM_H
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/prio_tree.h>
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/range.h>
|
|
#include <linux/pfn.h>
|
|
|
|
struct mempolicy;
|
|
struct anon_vma;
|
|
struct file_ra_state;
|
|
struct user_struct;
|
|
struct writeback_control;
|
|
|
|
#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
|
|
extern unsigned long max_mapnr;
|
|
#endif
|
|
|
|
extern unsigned long num_physpages;
|
|
extern unsigned long totalram_pages;
|
|
extern void * high_memory;
|
|
extern int page_cluster;
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
extern int sysctl_legacy_va_layout;
|
|
#else
|
|
#define sysctl_legacy_va_layout 0
|
|
#endif
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
|
|
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
|
|
|
|
/* to align the pointer to the (next) page boundary */
|
|
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
|
|
|
|
/*
|
|
* Linux kernel virtual memory manager primitives.
|
|
* The idea being to have a "virtual" mm in the same way
|
|
* we have a virtual fs - giving a cleaner interface to the
|
|
* mm details, and allowing different kinds of memory mappings
|
|
* (from shared memory to executable loading to arbitrary
|
|
* mmap() functions).
|
|
*/
|
|
|
|
extern struct kmem_cache *vm_area_cachep;
|
|
|
|
#ifndef CONFIG_MMU
|
|
extern struct rb_root nommu_region_tree;
|
|
extern struct rw_semaphore nommu_region_sem;
|
|
|
|
extern unsigned int kobjsize(const void *objp);
|
|
#endif
|
|
|
|
/*
|
|
* vm_flags in vm_area_struct, see mm_types.h.
|
|
*/
|
|
#define VM_READ 0x00000001 /* currently active flags */
|
|
#define VM_WRITE 0x00000002
|
|
#define VM_EXEC 0x00000004
|
|
#define VM_SHARED 0x00000008
|
|
|
|
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
|
|
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
|
|
#define VM_MAYWRITE 0x00000020
|
|
#define VM_MAYEXEC 0x00000040
|
|
#define VM_MAYSHARE 0x00000080
|
|
|
|
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
|
|
#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
|
|
#define VM_GROWSUP 0x00000200
|
|
#else
|
|
#define VM_GROWSUP 0x00000000
|
|
#endif
|
|
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
|
|
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
|
|
|
|
#define VM_EXECUTABLE 0x00001000
|
|
#define VM_LOCKED 0x00002000
|
|
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
|
|
|
|
/* Used by sys_madvise() */
|
|
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
|
|
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
|
|
|
|
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
|
|
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
|
|
#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
|
|
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
|
|
#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
|
|
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
|
|
#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
|
|
#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
|
|
#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
|
|
#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
|
|
|
|
#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
|
|
#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
|
|
#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
|
|
#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
|
|
#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
|
|
|
|
/* Bits set in the VMA until the stack is in its final location */
|
|
#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
|
|
|
|
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
|
|
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
|
|
#endif
|
|
|
|
#ifdef CONFIG_STACK_GROWSUP
|
|
#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
|
|
#else
|
|
#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
|
|
#endif
|
|
|
|
#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
|
|
#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
|
|
#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
|
|
#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
|
|
#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
|
|
|
|
/*
|
|
* special vmas that are non-mergable, non-mlock()able
|
|
*/
|
|
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
|
|
|
|
/*
|
|
* mapping from the currently active vm_flags protection bits (the
|
|
* low four bits) to a page protection mask..
|
|
*/
|
|
extern pgprot_t protection_map[16];
|
|
|
|
#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
|
|
#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
|
|
#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
|
|
|
|
/*
|
|
* This interface is used by x86 PAT code to identify a pfn mapping that is
|
|
* linear over entire vma. This is to optimize PAT code that deals with
|
|
* marking the physical region with a particular prot. This is not for generic
|
|
* mm use. Note also that this check will not work if the pfn mapping is
|
|
* linear for a vma starting at physical address 0. In which case PAT code
|
|
* falls back to slow path of reserving physical range page by page.
|
|
*/
|
|
static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
|
|
{
|
|
return (vma->vm_flags & VM_PFN_AT_MMAP);
|
|
}
|
|
|
|
static inline int is_pfn_mapping(struct vm_area_struct *vma)
|
|
{
|
|
return (vma->vm_flags & VM_PFNMAP);
|
|
}
|
|
|
|
/*
|
|
* vm_fault is filled by the the pagefault handler and passed to the vma's
|
|
* ->fault function. The vma's ->fault is responsible for returning a bitmask
|
|
* of VM_FAULT_xxx flags that give details about how the fault was handled.
|
|
*
|
|
* pgoff should be used in favour of virtual_address, if possible. If pgoff
|
|
* is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
|
|
* mapping support.
|
|
*/
|
|
struct vm_fault {
|
|
unsigned int flags; /* FAULT_FLAG_xxx flags */
|
|
pgoff_t pgoff; /* Logical page offset based on vma */
|
|
void __user *virtual_address; /* Faulting virtual address */
|
|
|
|
struct page *page; /* ->fault handlers should return a
|
|
* page here, unless VM_FAULT_NOPAGE
|
|
* is set (which is also implied by
|
|
* VM_FAULT_ERROR).
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* These are the virtual MM functions - opening of an area, closing and
|
|
* unmapping it (needed to keep files on disk up-to-date etc), pointer
|
|
* to the functions called when a no-page or a wp-page exception occurs.
|
|
*/
|
|
struct vm_operations_struct {
|
|
void (*open)(struct vm_area_struct * area);
|
|
void (*close)(struct vm_area_struct * area);
|
|
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
|
|
|
|
/* notification that a previously read-only page is about to become
|
|
* writable, if an error is returned it will cause a SIGBUS */
|
|
int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
|
|
|
|
/* called by access_process_vm when get_user_pages() fails, typically
|
|
* for use by special VMAs that can switch between memory and hardware
|
|
*/
|
|
int (*access)(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write);
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* set_policy() op must add a reference to any non-NULL @new mempolicy
|
|
* to hold the policy upon return. Caller should pass NULL @new to
|
|
* remove a policy and fall back to surrounding context--i.e. do not
|
|
* install a MPOL_DEFAULT policy, nor the task or system default
|
|
* mempolicy.
|
|
*/
|
|
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
|
|
|
|
/*
|
|
* get_policy() op must add reference [mpol_get()] to any policy at
|
|
* (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
|
|
* in mm/mempolicy.c will do this automatically.
|
|
* get_policy() must NOT add a ref if the policy at (vma,addr) is not
|
|
* marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
|
|
* If no [shared/vma] mempolicy exists at the addr, get_policy() op
|
|
* must return NULL--i.e., do not "fallback" to task or system default
|
|
* policy.
|
|
*/
|
|
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
|
|
const nodemask_t *to, unsigned long flags);
|
|
#endif
|
|
};
|
|
|
|
struct mmu_gather;
|
|
struct inode;
|
|
|
|
#define page_private(page) ((page)->private)
|
|
#define set_page_private(page, v) ((page)->private = (v))
|
|
|
|
/*
|
|
* FIXME: take this include out, include page-flags.h in
|
|
* files which need it (119 of them)
|
|
*/
|
|
#include <linux/page-flags.h>
|
|
|
|
/*
|
|
* Methods to modify the page usage count.
|
|
*
|
|
* What counts for a page usage:
|
|
* - cache mapping (page->mapping)
|
|
* - private data (page->private)
|
|
* - page mapped in a task's page tables, each mapping
|
|
* is counted separately
|
|
*
|
|
* Also, many kernel routines increase the page count before a critical
|
|
* routine so they can be sure the page doesn't go away from under them.
|
|
*/
|
|
|
|
/*
|
|
* Drop a ref, return true if the refcount fell to zero (the page has no users)
|
|
*/
|
|
static inline int put_page_testzero(struct page *page)
|
|
{
|
|
VM_BUG_ON(atomic_read(&page->_count) == 0);
|
|
return atomic_dec_and_test(&page->_count);
|
|
}
|
|
|
|
/*
|
|
* Try to grab a ref unless the page has a refcount of zero, return false if
|
|
* that is the case.
|
|
*/
|
|
static inline int get_page_unless_zero(struct page *page)
|
|
{
|
|
return atomic_inc_not_zero(&page->_count);
|
|
}
|
|
|
|
extern int page_is_ram(unsigned long pfn);
|
|
|
|
/* Support for virtually mapped pages */
|
|
struct page *vmalloc_to_page(const void *addr);
|
|
unsigned long vmalloc_to_pfn(const void *addr);
|
|
|
|
/*
|
|
* Determine if an address is within the vmalloc range
|
|
*
|
|
* On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
|
|
* is no special casing required.
|
|
*/
|
|
static inline int is_vmalloc_addr(const void *x)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
unsigned long addr = (unsigned long)x;
|
|
|
|
return addr >= VMALLOC_START && addr < VMALLOC_END;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#ifdef CONFIG_MMU
|
|
extern int is_vmalloc_or_module_addr(const void *x);
|
|
#else
|
|
static inline int is_vmalloc_or_module_addr(const void *x)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static inline struct page *compound_head(struct page *page)
|
|
{
|
|
if (unlikely(PageTail(page)))
|
|
return page->first_page;
|
|
return page;
|
|
}
|
|
|
|
static inline int page_count(struct page *page)
|
|
{
|
|
return atomic_read(&compound_head(page)->_count);
|
|
}
|
|
|
|
static inline void get_page(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
VM_BUG_ON(atomic_read(&page->_count) == 0);
|
|
atomic_inc(&page->_count);
|
|
}
|
|
|
|
static inline struct page *virt_to_head_page(const void *x)
|
|
{
|
|
struct page *page = virt_to_page(x);
|
|
return compound_head(page);
|
|
}
|
|
|
|
/*
|
|
* Setup the page count before being freed into the page allocator for
|
|
* the first time (boot or memory hotplug)
|
|
*/
|
|
static inline void init_page_count(struct page *page)
|
|
{
|
|
atomic_set(&page->_count, 1);
|
|
}
|
|
|
|
void put_page(struct page *page);
|
|
void put_pages_list(struct list_head *pages);
|
|
|
|
void split_page(struct page *page, unsigned int order);
|
|
int split_free_page(struct page *page);
|
|
|
|
/*
|
|
* Compound pages have a destructor function. Provide a
|
|
* prototype for that function and accessor functions.
|
|
* These are _only_ valid on the head of a PG_compound page.
|
|
*/
|
|
typedef void compound_page_dtor(struct page *);
|
|
|
|
static inline void set_compound_page_dtor(struct page *page,
|
|
compound_page_dtor *dtor)
|
|
{
|
|
page[1].lru.next = (void *)dtor;
|
|
}
|
|
|
|
static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
|
|
{
|
|
return (compound_page_dtor *)page[1].lru.next;
|
|
}
|
|
|
|
static inline int compound_order(struct page *page)
|
|
{
|
|
if (!PageHead(page))
|
|
return 0;
|
|
return (unsigned long)page[1].lru.prev;
|
|
}
|
|
|
|
static inline void set_compound_order(struct page *page, unsigned long order)
|
|
{
|
|
page[1].lru.prev = (void *)order;
|
|
}
|
|
|
|
/*
|
|
* Multiple processes may "see" the same page. E.g. for untouched
|
|
* mappings of /dev/null, all processes see the same page full of
|
|
* zeroes, and text pages of executables and shared libraries have
|
|
* only one copy in memory, at most, normally.
|
|
*
|
|
* For the non-reserved pages, page_count(page) denotes a reference count.
|
|
* page_count() == 0 means the page is free. page->lru is then used for
|
|
* freelist management in the buddy allocator.
|
|
* page_count() > 0 means the page has been allocated.
|
|
*
|
|
* Pages are allocated by the slab allocator in order to provide memory
|
|
* to kmalloc and kmem_cache_alloc. In this case, the management of the
|
|
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
|
|
* unless a particular usage is carefully commented. (the responsibility of
|
|
* freeing the kmalloc memory is the caller's, of course).
|
|
*
|
|
* A page may be used by anyone else who does a __get_free_page().
|
|
* In this case, page_count still tracks the references, and should only
|
|
* be used through the normal accessor functions. The top bits of page->flags
|
|
* and page->virtual store page management information, but all other fields
|
|
* are unused and could be used privately, carefully. The management of this
|
|
* page is the responsibility of the one who allocated it, and those who have
|
|
* subsequently been given references to it.
|
|
*
|
|
* The other pages (we may call them "pagecache pages") are completely
|
|
* managed by the Linux memory manager: I/O, buffers, swapping etc.
|
|
* The following discussion applies only to them.
|
|
*
|
|
* A pagecache page contains an opaque `private' member, which belongs to the
|
|
* page's address_space. Usually, this is the address of a circular list of
|
|
* the page's disk buffers. PG_private must be set to tell the VM to call
|
|
* into the filesystem to release these pages.
|
|
*
|
|
* A page may belong to an inode's memory mapping. In this case, page->mapping
|
|
* is the pointer to the inode, and page->index is the file offset of the page,
|
|
* in units of PAGE_CACHE_SIZE.
|
|
*
|
|
* If pagecache pages are not associated with an inode, they are said to be
|
|
* anonymous pages. These may become associated with the swapcache, and in that
|
|
* case PG_swapcache is set, and page->private is an offset into the swapcache.
|
|
*
|
|
* In either case (swapcache or inode backed), the pagecache itself holds one
|
|
* reference to the page. Setting PG_private should also increment the
|
|
* refcount. The each user mapping also has a reference to the page.
|
|
*
|
|
* The pagecache pages are stored in a per-mapping radix tree, which is
|
|
* rooted at mapping->page_tree, and indexed by offset.
|
|
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
|
|
* lists, we instead now tag pages as dirty/writeback in the radix tree.
|
|
*
|
|
* All pagecache pages may be subject to I/O:
|
|
* - inode pages may need to be read from disk,
|
|
* - inode pages which have been modified and are MAP_SHARED may need
|
|
* to be written back to the inode on disk,
|
|
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
|
|
* modified may need to be swapped out to swap space and (later) to be read
|
|
* back into memory.
|
|
*/
|
|
|
|
/*
|
|
* The zone field is never updated after free_area_init_core()
|
|
* sets it, so none of the operations on it need to be atomic.
|
|
*/
|
|
|
|
|
|
/*
|
|
* page->flags layout:
|
|
*
|
|
* There are three possibilities for how page->flags get
|
|
* laid out. The first is for the normal case, without
|
|
* sparsemem. The second is for sparsemem when there is
|
|
* plenty of space for node and section. The last is when
|
|
* we have run out of space and have to fall back to an
|
|
* alternate (slower) way of determining the node.
|
|
*
|
|
* No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
|
|
* classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
|
|
* classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
|
|
*/
|
|
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
|
|
#define SECTIONS_WIDTH SECTIONS_SHIFT
|
|
#else
|
|
#define SECTIONS_WIDTH 0
|
|
#endif
|
|
|
|
#define ZONES_WIDTH ZONES_SHIFT
|
|
|
|
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
|
|
#define NODES_WIDTH NODES_SHIFT
|
|
#else
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
#error "Vmemmap: No space for nodes field in page flags"
|
|
#endif
|
|
#define NODES_WIDTH 0
|
|
#endif
|
|
|
|
/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
|
|
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
|
|
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
|
|
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
|
|
|
|
/*
|
|
* We are going to use the flags for the page to node mapping if its in
|
|
* there. This includes the case where there is no node, so it is implicit.
|
|
*/
|
|
#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
|
|
#define NODE_NOT_IN_PAGE_FLAGS
|
|
#endif
|
|
|
|
#ifndef PFN_SECTION_SHIFT
|
|
#define PFN_SECTION_SHIFT 0
|
|
#endif
|
|
|
|
/*
|
|
* Define the bit shifts to access each section. For non-existant
|
|
* sections we define the shift as 0; that plus a 0 mask ensures
|
|
* the compiler will optimise away reference to them.
|
|
*/
|
|
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
|
|
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
|
|
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
|
|
|
|
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
|
|
#ifdef NODE_NOT_IN_PAGEFLAGS
|
|
#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
|
|
#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
|
|
SECTIONS_PGOFF : ZONES_PGOFF)
|
|
#else
|
|
#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
|
|
#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
|
|
NODES_PGOFF : ZONES_PGOFF)
|
|
#endif
|
|
|
|
#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
|
|
|
|
#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
|
|
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
|
|
#endif
|
|
|
|
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
|
|
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
|
|
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
|
|
#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
|
|
|
|
static inline enum zone_type page_zonenum(struct page *page)
|
|
{
|
|
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
|
|
}
|
|
|
|
/*
|
|
* The identification function is only used by the buddy allocator for
|
|
* determining if two pages could be buddies. We are not really
|
|
* identifying a zone since we could be using a the section number
|
|
* id if we have not node id available in page flags.
|
|
* We guarantee only that it will return the same value for two
|
|
* combinable pages in a zone.
|
|
*/
|
|
static inline int page_zone_id(struct page *page)
|
|
{
|
|
return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
|
|
}
|
|
|
|
static inline int zone_to_nid(struct zone *zone)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
return zone->node;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
extern int page_to_nid(struct page *page);
|
|
#else
|
|
static inline int page_to_nid(struct page *page)
|
|
{
|
|
return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
|
|
}
|
|
#endif
|
|
|
|
static inline struct zone *page_zone(struct page *page)
|
|
{
|
|
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
|
|
}
|
|
|
|
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
|
|
static inline unsigned long page_to_section(struct page *page)
|
|
{
|
|
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
|
|
}
|
|
#endif
|
|
|
|
static inline void set_page_zone(struct page *page, enum zone_type zone)
|
|
{
|
|
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
|
|
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_node(struct page *page, unsigned long node)
|
|
{
|
|
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
|
|
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_section(struct page *page, unsigned long section)
|
|
{
|
|
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
|
|
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_links(struct page *page, enum zone_type zone,
|
|
unsigned long node, unsigned long pfn)
|
|
{
|
|
set_page_zone(page, zone);
|
|
set_page_node(page, node);
|
|
set_page_section(page, pfn_to_section_nr(pfn));
|
|
}
|
|
|
|
/*
|
|
* Some inline functions in vmstat.h depend on page_zone()
|
|
*/
|
|
#include <linux/vmstat.h>
|
|
|
|
static __always_inline void *lowmem_page_address(struct page *page)
|
|
{
|
|
return __va(PFN_PHYS(page_to_pfn(page)));
|
|
}
|
|
|
|
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define HASHED_PAGE_VIRTUAL
|
|
#endif
|
|
|
|
#if defined(WANT_PAGE_VIRTUAL)
|
|
#define page_address(page) ((page)->virtual)
|
|
#define set_page_address(page, address) \
|
|
do { \
|
|
(page)->virtual = (address); \
|
|
} while(0)
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
#if defined(HASHED_PAGE_VIRTUAL)
|
|
void *page_address(struct page *page);
|
|
void set_page_address(struct page *page, void *virtual);
|
|
void page_address_init(void);
|
|
#endif
|
|
|
|
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define page_address(page) lowmem_page_address(page)
|
|
#define set_page_address(page, address) do { } while(0)
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
/*
|
|
* On an anonymous page mapped into a user virtual memory area,
|
|
* page->mapping points to its anon_vma, not to a struct address_space;
|
|
* with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
|
|
*
|
|
* On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
|
|
* the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
|
|
* and then page->mapping points, not to an anon_vma, but to a private
|
|
* structure which KSM associates with that merged page. See ksm.h.
|
|
*
|
|
* PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
|
|
*
|
|
* Please note that, confusingly, "page_mapping" refers to the inode
|
|
* address_space which maps the page from disk; whereas "page_mapped"
|
|
* refers to user virtual address space into which the page is mapped.
|
|
*/
|
|
#define PAGE_MAPPING_ANON 1
|
|
#define PAGE_MAPPING_KSM 2
|
|
#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
|
|
|
|
extern struct address_space swapper_space;
|
|
static inline struct address_space *page_mapping(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
VM_BUG_ON(PageSlab(page));
|
|
if (unlikely(PageSwapCache(page)))
|
|
mapping = &swapper_space;
|
|
else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
|
|
mapping = NULL;
|
|
return mapping;
|
|
}
|
|
|
|
/* Neutral page->mapping pointer to address_space or anon_vma or other */
|
|
static inline void *page_rmapping(struct page *page)
|
|
{
|
|
return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
|
|
}
|
|
|
|
static inline int PageAnon(struct page *page)
|
|
{
|
|
return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
|
|
}
|
|
|
|
/*
|
|
* Return the pagecache index of the passed page. Regular pagecache pages
|
|
* use ->index whereas swapcache pages use ->private
|
|
*/
|
|
static inline pgoff_t page_index(struct page *page)
|
|
{
|
|
if (unlikely(PageSwapCache(page)))
|
|
return page_private(page);
|
|
return page->index;
|
|
}
|
|
|
|
/*
|
|
* The atomic page->_mapcount, like _count, starts from -1:
|
|
* so that transitions both from it and to it can be tracked,
|
|
* using atomic_inc_and_test and atomic_add_negative(-1).
|
|
*/
|
|
static inline void reset_page_mapcount(struct page *page)
|
|
{
|
|
atomic_set(&(page)->_mapcount, -1);
|
|
}
|
|
|
|
static inline int page_mapcount(struct page *page)
|
|
{
|
|
return atomic_read(&(page)->_mapcount) + 1;
|
|
}
|
|
|
|
/*
|
|
* Return true if this page is mapped into pagetables.
|
|
*/
|
|
static inline int page_mapped(struct page *page)
|
|
{
|
|
return atomic_read(&(page)->_mapcount) >= 0;
|
|
}
|
|
|
|
/*
|
|
* Different kinds of faults, as returned by handle_mm_fault().
|
|
* Used to decide whether a process gets delivered SIGBUS or
|
|
* just gets major/minor fault counters bumped up.
|
|
*/
|
|
|
|
#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
|
|
|
|
#define VM_FAULT_OOM 0x0001
|
|
#define VM_FAULT_SIGBUS 0x0002
|
|
#define VM_FAULT_MAJOR 0x0004
|
|
#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
|
|
#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
|
|
|
|
#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
|
|
#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
|
|
|
|
#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
|
|
|
|
/*
|
|
* Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
|
|
*/
|
|
extern void pagefault_out_of_memory(void);
|
|
|
|
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
|
|
|
|
extern void show_free_areas(void);
|
|
|
|
int shmem_lock(struct file *file, int lock, struct user_struct *user);
|
|
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
|
|
int shmem_zero_setup(struct vm_area_struct *);
|
|
|
|
#ifndef CONFIG_MMU
|
|
extern unsigned long shmem_get_unmapped_area(struct file *file,
|
|
unsigned long addr,
|
|
unsigned long len,
|
|
unsigned long pgoff,
|
|
unsigned long flags);
|
|
#endif
|
|
|
|
extern int can_do_mlock(void);
|
|
extern int user_shm_lock(size_t, struct user_struct *);
|
|
extern void user_shm_unlock(size_t, struct user_struct *);
|
|
|
|
/*
|
|
* Parameter block passed down to zap_pte_range in exceptional cases.
|
|
*/
|
|
struct zap_details {
|
|
struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
|
|
struct address_space *check_mapping; /* Check page->mapping if set */
|
|
pgoff_t first_index; /* Lowest page->index to unmap */
|
|
pgoff_t last_index; /* Highest page->index to unmap */
|
|
spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
|
|
unsigned long truncate_count; /* Compare vm_truncate_count */
|
|
};
|
|
|
|
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t pte);
|
|
|
|
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size);
|
|
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size, struct zap_details *);
|
|
unsigned long unmap_vmas(struct mmu_gather **tlb,
|
|
struct vm_area_struct *start_vma, unsigned long start_addr,
|
|
unsigned long end_addr, unsigned long *nr_accounted,
|
|
struct zap_details *);
|
|
|
|
/**
|
|
* mm_walk - callbacks for walk_page_range
|
|
* @pgd_entry: if set, called for each non-empty PGD (top-level) entry
|
|
* @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
|
|
* @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
|
|
* @pte_entry: if set, called for each non-empty PTE (4th-level) entry
|
|
* @pte_hole: if set, called for each hole at all levels
|
|
* @hugetlb_entry: if set, called for each hugetlb entry
|
|
*
|
|
* (see walk_page_range for more details)
|
|
*/
|
|
struct mm_walk {
|
|
int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
|
|
int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
|
|
int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
|
|
int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
|
|
int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
|
|
int (*hugetlb_entry)(pte_t *, unsigned long,
|
|
unsigned long, unsigned long, struct mm_walk *);
|
|
struct mm_struct *mm;
|
|
void *private;
|
|
};
|
|
|
|
int walk_page_range(unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk);
|
|
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
|
|
unsigned long end, unsigned long floor, unsigned long ceiling);
|
|
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
struct vm_area_struct *vma);
|
|
void unmap_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen, int even_cows);
|
|
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long *pfn);
|
|
int follow_phys(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int flags, unsigned long *prot, resource_size_t *phys);
|
|
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write);
|
|
|
|
static inline void unmap_shared_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen)
|
|
{
|
|
unmap_mapping_range(mapping, holebegin, holelen, 0);
|
|
}
|
|
|
|
extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
|
|
extern void truncate_setsize(struct inode *inode, loff_t newsize);
|
|
extern int vmtruncate(struct inode *inode, loff_t offset);
|
|
extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
|
|
|
|
int truncate_inode_page(struct address_space *mapping, struct page *page);
|
|
int generic_error_remove_page(struct address_space *mapping, struct page *page);
|
|
|
|
int invalidate_inode_page(struct page *page);
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags);
|
|
#else
|
|
static inline int handle_mm_fault(struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int flags)
|
|
{
|
|
/* should never happen if there's no MMU */
|
|
BUG();
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
#endif
|
|
|
|
extern int make_pages_present(unsigned long addr, unsigned long end);
|
|
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
|
|
|
|
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, int nr_pages, int write, int force,
|
|
struct page **pages, struct vm_area_struct **vmas);
|
|
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages);
|
|
struct page *get_dump_page(unsigned long addr);
|
|
|
|
extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
|
|
extern void do_invalidatepage(struct page *page, unsigned long offset);
|
|
|
|
int __set_page_dirty_nobuffers(struct page *page);
|
|
int __set_page_dirty_no_writeback(struct page *page);
|
|
int redirty_page_for_writepage(struct writeback_control *wbc,
|
|
struct page *page);
|
|
void account_page_dirtied(struct page *page, struct address_space *mapping);
|
|
int set_page_dirty(struct page *page);
|
|
int set_page_dirty_lock(struct page *page);
|
|
int clear_page_dirty_for_io(struct page *page);
|
|
|
|
/* Is the vma a continuation of the stack vma above it? */
|
|
static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
|
|
}
|
|
|
|
extern unsigned long move_page_tables(struct vm_area_struct *vma,
|
|
unsigned long old_addr, struct vm_area_struct *new_vma,
|
|
unsigned long new_addr, unsigned long len);
|
|
extern unsigned long do_mremap(unsigned long addr,
|
|
unsigned long old_len, unsigned long new_len,
|
|
unsigned long flags, unsigned long new_addr);
|
|
extern int mprotect_fixup(struct vm_area_struct *vma,
|
|
struct vm_area_struct **pprev, unsigned long start,
|
|
unsigned long end, unsigned long newflags);
|
|
|
|
/*
|
|
* doesn't attempt to fault and will return short.
|
|
*/
|
|
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages);
|
|
/*
|
|
* per-process(per-mm_struct) statistics.
|
|
*/
|
|
#if defined(SPLIT_RSS_COUNTING)
|
|
/*
|
|
* The mm counters are not protected by its page_table_lock,
|
|
* so must be incremented atomically.
|
|
*/
|
|
static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
|
|
{
|
|
atomic_long_set(&mm->rss_stat.count[member], value);
|
|
}
|
|
|
|
unsigned long get_mm_counter(struct mm_struct *mm, int member);
|
|
|
|
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
|
|
{
|
|
atomic_long_add(value, &mm->rss_stat.count[member]);
|
|
}
|
|
|
|
static inline void inc_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
atomic_long_inc(&mm->rss_stat.count[member]);
|
|
}
|
|
|
|
static inline void dec_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
atomic_long_dec(&mm->rss_stat.count[member]);
|
|
}
|
|
|
|
#else /* !USE_SPLIT_PTLOCKS */
|
|
/*
|
|
* The mm counters are protected by its page_table_lock,
|
|
* so can be incremented directly.
|
|
*/
|
|
static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
|
|
{
|
|
mm->rss_stat.count[member] = value;
|
|
}
|
|
|
|
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
return mm->rss_stat.count[member];
|
|
}
|
|
|
|
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
|
|
{
|
|
mm->rss_stat.count[member] += value;
|
|
}
|
|
|
|
static inline void inc_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
mm->rss_stat.count[member]++;
|
|
}
|
|
|
|
static inline void dec_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
mm->rss_stat.count[member]--;
|
|
}
|
|
|
|
#endif /* !USE_SPLIT_PTLOCKS */
|
|
|
|
static inline unsigned long get_mm_rss(struct mm_struct *mm)
|
|
{
|
|
return get_mm_counter(mm, MM_FILEPAGES) +
|
|
get_mm_counter(mm, MM_ANONPAGES);
|
|
}
|
|
|
|
static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
return max(mm->hiwater_rss, get_mm_rss(mm));
|
|
}
|
|
|
|
static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
|
|
{
|
|
return max(mm->hiwater_vm, mm->total_vm);
|
|
}
|
|
|
|
static inline void update_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
unsigned long _rss = get_mm_rss(mm);
|
|
|
|
if ((mm)->hiwater_rss < _rss)
|
|
(mm)->hiwater_rss = _rss;
|
|
}
|
|
|
|
static inline void update_hiwater_vm(struct mm_struct *mm)
|
|
{
|
|
if (mm->hiwater_vm < mm->total_vm)
|
|
mm->hiwater_vm = mm->total_vm;
|
|
}
|
|
|
|
static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
|
|
struct mm_struct *mm)
|
|
{
|
|
unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
|
|
|
|
if (*maxrss < hiwater_rss)
|
|
*maxrss = hiwater_rss;
|
|
}
|
|
|
|
#if defined(SPLIT_RSS_COUNTING)
|
|
void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
|
|
#else
|
|
static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* A callback you can register to apply pressure to ageable caches.
|
|
*
|
|
* 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
|
|
* look through the least-recently-used 'nr_to_scan' entries and
|
|
* attempt to free them up. It should return the number of objects
|
|
* which remain in the cache. If it returns -1, it means it cannot do
|
|
* any scanning at this time (eg. there is a risk of deadlock).
|
|
*
|
|
* The 'gfpmask' refers to the allocation we are currently trying to
|
|
* fulfil.
|
|
*
|
|
* Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
|
|
* querying the cache size, so a fastpath for that case is appropriate.
|
|
*/
|
|
struct shrinker {
|
|
int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
|
|
int seeks; /* seeks to recreate an obj */
|
|
|
|
/* These are for internal use */
|
|
struct list_head list;
|
|
long nr; /* objs pending delete */
|
|
};
|
|
#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
|
|
extern void register_shrinker(struct shrinker *);
|
|
extern void unregister_shrinker(struct shrinker *);
|
|
|
|
int vma_wants_writenotify(struct vm_area_struct *vma);
|
|
|
|
extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
|
|
|
|
#ifdef __PAGETABLE_PUD_FOLDED
|
|
static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
|
|
unsigned long address)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
|
|
#endif
|
|
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
|
|
#endif
|
|
|
|
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
|
|
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
|
|
|
|
/*
|
|
* The following ifdef needed to get the 4level-fixup.h header to work.
|
|
* Remove it when 4level-fixup.h has been removed.
|
|
*/
|
|
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
|
|
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
|
|
{
|
|
return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
|
|
NULL: pud_offset(pgd, address);
|
|
}
|
|
|
|
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
|
{
|
|
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
|
|
NULL: pmd_offset(pud, address);
|
|
}
|
|
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
|
|
|
|
#if USE_SPLIT_PTLOCKS
|
|
/*
|
|
* We tuck a spinlock to guard each pagetable page into its struct page,
|
|
* at page->private, with BUILD_BUG_ON to make sure that this will not
|
|
* overflow into the next struct page (as it might with DEBUG_SPINLOCK).
|
|
* When freeing, reset page->mapping so free_pages_check won't complain.
|
|
*/
|
|
#define __pte_lockptr(page) &((page)->ptl)
|
|
#define pte_lock_init(_page) do { \
|
|
spin_lock_init(__pte_lockptr(_page)); \
|
|
} while (0)
|
|
#define pte_lock_deinit(page) ((page)->mapping = NULL)
|
|
#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
|
|
#else /* !USE_SPLIT_PTLOCKS */
|
|
/*
|
|
* We use mm->page_table_lock to guard all pagetable pages of the mm.
|
|
*/
|
|
#define pte_lock_init(page) do {} while (0)
|
|
#define pte_lock_deinit(page) do {} while (0)
|
|
#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
|
|
#endif /* USE_SPLIT_PTLOCKS */
|
|
|
|
static inline void pgtable_page_ctor(struct page *page)
|
|
{
|
|
pte_lock_init(page);
|
|
inc_zone_page_state(page, NR_PAGETABLE);
|
|
}
|
|
|
|
static inline void pgtable_page_dtor(struct page *page)
|
|
{
|
|
pte_lock_deinit(page);
|
|
dec_zone_page_state(page, NR_PAGETABLE);
|
|
}
|
|
|
|
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
|
|
({ \
|
|
spinlock_t *__ptl = pte_lockptr(mm, pmd); \
|
|
pte_t *__pte = pte_offset_map(pmd, address); \
|
|
*(ptlp) = __ptl; \
|
|
spin_lock(__ptl); \
|
|
__pte; \
|
|
})
|
|
|
|
#define pte_unmap_unlock(pte, ptl) do { \
|
|
spin_unlock(ptl); \
|
|
pte_unmap(pte); \
|
|
} while (0)
|
|
|
|
#define pte_alloc_map(mm, pmd, address) \
|
|
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
|
|
NULL: pte_offset_map(pmd, address))
|
|
|
|
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
|
|
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
|
|
NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
|
|
|
|
#define pte_alloc_kernel(pmd, address) \
|
|
((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
|
|
NULL: pte_offset_kernel(pmd, address))
|
|
|
|
extern void free_area_init(unsigned long * zones_size);
|
|
extern void free_area_init_node(int nid, unsigned long * zones_size,
|
|
unsigned long zone_start_pfn, unsigned long *zholes_size);
|
|
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
|
|
/*
|
|
* With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
|
|
* zones, allocate the backing mem_map and account for memory holes in a more
|
|
* architecture independent manner. This is a substitute for creating the
|
|
* zone_sizes[] and zholes_size[] arrays and passing them to
|
|
* free_area_init_node()
|
|
*
|
|
* An architecture is expected to register range of page frames backed by
|
|
* physical memory with add_active_range() before calling
|
|
* free_area_init_nodes() passing in the PFN each zone ends at. At a basic
|
|
* usage, an architecture is expected to do something like
|
|
*
|
|
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
|
|
* max_highmem_pfn};
|
|
* for_each_valid_physical_page_range()
|
|
* add_active_range(node_id, start_pfn, end_pfn)
|
|
* free_area_init_nodes(max_zone_pfns);
|
|
*
|
|
* If the architecture guarantees that there are no holes in the ranges
|
|
* registered with add_active_range(), free_bootmem_active_regions()
|
|
* will call free_bootmem_node() for each registered physical page range.
|
|
* Similarly sparse_memory_present_with_active_regions() calls
|
|
* memory_present() for each range when SPARSEMEM is enabled.
|
|
*
|
|
* See mm/page_alloc.c for more information on each function exposed by
|
|
* CONFIG_ARCH_POPULATES_NODE_MAP
|
|
*/
|
|
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
|
|
extern void add_active_range(unsigned int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern void remove_all_active_ranges(void);
|
|
void sort_node_map(void);
|
|
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern void get_pfn_range_for_nid(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn);
|
|
extern unsigned long find_min_pfn_with_active_regions(void);
|
|
extern void free_bootmem_with_active_regions(int nid,
|
|
unsigned long max_low_pfn);
|
|
int add_from_early_node_map(struct range *range, int az,
|
|
int nr_range, int nid);
|
|
void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
|
|
u64 goal, u64 limit);
|
|
typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
|
|
extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
|
|
extern void sparse_memory_present_with_active_regions(int nid);
|
|
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
|
|
|
|
#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
|
|
!defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
|
|
static inline int __early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
/* please see mm/page_alloc.c */
|
|
extern int __meminit early_pfn_to_nid(unsigned long pfn);
|
|
#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
|
|
/* there is a per-arch backend function. */
|
|
extern int __meminit __early_pfn_to_nid(unsigned long pfn);
|
|
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
|
|
#endif
|
|
|
|
extern void set_dma_reserve(unsigned long new_dma_reserve);
|
|
extern void memmap_init_zone(unsigned long, int, unsigned long,
|
|
unsigned long, enum memmap_context);
|
|
extern void setup_per_zone_wmarks(void);
|
|
extern void calculate_zone_inactive_ratio(struct zone *zone);
|
|
extern void mem_init(void);
|
|
extern void __init mmap_init(void);
|
|
extern void show_mem(void);
|
|
extern void si_meminfo(struct sysinfo * val);
|
|
extern void si_meminfo_node(struct sysinfo *val, int nid);
|
|
extern int after_bootmem;
|
|
|
|
extern void setup_per_cpu_pageset(void);
|
|
|
|
extern void zone_pcp_update(struct zone *zone);
|
|
|
|
/* nommu.c */
|
|
extern atomic_long_t mmap_pages_allocated;
|
|
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
|
|
|
|
/* prio_tree.c */
|
|
void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
|
|
void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
|
|
void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
|
|
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
|
|
struct prio_tree_iter *iter);
|
|
|
|
#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
|
|
for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
|
|
(vma = vma_prio_tree_next(vma, iter)); )
|
|
|
|
static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
|
|
struct list_head *list)
|
|
{
|
|
vma->shared.vm_set.parent = NULL;
|
|
list_add_tail(&vma->shared.vm_set.list, list);
|
|
}
|
|
|
|
/* mmap.c */
|
|
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
|
|
extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
|
|
extern struct vm_area_struct *vma_merge(struct mm_struct *,
|
|
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
|
|
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
|
|
struct mempolicy *);
|
|
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
|
|
extern int split_vma(struct mm_struct *,
|
|
struct vm_area_struct *, unsigned long addr, int new_below);
|
|
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
|
|
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
|
|
struct rb_node **, struct rb_node *);
|
|
extern void unlink_file_vma(struct vm_area_struct *);
|
|
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
|
|
unsigned long addr, unsigned long len, pgoff_t pgoff);
|
|
extern void exit_mmap(struct mm_struct *);
|
|
|
|
extern int mm_take_all_locks(struct mm_struct *mm);
|
|
extern void mm_drop_all_locks(struct mm_struct *mm);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
|
|
extern void added_exe_file_vma(struct mm_struct *mm);
|
|
extern void removed_exe_file_vma(struct mm_struct *mm);
|
|
#else
|
|
static inline void added_exe_file_vma(struct mm_struct *mm)
|
|
{}
|
|
|
|
static inline void removed_exe_file_vma(struct mm_struct *mm)
|
|
{}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
|
|
extern int install_special_mapping(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long flags, struct page **pages);
|
|
|
|
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
|
|
|
|
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot,
|
|
unsigned long flag, unsigned long pgoff);
|
|
extern unsigned long mmap_region(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long flags,
|
|
unsigned int vm_flags, unsigned long pgoff);
|
|
|
|
static inline unsigned long do_mmap(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot,
|
|
unsigned long flag, unsigned long offset)
|
|
{
|
|
unsigned long ret = -EINVAL;
|
|
if ((offset + PAGE_ALIGN(len)) < offset)
|
|
goto out;
|
|
if (!(offset & ~PAGE_MASK))
|
|
ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
|
|
|
|
extern unsigned long do_brk(unsigned long, unsigned long);
|
|
|
|
/* filemap.c */
|
|
extern unsigned long page_unuse(struct page *);
|
|
extern void truncate_inode_pages(struct address_space *, loff_t);
|
|
extern void truncate_inode_pages_range(struct address_space *,
|
|
loff_t lstart, loff_t lend);
|
|
|
|
/* generic vm_area_ops exported for stackable file systems */
|
|
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
|
|
|
|
/* mm/page-writeback.c */
|
|
int write_one_page(struct page *page, int wait);
|
|
void task_dirty_inc(struct task_struct *tsk);
|
|
|
|
/* readahead.c */
|
|
#define VM_MAX_READAHEAD 128 /* kbytes */
|
|
#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
|
|
|
|
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
|
|
pgoff_t offset, unsigned long nr_to_read);
|
|
|
|
void page_cache_sync_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
struct file *filp,
|
|
pgoff_t offset,
|
|
unsigned long size);
|
|
|
|
void page_cache_async_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
struct file *filp,
|
|
struct page *pg,
|
|
pgoff_t offset,
|
|
unsigned long size);
|
|
|
|
unsigned long max_sane_readahead(unsigned long nr);
|
|
unsigned long ra_submit(struct file_ra_state *ra,
|
|
struct address_space *mapping,
|
|
struct file *filp);
|
|
|
|
/* Do stack extension */
|
|
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
|
|
#if VM_GROWSUP
|
|
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
|
|
#else
|
|
#define expand_upwards(vma, address) do { } while (0)
|
|
#endif
|
|
extern int expand_stack_downwards(struct vm_area_struct *vma,
|
|
unsigned long address);
|
|
|
|
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
|
|
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
|
|
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
|
|
struct vm_area_struct **pprev);
|
|
|
|
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
|
|
NULL if none. Assume start_addr < end_addr. */
|
|
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
|
|
{
|
|
struct vm_area_struct * vma = find_vma(mm,start_addr);
|
|
|
|
if (vma && end_addr <= vma->vm_start)
|
|
vma = NULL;
|
|
return vma;
|
|
}
|
|
|
|
static inline unsigned long vma_pages(struct vm_area_struct *vma)
|
|
{
|
|
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
pgprot_t vm_get_page_prot(unsigned long vm_flags);
|
|
#else
|
|
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
|
|
{
|
|
return __pgprot(0);
|
|
}
|
|
#endif
|
|
|
|
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
|
|
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
|
|
unsigned long pfn, unsigned long size, pgprot_t);
|
|
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
|
|
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn);
|
|
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn);
|
|
|
|
struct page *follow_page(struct vm_area_struct *, unsigned long address,
|
|
unsigned int foll_flags);
|
|
#define FOLL_WRITE 0x01 /* check pte is writable */
|
|
#define FOLL_TOUCH 0x02 /* mark page accessed */
|
|
#define FOLL_GET 0x04 /* do get_page on page */
|
|
#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
|
|
#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
|
|
|
|
typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
|
|
void *data);
|
|
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
|
|
unsigned long size, pte_fn_t fn, void *data);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
|
|
#else
|
|
static inline void vm_stat_account(struct mm_struct *mm,
|
|
unsigned long flags, struct file *file, long pages)
|
|
{
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
extern int debug_pagealloc_enabled;
|
|
|
|
extern void kernel_map_pages(struct page *page, int numpages, int enable);
|
|
|
|
static inline void enable_debug_pagealloc(void)
|
|
{
|
|
debug_pagealloc_enabled = 1;
|
|
}
|
|
#ifdef CONFIG_HIBERNATION
|
|
extern bool kernel_page_present(struct page *page);
|
|
#endif /* CONFIG_HIBERNATION */
|
|
#else
|
|
static inline void
|
|
kernel_map_pages(struct page *page, int numpages, int enable) {}
|
|
static inline void enable_debug_pagealloc(void)
|
|
{
|
|
}
|
|
#ifdef CONFIG_HIBERNATION
|
|
static inline bool kernel_page_present(struct page *page) { return true; }
|
|
#endif /* CONFIG_HIBERNATION */
|
|
#endif
|
|
|
|
extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
|
|
#ifdef __HAVE_ARCH_GATE_AREA
|
|
int in_gate_area_no_task(unsigned long addr);
|
|
int in_gate_area(struct task_struct *task, unsigned long addr);
|
|
#else
|
|
int in_gate_area_no_task(unsigned long addr);
|
|
#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
|
|
#endif /* __HAVE_ARCH_GATE_AREA */
|
|
|
|
int drop_caches_sysctl_handler(struct ctl_table *, int,
|
|
void __user *, size_t *, loff_t *);
|
|
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
|
|
unsigned long lru_pages);
|
|
|
|
#ifndef CONFIG_MMU
|
|
#define randomize_va_space 0
|
|
#else
|
|
extern int randomize_va_space;
|
|
#endif
|
|
|
|
const char * arch_vma_name(struct vm_area_struct *vma);
|
|
void print_vma_addr(char *prefix, unsigned long rip);
|
|
|
|
void sparse_mem_maps_populate_node(struct page **map_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count,
|
|
int nodeid);
|
|
|
|
struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
|
|
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
|
|
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
|
|
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
|
|
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
|
|
void *vmemmap_alloc_block(unsigned long size, int node);
|
|
void *vmemmap_alloc_block_buf(unsigned long size, int node);
|
|
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
|
|
int vmemmap_populate_basepages(struct page *start_page,
|
|
unsigned long pages, int node);
|
|
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
|
|
void vmemmap_populate_print_last(void);
|
|
|
|
|
|
enum mf_flags {
|
|
MF_COUNT_INCREASED = 1 << 0,
|
|
};
|
|
extern void memory_failure(unsigned long pfn, int trapno);
|
|
extern int __memory_failure(unsigned long pfn, int trapno, int flags);
|
|
extern int unpoison_memory(unsigned long pfn);
|
|
extern int sysctl_memory_failure_early_kill;
|
|
extern int sysctl_memory_failure_recovery;
|
|
extern void shake_page(struct page *p, int access);
|
|
extern atomic_long_t mce_bad_pages;
|
|
extern int soft_offline_page(struct page *page, int flags);
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
int is_hwpoison_address(unsigned long addr);
|
|
#else
|
|
static inline int is_hwpoison_address(unsigned long addr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
extern void dump_page(struct page *page);
|
|
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _LINUX_MM_H */
|