Linus Torvalds d080827f85 libnvdimm for 4.5
1/ Media error handling: The 'badblocks' implementation that originated
    in md-raid is up-levelled to a generic capability of a block device.
    This initial implementation is limited to being consulted in the pmem
    block-i/o path.  Later, 'badblocks' will be consulted when creating
    dax mappings.
 
 2/ Raw block device dax: For virtualization and other cases that want
    large contiguous mappings of persistent memory, add the capability to
    dax-mmap a block device directly.
 
 3/ Increased /dev/mem restrictions: Add an option to treat all io-memory
    as IORESOURCE_EXCLUSIVE, i.e. disable /dev/mem access while a driver is
    actively using an address range.  This behavior is controlled via the
    new CONFIG_IO_STRICT_DEVMEM option and can be overridden by the
    existing "iomem=relaxed" kernel command line option.
 
 4/ Miscellaneous fixes include a 'pfn'-device huge page alignment fix,
    block device shutdown crash fix, and other small libnvdimm fixes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWlrhjAAoJEB7SkWpmfYgCFbAQALKsQfFwT6JFS+zlPgiNpbqw
 2VMNKEH0AfGYGj96mT02j2q+vSUmXLMIDMTsbe0sDdtwFZtQbFmhmryzPWUVppSu
 KGTlLPW8vuEhQVs91+UI3BQKkvpi0+tbR8hPOh9W6QhjpRT+lyHFKnsNR5HZy5wB
 K4/VMaT5ffd5/pXRTjkYiPQYTwWyfcvNjICj0YtqhPvOwS031m77JpFsWJ8HSpEX
 K99VlzNUPMXd1pYkHmFNXWw52fhRGNhwAEomLeKMdQfKms+KnbKp8BOSA0aCqU8E
 kpujQcilDXJwykFQZOFI3Z5Dxvrv8lxFTU8HRMBvo3ESzfTWjfqcvyjGOjDUcruw
 ihESFSJtdZzhrBiMnf9RRqSpMFJvAT8MVT6Q4D3mZUHCMPbUqFJsQjMPt9hEH3ho
 4F0D2lesOCkubUKFTZmjMoDb+szuKbVhYK8TeFVVEhizinc/Aj0NKuazJqi+CXB/
 xh0ER4ZxD8wvzqFFWvS5UvR1G9I5fr7+3jGRUrqGLHlSdeXP9dkEg28ao3QbWk3x
 1dPOen6ZqQ9WJ/E7eGmXbVEz2R4Xd79hMXQzdQwmKDk/KbxRoAp7hyU8BslAyrBf
 HCdmVt+RAgrxZYfFRXuLhqwEBThJnNrgZA3qu74FUpkpFg6xRUu1bAYBiF7N+bFi
 82b5UbMkveBTtkXjJoiR
 =7V5r
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "The bulk of this has appeared in -next and independently received a
  build success notification from the kbuild robot.  The 'for-4.5/block-
  dax' topic branch was rebased over the weekend to drop the "block
  device end-of-life" rework that Al would like to see re-implemented
  with a notifier, and to address bug reports against the badblocks
  integration.

  There is pending feedback against "libnvdimm: Add a poison list and
  export badblocks" received last week.  Linda identified some localized
  fixups that we will handle incrementally.

  Summary:

   - Media error handling: The 'badblocks' implementation that
     originated in md-raid is up-levelled to a generic capability of a
     block device.  This initial implementation is limited to being
     consulted in the pmem block-i/o path.  Later, 'badblocks' will be
     consulted when creating dax mappings.

   - Raw block device dax: For virtualization and other cases that want
     large contiguous mappings of persistent memory, add the capability
     to dax-mmap a block device directly.

   - Increased /dev/mem restrictions: Add an option to treat all
     io-memory as IORESOURCE_EXCLUSIVE, i.e. disable /dev/mem access
     while a driver is actively using an address range.  This behavior
     is controlled via the new CONFIG_IO_STRICT_DEVMEM option and can be
     overridden by the existing "iomem=relaxed" kernel command line
     option.

   - Miscellaneous fixes include a 'pfn'-device huge page alignment fix,
     block device shutdown crash fix, and other small libnvdimm fixes"

* tag 'libnvdimm-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (32 commits)
  block: kill disk_{check|set|clear|alloc}_badblocks
  libnvdimm, pmem: nvdimm_read_bytes() badblocks support
  pmem, dax: disable dax in the presence of bad blocks
  pmem: fail io-requests to known bad blocks
  libnvdimm: convert to statically allocated badblocks
  libnvdimm: don't fail init for full badblocks list
  block, badblocks: introduce devm_init_badblocks
  block: clarify badblocks lifetime
  badblocks: rename badblocks_free to badblocks_exit
  libnvdimm, pmem: move definition of nvdimm_namespace_add_poison to nd.h
  libnvdimm: Add a poison list and export badblocks
  nfit_test: Enable DSMs for all test NFITs
  md: convert to use the generic badblocks code
  block: Add badblock management for gendisks
  badblocks: Add core badblock management code
  block: fix del_gendisk() vs blkdev_ioctl crash
  block: enable dax for raw block devices
  block: introduce bdev_file_inode()
  restrict /dev/mem to idle io memory ranges
  arch: consolidate CONFIG_STRICT_DEVM in lib/Kconfig.debug
  ...
2016-01-13 19:15:14 -08:00

2105 lines
55 KiB
C

/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/list_sort.h>
#include <linux/libnvdimm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/ndctl.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/acpi.h>
#include <linux/sort.h>
#include <linux/pmem.h>
#include <linux/io.h>
#include <asm/cacheflush.h>
#include "nfit.h"
/*
* For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
* irrelevant.
*/
#include <linux/io-64-nonatomic-hi-lo.h>
static bool force_enable_dimms;
module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
struct nfit_table_prev {
struct list_head spas;
struct list_head memdevs;
struct list_head dcrs;
struct list_head bdws;
struct list_head idts;
struct list_head flushes;
};
static u8 nfit_uuid[NFIT_UUID_MAX][16];
const u8 *to_nfit_uuid(enum nfit_uuids id)
{
return nfit_uuid[id];
}
EXPORT_SYMBOL(to_nfit_uuid);
static struct acpi_nfit_desc *to_acpi_nfit_desc(
struct nvdimm_bus_descriptor *nd_desc)
{
return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
}
static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
/*
* If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
* acpi_device.
*/
if (!nd_desc->provider_name
|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
return NULL;
return to_acpi_device(acpi_desc->dev);
}
static int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd, void *buf,
unsigned int buf_len)
{
struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
const struct nd_cmd_desc *desc = NULL;
union acpi_object in_obj, in_buf, *out_obj;
struct device *dev = acpi_desc->dev;
const char *cmd_name, *dimm_name;
unsigned long dsm_mask;
acpi_handle handle;
const u8 *uuid;
u32 offset;
int rc, i;
if (nvdimm) {
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct acpi_device *adev = nfit_mem->adev;
if (!adev)
return -ENOTTY;
dimm_name = nvdimm_name(nvdimm);
cmd_name = nvdimm_cmd_name(cmd);
dsm_mask = nfit_mem->dsm_mask;
desc = nd_cmd_dimm_desc(cmd);
uuid = to_nfit_uuid(NFIT_DEV_DIMM);
handle = adev->handle;
} else {
struct acpi_device *adev = to_acpi_dev(acpi_desc);
cmd_name = nvdimm_bus_cmd_name(cmd);
dsm_mask = nd_desc->dsm_mask;
desc = nd_cmd_bus_desc(cmd);
uuid = to_nfit_uuid(NFIT_DEV_BUS);
handle = adev->handle;
dimm_name = "bus";
}
if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
return -ENOTTY;
if (!test_bit(cmd, &dsm_mask))
return -ENOTTY;
in_obj.type = ACPI_TYPE_PACKAGE;
in_obj.package.count = 1;
in_obj.package.elements = &in_buf;
in_buf.type = ACPI_TYPE_BUFFER;
in_buf.buffer.pointer = buf;
in_buf.buffer.length = 0;
/* libnvdimm has already validated the input envelope */
for (i = 0; i < desc->in_num; i++)
in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
i, buf);
if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
dev_dbg(dev, "%s:%s cmd: %s input length: %d\n", __func__,
dimm_name, cmd_name, in_buf.buffer.length);
print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4,
4, in_buf.buffer.pointer, min_t(u32, 128,
in_buf.buffer.length), true);
}
out_obj = acpi_evaluate_dsm(handle, uuid, 1, cmd, &in_obj);
if (!out_obj) {
dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
cmd_name);
return -EINVAL;
}
if (out_obj->package.type != ACPI_TYPE_BUFFER) {
dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
__func__, dimm_name, cmd_name, out_obj->type);
rc = -EINVAL;
goto out;
}
if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__,
dimm_name, cmd_name, out_obj->buffer.length);
print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4,
4, out_obj->buffer.pointer, min_t(u32, 128,
out_obj->buffer.length), true);
}
for (i = 0, offset = 0; i < desc->out_num; i++) {
u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
(u32 *) out_obj->buffer.pointer);
if (offset + out_size > out_obj->buffer.length) {
dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
__func__, dimm_name, cmd_name, i);
break;
}
if (in_buf.buffer.length + offset + out_size > buf_len) {
dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
__func__, dimm_name, cmd_name, i);
rc = -ENXIO;
goto out;
}
memcpy(buf + in_buf.buffer.length + offset,
out_obj->buffer.pointer + offset, out_size);
offset += out_size;
}
if (offset + in_buf.buffer.length < buf_len) {
if (i >= 1) {
/*
* status valid, return the number of bytes left
* unfilled in the output buffer
*/
rc = buf_len - offset - in_buf.buffer.length;
} else {
dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
__func__, dimm_name, cmd_name, buf_len,
offset);
rc = -ENXIO;
}
} else
rc = 0;
out:
ACPI_FREE(out_obj);
return rc;
}
static const char *spa_type_name(u16 type)
{
static const char *to_name[] = {
[NFIT_SPA_VOLATILE] = "volatile",
[NFIT_SPA_PM] = "pmem",
[NFIT_SPA_DCR] = "dimm-control-region",
[NFIT_SPA_BDW] = "block-data-window",
[NFIT_SPA_VDISK] = "volatile-disk",
[NFIT_SPA_VCD] = "volatile-cd",
[NFIT_SPA_PDISK] = "persistent-disk",
[NFIT_SPA_PCD] = "persistent-cd",
};
if (type > NFIT_SPA_PCD)
return "unknown";
return to_name[type];
}
static int nfit_spa_type(struct acpi_nfit_system_address *spa)
{
int i;
for (i = 0; i < NFIT_UUID_MAX; i++)
if (memcmp(to_nfit_uuid(i), spa->range_guid, 16) == 0)
return i;
return -1;
}
static bool add_spa(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_system_address *spa)
{
size_t length = min_t(size_t, sizeof(*spa), spa->header.length);
struct device *dev = acpi_desc->dev;
struct nfit_spa *nfit_spa;
list_for_each_entry(nfit_spa, &prev->spas, list) {
if (memcmp(nfit_spa->spa, spa, length) == 0) {
list_move_tail(&nfit_spa->list, &acpi_desc->spas);
return true;
}
}
nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa), GFP_KERNEL);
if (!nfit_spa)
return false;
INIT_LIST_HEAD(&nfit_spa->list);
nfit_spa->spa = spa;
list_add_tail(&nfit_spa->list, &acpi_desc->spas);
dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
spa->range_index,
spa_type_name(nfit_spa_type(spa)));
return true;
}
static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_memory_map *memdev)
{
size_t length = min_t(size_t, sizeof(*memdev), memdev->header.length);
struct device *dev = acpi_desc->dev;
struct nfit_memdev *nfit_memdev;
list_for_each_entry(nfit_memdev, &prev->memdevs, list)
if (memcmp(nfit_memdev->memdev, memdev, length) == 0) {
list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
return true;
}
nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev), GFP_KERNEL);
if (!nfit_memdev)
return false;
INIT_LIST_HEAD(&nfit_memdev->list);
nfit_memdev->memdev = memdev;
list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d\n",
__func__, memdev->device_handle, memdev->range_index,
memdev->region_index);
return true;
}
static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_control_region *dcr)
{
size_t length = min_t(size_t, sizeof(*dcr), dcr->header.length);
struct device *dev = acpi_desc->dev;
struct nfit_dcr *nfit_dcr;
list_for_each_entry(nfit_dcr, &prev->dcrs, list)
if (memcmp(nfit_dcr->dcr, dcr, length) == 0) {
list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
return true;
}
nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr), GFP_KERNEL);
if (!nfit_dcr)
return false;
INIT_LIST_HEAD(&nfit_dcr->list);
nfit_dcr->dcr = dcr;
list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
dcr->region_index, dcr->windows);
return true;
}
static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_data_region *bdw)
{
size_t length = min_t(size_t, sizeof(*bdw), bdw->header.length);
struct device *dev = acpi_desc->dev;
struct nfit_bdw *nfit_bdw;
list_for_each_entry(nfit_bdw, &prev->bdws, list)
if (memcmp(nfit_bdw->bdw, bdw, length) == 0) {
list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
return true;
}
nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw), GFP_KERNEL);
if (!nfit_bdw)
return false;
INIT_LIST_HEAD(&nfit_bdw->list);
nfit_bdw->bdw = bdw;
list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
bdw->region_index, bdw->windows);
return true;
}
static bool add_idt(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_interleave *idt)
{
size_t length = min_t(size_t, sizeof(*idt), idt->header.length);
struct device *dev = acpi_desc->dev;
struct nfit_idt *nfit_idt;
list_for_each_entry(nfit_idt, &prev->idts, list)
if (memcmp(nfit_idt->idt, idt, length) == 0) {
list_move_tail(&nfit_idt->list, &acpi_desc->idts);
return true;
}
nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt), GFP_KERNEL);
if (!nfit_idt)
return false;
INIT_LIST_HEAD(&nfit_idt->list);
nfit_idt->idt = idt;
list_add_tail(&nfit_idt->list, &acpi_desc->idts);
dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
idt->interleave_index, idt->line_count);
return true;
}
static bool add_flush(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_flush_address *flush)
{
size_t length = min_t(size_t, sizeof(*flush), flush->header.length);
struct device *dev = acpi_desc->dev;
struct nfit_flush *nfit_flush;
list_for_each_entry(nfit_flush, &prev->flushes, list)
if (memcmp(nfit_flush->flush, flush, length) == 0) {
list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
return true;
}
nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush), GFP_KERNEL);
if (!nfit_flush)
return false;
INIT_LIST_HEAD(&nfit_flush->list);
nfit_flush->flush = flush;
list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
flush->device_handle, flush->hint_count);
return true;
}
static void *add_table(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev, void *table, const void *end)
{
struct device *dev = acpi_desc->dev;
struct acpi_nfit_header *hdr;
void *err = ERR_PTR(-ENOMEM);
if (table >= end)
return NULL;
hdr = table;
if (!hdr->length) {
dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
hdr->type);
return NULL;
}
switch (hdr->type) {
case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
if (!add_spa(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_MEMORY_MAP:
if (!add_memdev(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_CONTROL_REGION:
if (!add_dcr(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_DATA_REGION:
if (!add_bdw(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_INTERLEAVE:
if (!add_idt(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
if (!add_flush(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_SMBIOS:
dev_dbg(dev, "%s: smbios\n", __func__);
break;
default:
dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
break;
}
return table + hdr->length;
}
static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
struct nfit_mem *nfit_mem)
{
u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
u16 dcr = nfit_mem->dcr->region_index;
struct nfit_spa *nfit_spa;
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
u16 range_index = nfit_spa->spa->range_index;
int type = nfit_spa_type(nfit_spa->spa);
struct nfit_memdev *nfit_memdev;
if (type != NFIT_SPA_BDW)
continue;
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
if (nfit_memdev->memdev->range_index != range_index)
continue;
if (nfit_memdev->memdev->device_handle != device_handle)
continue;
if (nfit_memdev->memdev->region_index != dcr)
continue;
nfit_mem->spa_bdw = nfit_spa->spa;
return;
}
}
dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
nfit_mem->spa_dcr->range_index);
nfit_mem->bdw = NULL;
}
static int nfit_mem_add(struct acpi_nfit_desc *acpi_desc,
struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
{
u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
struct nfit_memdev *nfit_memdev;
struct nfit_flush *nfit_flush;
struct nfit_dcr *nfit_dcr;
struct nfit_bdw *nfit_bdw;
struct nfit_idt *nfit_idt;
u16 idt_idx, range_index;
list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
if (nfit_dcr->dcr->region_index != dcr)
continue;
nfit_mem->dcr = nfit_dcr->dcr;
break;
}
if (!nfit_mem->dcr) {
dev_dbg(acpi_desc->dev, "SPA %d missing:%s%s\n",
spa->range_index, __to_nfit_memdev(nfit_mem)
? "" : " MEMDEV", nfit_mem->dcr ? "" : " DCR");
return -ENODEV;
}
/*
* We've found enough to create an nvdimm, optionally
* find an associated BDW
*/
list_add(&nfit_mem->list, &acpi_desc->dimms);
list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
if (nfit_bdw->bdw->region_index != dcr)
continue;
nfit_mem->bdw = nfit_bdw->bdw;
break;
}
if (!nfit_mem->bdw)
return 0;
nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
if (!nfit_mem->spa_bdw)
return 0;
range_index = nfit_mem->spa_bdw->range_index;
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
if (nfit_memdev->memdev->range_index != range_index ||
nfit_memdev->memdev->region_index != dcr)
continue;
nfit_mem->memdev_bdw = nfit_memdev->memdev;
idt_idx = nfit_memdev->memdev->interleave_index;
list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
if (nfit_idt->idt->interleave_index != idt_idx)
continue;
nfit_mem->idt_bdw = nfit_idt->idt;
break;
}
list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
if (nfit_flush->flush->device_handle !=
nfit_memdev->memdev->device_handle)
continue;
nfit_mem->nfit_flush = nfit_flush;
break;
}
break;
}
return 0;
}
static int nfit_mem_dcr_init(struct acpi_nfit_desc *acpi_desc,
struct acpi_nfit_system_address *spa)
{
struct nfit_mem *nfit_mem, *found;
struct nfit_memdev *nfit_memdev;
int type = nfit_spa_type(spa);
u16 dcr;
switch (type) {
case NFIT_SPA_DCR:
case NFIT_SPA_PM:
break;
default:
return 0;
}
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
int rc;
if (nfit_memdev->memdev->range_index != spa->range_index)
continue;
found = NULL;
dcr = nfit_memdev->memdev->region_index;
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
if (__to_nfit_memdev(nfit_mem)->region_index == dcr) {
found = nfit_mem;
break;
}
if (found)
nfit_mem = found;
else {
nfit_mem = devm_kzalloc(acpi_desc->dev,
sizeof(*nfit_mem), GFP_KERNEL);
if (!nfit_mem)
return -ENOMEM;
INIT_LIST_HEAD(&nfit_mem->list);
}
if (type == NFIT_SPA_DCR) {
struct nfit_idt *nfit_idt;
u16 idt_idx;
/* multiple dimms may share a SPA when interleaved */
nfit_mem->spa_dcr = spa;
nfit_mem->memdev_dcr = nfit_memdev->memdev;
idt_idx = nfit_memdev->memdev->interleave_index;
list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
if (nfit_idt->idt->interleave_index != idt_idx)
continue;
nfit_mem->idt_dcr = nfit_idt->idt;
break;
}
} else {
/*
* A single dimm may belong to multiple SPA-PM
* ranges, record at least one in addition to
* any SPA-DCR range.
*/
nfit_mem->memdev_pmem = nfit_memdev->memdev;
}
if (found)
continue;
rc = nfit_mem_add(acpi_desc, nfit_mem, spa);
if (rc)
return rc;
}
return 0;
}
static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
{
struct nfit_mem *a = container_of(_a, typeof(*a), list);
struct nfit_mem *b = container_of(_b, typeof(*b), list);
u32 handleA, handleB;
handleA = __to_nfit_memdev(a)->device_handle;
handleB = __to_nfit_memdev(b)->device_handle;
if (handleA < handleB)
return -1;
else if (handleA > handleB)
return 1;
return 0;
}
static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
{
struct nfit_spa *nfit_spa;
/*
* For each SPA-DCR or SPA-PMEM address range find its
* corresponding MEMDEV(s). From each MEMDEV find the
* corresponding DCR. Then, if we're operating on a SPA-DCR,
* try to find a SPA-BDW and a corresponding BDW that references
* the DCR. Throw it all into an nfit_mem object. Note, that
* BDWs are optional.
*/
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
int rc;
rc = nfit_mem_dcr_init(acpi_desc, nfit_spa->spa);
if (rc)
return rc;
}
list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
return 0;
}
static ssize_t revision_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
}
static DEVICE_ATTR_RO(revision);
static struct attribute *acpi_nfit_attributes[] = {
&dev_attr_revision.attr,
NULL,
};
static struct attribute_group acpi_nfit_attribute_group = {
.name = "nfit",
.attrs = acpi_nfit_attributes,
};
const struct attribute_group *acpi_nfit_attribute_groups[] = {
&nvdimm_bus_attribute_group,
&acpi_nfit_attribute_group,
NULL,
};
EXPORT_SYMBOL_GPL(acpi_nfit_attribute_groups);
static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
return __to_nfit_memdev(nfit_mem);
}
static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
return nfit_mem->dcr;
}
static ssize_t handle_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
return sprintf(buf, "%#x\n", memdev->device_handle);
}
static DEVICE_ATTR_RO(handle);
static ssize_t phys_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
return sprintf(buf, "%#x\n", memdev->physical_id);
}
static DEVICE_ATTR_RO(phys_id);
static ssize_t vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "%#x\n", dcr->vendor_id);
}
static DEVICE_ATTR_RO(vendor);
static ssize_t rev_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "%#x\n", dcr->revision_id);
}
static DEVICE_ATTR_RO(rev_id);
static ssize_t device_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "%#x\n", dcr->device_id);
}
static DEVICE_ATTR_RO(device);
static ssize_t format_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "%#x\n", dcr->code);
}
static DEVICE_ATTR_RO(format);
static ssize_t serial_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "%#x\n", dcr->serial_number);
}
static DEVICE_ATTR_RO(serial);
static ssize_t flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u16 flags = to_nfit_memdev(dev)->flags;
return sprintf(buf, "%s%s%s%s%s\n",
flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "");
}
static DEVICE_ATTR_RO(flags);
static struct attribute *acpi_nfit_dimm_attributes[] = {
&dev_attr_handle.attr,
&dev_attr_phys_id.attr,
&dev_attr_vendor.attr,
&dev_attr_device.attr,
&dev_attr_format.attr,
&dev_attr_serial.attr,
&dev_attr_rev_id.attr,
&dev_attr_flags.attr,
NULL,
};
static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
if (to_nfit_dcr(dev))
return a->mode;
else
return 0;
}
static struct attribute_group acpi_nfit_dimm_attribute_group = {
.name = "nfit",
.attrs = acpi_nfit_dimm_attributes,
.is_visible = acpi_nfit_dimm_attr_visible,
};
static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
&nvdimm_attribute_group,
&nd_device_attribute_group,
&acpi_nfit_dimm_attribute_group,
NULL,
};
static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
u32 device_handle)
{
struct nfit_mem *nfit_mem;
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
return nfit_mem->nvdimm;
return NULL;
}
static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
struct nfit_mem *nfit_mem, u32 device_handle)
{
struct acpi_device *adev, *adev_dimm;
struct device *dev = acpi_desc->dev;
const u8 *uuid = to_nfit_uuid(NFIT_DEV_DIMM);
int i;
nfit_mem->dsm_mask = acpi_desc->dimm_dsm_force_en;
adev = to_acpi_dev(acpi_desc);
if (!adev)
return 0;
adev_dimm = acpi_find_child_device(adev, device_handle, false);
nfit_mem->adev = adev_dimm;
if (!adev_dimm) {
dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
device_handle);
return force_enable_dimms ? 0 : -ENODEV;
}
for (i = ND_CMD_SMART; i <= ND_CMD_VENDOR; i++)
if (acpi_check_dsm(adev_dimm->handle, uuid, 1, 1ULL << i))
set_bit(i, &nfit_mem->dsm_mask);
return 0;
}
static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
{
struct nfit_mem *nfit_mem;
int dimm_count = 0;
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
struct nvdimm *nvdimm;
unsigned long flags = 0;
u32 device_handle;
u16 mem_flags;
int rc;
device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
if (nvdimm) {
dimm_count++;
continue;
}
if (nfit_mem->bdw && nfit_mem->memdev_pmem)
flags |= NDD_ALIASING;
mem_flags = __to_nfit_memdev(nfit_mem)->flags;
if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
flags |= NDD_UNARMED;
rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
if (rc)
continue;
nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
acpi_nfit_dimm_attribute_groups,
flags, &nfit_mem->dsm_mask);
if (!nvdimm)
return -ENOMEM;
nfit_mem->nvdimm = nvdimm;
dimm_count++;
if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
continue;
dev_info(acpi_desc->dev, "%s flags:%s%s%s%s\n",
nvdimm_name(nvdimm),
mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "");
}
return nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
}
static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
const u8 *uuid = to_nfit_uuid(NFIT_DEV_BUS);
struct acpi_device *adev;
int i;
nd_desc->dsm_mask = acpi_desc->bus_dsm_force_en;
adev = to_acpi_dev(acpi_desc);
if (!adev)
return;
for (i = ND_CMD_ARS_CAP; i <= ND_CMD_ARS_STATUS; i++)
if (acpi_check_dsm(adev->handle, uuid, 1, 1ULL << i))
set_bit(i, &nd_desc->dsm_mask);
}
static ssize_t range_index_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
}
static DEVICE_ATTR_RO(range_index);
static struct attribute *acpi_nfit_region_attributes[] = {
&dev_attr_range_index.attr,
NULL,
};
static struct attribute_group acpi_nfit_region_attribute_group = {
.name = "nfit",
.attrs = acpi_nfit_region_attributes,
};
static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
&nd_region_attribute_group,
&nd_mapping_attribute_group,
&nd_device_attribute_group,
&nd_numa_attribute_group,
&acpi_nfit_region_attribute_group,
NULL,
};
/* enough info to uniquely specify an interleave set */
struct nfit_set_info {
struct nfit_set_info_map {
u64 region_offset;
u32 serial_number;
u32 pad;
} mapping[0];
};
static size_t sizeof_nfit_set_info(int num_mappings)
{
return sizeof(struct nfit_set_info)
+ num_mappings * sizeof(struct nfit_set_info_map);
}
static int cmp_map(const void *m0, const void *m1)
{
const struct nfit_set_info_map *map0 = m0;
const struct nfit_set_info_map *map1 = m1;
return memcmp(&map0->region_offset, &map1->region_offset,
sizeof(u64));
}
/* Retrieve the nth entry referencing this spa */
static struct acpi_nfit_memory_map *memdev_from_spa(
struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
{
struct nfit_memdev *nfit_memdev;
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
if (nfit_memdev->memdev->range_index == range_index)
if (n-- == 0)
return nfit_memdev->memdev;
return NULL;
}
static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
struct nd_region_desc *ndr_desc,
struct acpi_nfit_system_address *spa)
{
int i, spa_type = nfit_spa_type(spa);
struct device *dev = acpi_desc->dev;
struct nd_interleave_set *nd_set;
u16 nr = ndr_desc->num_mappings;
struct nfit_set_info *info;
if (spa_type == NFIT_SPA_PM || spa_type == NFIT_SPA_VOLATILE)
/* pass */;
else
return 0;
nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
if (!nd_set)
return -ENOMEM;
info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
if (!info)
return -ENOMEM;
for (i = 0; i < nr; i++) {
struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
struct nfit_set_info_map *map = &info->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
spa->range_index, i);
if (!memdev || !nfit_mem->dcr) {
dev_err(dev, "%s: failed to find DCR\n", __func__);
return -ENODEV;
}
map->region_offset = memdev->region_offset;
map->serial_number = nfit_mem->dcr->serial_number;
}
sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
cmp_map, NULL);
nd_set->cookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
ndr_desc->nd_set = nd_set;
devm_kfree(dev, info);
return 0;
}
static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
{
struct acpi_nfit_interleave *idt = mmio->idt;
u32 sub_line_offset, line_index, line_offset;
u64 line_no, table_skip_count, table_offset;
line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
line_offset = idt->line_offset[line_index]
* mmio->line_size;
table_offset = table_skip_count * mmio->table_size;
return mmio->base_offset + line_offset + table_offset + sub_line_offset;
}
static void wmb_blk(struct nfit_blk *nfit_blk)
{
if (nfit_blk->nvdimm_flush) {
/*
* The first wmb() is needed to 'sfence' all previous writes
* such that they are architecturally visible for the platform
* buffer flush. Note that we've already arranged for pmem
* writes to avoid the cache via arch_memcpy_to_pmem(). The
* final wmb() ensures ordering for the NVDIMM flush write.
*/
wmb();
writeq(1, nfit_blk->nvdimm_flush);
wmb();
} else
wmb_pmem();
}
static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
{
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
u64 offset = nfit_blk->stat_offset + mmio->size * bw;
if (mmio->num_lines)
offset = to_interleave_offset(offset, mmio);
return readl(mmio->addr.base + offset);
}
static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
resource_size_t dpa, unsigned int len, unsigned int write)
{
u64 cmd, offset;
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
enum {
BCW_OFFSET_MASK = (1ULL << 48)-1,
BCW_LEN_SHIFT = 48,
BCW_LEN_MASK = (1ULL << 8) - 1,
BCW_CMD_SHIFT = 56,
};
cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
len = len >> L1_CACHE_SHIFT;
cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
cmd |= ((u64) write) << BCW_CMD_SHIFT;
offset = nfit_blk->cmd_offset + mmio->size * bw;
if (mmio->num_lines)
offset = to_interleave_offset(offset, mmio);
writeq(cmd, mmio->addr.base + offset);
wmb_blk(nfit_blk);
if (nfit_blk->dimm_flags & ND_BLK_DCR_LATCH)
readq(mmio->addr.base + offset);
}
static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
resource_size_t dpa, void *iobuf, size_t len, int rw,
unsigned int lane)
{
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
unsigned int copied = 0;
u64 base_offset;
int rc;
base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
+ lane * mmio->size;
write_blk_ctl(nfit_blk, lane, dpa, len, rw);
while (len) {
unsigned int c;
u64 offset;
if (mmio->num_lines) {
u32 line_offset;
offset = to_interleave_offset(base_offset + copied,
mmio);
div_u64_rem(offset, mmio->line_size, &line_offset);
c = min_t(size_t, len, mmio->line_size - line_offset);
} else {
offset = base_offset + nfit_blk->bdw_offset;
c = len;
}
if (rw)
memcpy_to_pmem(mmio->addr.aperture + offset,
iobuf + copied, c);
else {
if (nfit_blk->dimm_flags & ND_BLK_READ_FLUSH)
mmio_flush_range((void __force *)
mmio->addr.aperture + offset, c);
memcpy_from_pmem(iobuf + copied,
mmio->addr.aperture + offset, c);
}
copied += c;
len -= c;
}
if (rw)
wmb_blk(nfit_blk);
rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
return rc;
}
static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
resource_size_t dpa, void *iobuf, u64 len, int rw)
{
struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
struct nd_region *nd_region = nfit_blk->nd_region;
unsigned int lane, copied = 0;
int rc = 0;
lane = nd_region_acquire_lane(nd_region);
while (len) {
u64 c = min(len, mmio->size);
rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
iobuf + copied, c, rw, lane);
if (rc)
break;
copied += c;
len -= c;
}
nd_region_release_lane(nd_region, lane);
return rc;
}
static void nfit_spa_mapping_release(struct kref *kref)
{
struct nfit_spa_mapping *spa_map = to_spa_map(kref);
struct acpi_nfit_system_address *spa = spa_map->spa;
struct acpi_nfit_desc *acpi_desc = spa_map->acpi_desc;
WARN_ON(!mutex_is_locked(&acpi_desc->spa_map_mutex));
dev_dbg(acpi_desc->dev, "%s: SPA%d\n", __func__, spa->range_index);
if (spa_map->type == SPA_MAP_APERTURE)
memunmap((void __force *)spa_map->addr.aperture);
else
iounmap(spa_map->addr.base);
release_mem_region(spa->address, spa->length);
list_del(&spa_map->list);
kfree(spa_map);
}
static struct nfit_spa_mapping *find_spa_mapping(
struct acpi_nfit_desc *acpi_desc,
struct acpi_nfit_system_address *spa)
{
struct nfit_spa_mapping *spa_map;
WARN_ON(!mutex_is_locked(&acpi_desc->spa_map_mutex));
list_for_each_entry(spa_map, &acpi_desc->spa_maps, list)
if (spa_map->spa == spa)
return spa_map;
return NULL;
}
static void nfit_spa_unmap(struct acpi_nfit_desc *acpi_desc,
struct acpi_nfit_system_address *spa)
{
struct nfit_spa_mapping *spa_map;
mutex_lock(&acpi_desc->spa_map_mutex);
spa_map = find_spa_mapping(acpi_desc, spa);
if (spa_map)
kref_put(&spa_map->kref, nfit_spa_mapping_release);
mutex_unlock(&acpi_desc->spa_map_mutex);
}
static void __iomem *__nfit_spa_map(struct acpi_nfit_desc *acpi_desc,
struct acpi_nfit_system_address *spa, enum spa_map_type type)
{
resource_size_t start = spa->address;
resource_size_t n = spa->length;
struct nfit_spa_mapping *spa_map;
struct resource *res;
WARN_ON(!mutex_is_locked(&acpi_desc->spa_map_mutex));
spa_map = find_spa_mapping(acpi_desc, spa);
if (spa_map) {
kref_get(&spa_map->kref);
return spa_map->addr.base;
}
spa_map = kzalloc(sizeof(*spa_map), GFP_KERNEL);
if (!spa_map)
return NULL;
INIT_LIST_HEAD(&spa_map->list);
spa_map->spa = spa;
kref_init(&spa_map->kref);
spa_map->acpi_desc = acpi_desc;
res = request_mem_region(start, n, dev_name(acpi_desc->dev));
if (!res)
goto err_mem;
spa_map->type = type;
if (type == SPA_MAP_APERTURE)
spa_map->addr.aperture = (void __pmem *)memremap(start, n,
ARCH_MEMREMAP_PMEM);
else
spa_map->addr.base = ioremap_nocache(start, n);
if (!spa_map->addr.base)
goto err_map;
list_add_tail(&spa_map->list, &acpi_desc->spa_maps);
return spa_map->addr.base;
err_map:
release_mem_region(start, n);
err_mem:
kfree(spa_map);
return NULL;
}
/**
* nfit_spa_map - interleave-aware managed-mappings of acpi_nfit_system_address ranges
* @nvdimm_bus: NFIT-bus that provided the spa table entry
* @nfit_spa: spa table to map
* @type: aperture or control region
*
* In the case where block-data-window apertures and
* dimm-control-regions are interleaved they will end up sharing a
* single request_mem_region() + ioremap() for the address range. In
* the style of devm nfit_spa_map() mappings are automatically dropped
* when all region devices referencing the same mapping are disabled /
* unbound.
*/
static void __iomem *nfit_spa_map(struct acpi_nfit_desc *acpi_desc,
struct acpi_nfit_system_address *spa, enum spa_map_type type)
{
void __iomem *iomem;
mutex_lock(&acpi_desc->spa_map_mutex);
iomem = __nfit_spa_map(acpi_desc, spa, type);
mutex_unlock(&acpi_desc->spa_map_mutex);
return iomem;
}
static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
struct acpi_nfit_interleave *idt, u16 interleave_ways)
{
if (idt) {
mmio->num_lines = idt->line_count;
mmio->line_size = idt->line_size;
if (interleave_ways == 0)
return -ENXIO;
mmio->table_size = mmio->num_lines * interleave_ways
* mmio->line_size;
}
return 0;
}
static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
{
struct nd_cmd_dimm_flags flags;
int rc;
memset(&flags, 0, sizeof(flags));
rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
sizeof(flags));
if (rc >= 0 && flags.status == 0)
nfit_blk->dimm_flags = flags.flags;
else if (rc == -ENOTTY) {
/* fall back to a conservative default */
nfit_blk->dimm_flags = ND_BLK_DCR_LATCH | ND_BLK_READ_FLUSH;
rc = 0;
} else
rc = -ENXIO;
return rc;
}
static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
struct device *dev)
{
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
struct nd_blk_region *ndbr = to_nd_blk_region(dev);
struct nfit_flush *nfit_flush;
struct nfit_blk_mmio *mmio;
struct nfit_blk *nfit_blk;
struct nfit_mem *nfit_mem;
struct nvdimm *nvdimm;
int rc;
nvdimm = nd_blk_region_to_dimm(ndbr);
nfit_mem = nvdimm_provider_data(nvdimm);
if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
nfit_mem ? "" : " nfit_mem",
(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
return -ENXIO;
}
nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
if (!nfit_blk)
return -ENOMEM;
nd_blk_region_set_provider_data(ndbr, nfit_blk);
nfit_blk->nd_region = to_nd_region(dev);
/* map block aperture memory */
nfit_blk->bdw_offset = nfit_mem->bdw->offset;
mmio = &nfit_blk->mmio[BDW];
mmio->addr.base = nfit_spa_map(acpi_desc, nfit_mem->spa_bdw,
SPA_MAP_APERTURE);
if (!mmio->addr.base) {
dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
nvdimm_name(nvdimm));
return -ENOMEM;
}
mmio->size = nfit_mem->bdw->size;
mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
mmio->idt = nfit_mem->idt_bdw;
mmio->spa = nfit_mem->spa_bdw;
rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
nfit_mem->memdev_bdw->interleave_ways);
if (rc) {
dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
__func__, nvdimm_name(nvdimm));
return rc;
}
/* map block control memory */
nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
mmio = &nfit_blk->mmio[DCR];
mmio->addr.base = nfit_spa_map(acpi_desc, nfit_mem->spa_dcr,
SPA_MAP_CONTROL);
if (!mmio->addr.base) {
dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
nvdimm_name(nvdimm));
return -ENOMEM;
}
mmio->size = nfit_mem->dcr->window_size;
mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
mmio->idt = nfit_mem->idt_dcr;
mmio->spa = nfit_mem->spa_dcr;
rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
nfit_mem->memdev_dcr->interleave_ways);
if (rc) {
dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
__func__, nvdimm_name(nvdimm));
return rc;
}
rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
if (rc < 0) {
dev_dbg(dev, "%s: %s failed get DIMM flags\n",
__func__, nvdimm_name(nvdimm));
return rc;
}
nfit_flush = nfit_mem->nfit_flush;
if (nfit_flush && nfit_flush->flush->hint_count != 0) {
nfit_blk->nvdimm_flush = devm_ioremap_nocache(dev,
nfit_flush->flush->hint_address[0], 8);
if (!nfit_blk->nvdimm_flush)
return -ENOMEM;
}
if (!arch_has_wmb_pmem() && !nfit_blk->nvdimm_flush)
dev_warn(dev, "unable to guarantee persistence of writes\n");
if (mmio->line_size == 0)
return 0;
if ((u32) nfit_blk->cmd_offset % mmio->line_size
+ 8 > mmio->line_size) {
dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
return -ENXIO;
} else if ((u32) nfit_blk->stat_offset % mmio->line_size
+ 8 > mmio->line_size) {
dev_dbg(dev, "stat_offset crosses interleave boundary\n");
return -ENXIO;
}
return 0;
}
static void acpi_nfit_blk_region_disable(struct nvdimm_bus *nvdimm_bus,
struct device *dev)
{
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
struct nd_blk_region *ndbr = to_nd_blk_region(dev);
struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
int i;
if (!nfit_blk)
return; /* never enabled */
/* auto-free BLK spa mappings */
for (i = 0; i < 2; i++) {
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[i];
if (mmio->addr.base)
nfit_spa_unmap(acpi_desc, mmio->spa);
}
nd_blk_region_set_provider_data(ndbr, NULL);
/* devm will free nfit_blk */
}
static int ars_get_cap(struct nvdimm_bus_descriptor *nd_desc,
struct nd_cmd_ars_cap *cmd, u64 addr, u64 length)
{
cmd->address = addr;
cmd->length = length;
return nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
sizeof(*cmd));
}
static int ars_do_start(struct nvdimm_bus_descriptor *nd_desc,
struct nd_cmd_ars_start *cmd, u64 addr, u64 length)
{
int rc;
cmd->address = addr;
cmd->length = length;
cmd->type = ND_ARS_PERSISTENT;
while (1) {
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, cmd,
sizeof(*cmd));
if (rc)
return rc;
switch (cmd->status) {
case 0:
return 0;
case 1:
/* ARS unsupported, but we should never get here */
return 0;
case 2:
return -EINVAL;
case 3:
/* ARS is in progress */
msleep(1000);
break;
default:
return -ENXIO;
}
}
}
static int ars_get_status(struct nvdimm_bus_descriptor *nd_desc,
struct nd_cmd_ars_status *cmd)
{
int rc;
while (1) {
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, cmd,
sizeof(*cmd));
if (rc || cmd->status & 0xffff)
return -ENXIO;
/* Check extended status (Upper two bytes) */
switch (cmd->status >> 16) {
case 0:
return 0;
case 1:
/* ARS is in progress */
msleep(1000);
break;
case 2:
/* No ARS performed for the current boot */
return 0;
default:
return -ENXIO;
}
}
}
static int ars_status_process_records(struct nvdimm_bus *nvdimm_bus,
struct nd_cmd_ars_status *ars_status, u64 start)
{
int rc;
u32 i;
/*
* The address field returned by ars_status should be either
* less than or equal to the address we last started ARS for.
* The (start, length) returned by ars_status should also have
* non-zero overlap with the range we started ARS for.
* If this is not the case, bail.
*/
if (ars_status->address > start ||
(ars_status->address + ars_status->length < start))
return -ENXIO;
for (i = 0; i < ars_status->num_records; i++) {
rc = nvdimm_bus_add_poison(nvdimm_bus,
ars_status->records[i].err_address,
ars_status->records[i].length);
if (rc)
return rc;
}
return 0;
}
static int acpi_nfit_find_poison(struct acpi_nfit_desc *acpi_desc,
struct nd_region_desc *ndr_desc)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
struct nd_cmd_ars_status *ars_status = NULL;
struct nd_cmd_ars_start *ars_start = NULL;
struct nd_cmd_ars_cap *ars_cap = NULL;
u64 start, len, cur, remaining;
int rc;
ars_cap = kzalloc(sizeof(*ars_cap), GFP_KERNEL);
if (!ars_cap)
return -ENOMEM;
start = ndr_desc->res->start;
len = ndr_desc->res->end - ndr_desc->res->start + 1;
rc = ars_get_cap(nd_desc, ars_cap, start, len);
if (rc)
goto out;
/*
* If ARS is unsupported, or if the 'Persistent Memory Scrub' flag in
* extended status is not set, skip this but continue initialization
*/
if ((ars_cap->status & 0xffff) ||
!(ars_cap->status >> 16 & ND_ARS_PERSISTENT)) {
dev_warn(acpi_desc->dev,
"ARS unsupported (status: 0x%x), won't create an error list\n",
ars_cap->status);
goto out;
}
/*
* Check if a full-range ARS has been run. If so, use those results
* without having to start a new ARS.
*/
ars_status = kzalloc(ars_cap->max_ars_out + sizeof(*ars_status),
GFP_KERNEL);
if (!ars_status) {
rc = -ENOMEM;
goto out;
}
rc = ars_get_status(nd_desc, ars_status);
if (rc)
goto out;
if (ars_status->address <= start &&
(ars_status->address + ars_status->length >= start + len)) {
rc = ars_status_process_records(nvdimm_bus, ars_status, start);
goto out;
}
/*
* ARS_STATUS can overflow if the number of poison entries found is
* greater than the maximum buffer size (ars_cap->max_ars_out)
* To detect overflow, check if the length field of ars_status
* is less than the length we supplied. If so, process the
* error entries we got, adjust the start point, and start again
*/
ars_start = kzalloc(sizeof(*ars_start), GFP_KERNEL);
if (!ars_start)
return -ENOMEM;
cur = start;
remaining = len;
do {
u64 done, end;
rc = ars_do_start(nd_desc, ars_start, cur, remaining);
if (rc)
goto out;
rc = ars_get_status(nd_desc, ars_status);
if (rc)
goto out;
rc = ars_status_process_records(nvdimm_bus, ars_status, cur);
if (rc)
goto out;
end = min(cur + remaining,
ars_status->address + ars_status->length);
done = end - cur;
cur += done;
remaining -= done;
} while (remaining);
out:
kfree(ars_cap);
kfree(ars_start);
kfree(ars_status);
return rc;
}
static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
struct nd_mapping *nd_mapping, struct nd_region_desc *ndr_desc,
struct acpi_nfit_memory_map *memdev,
struct acpi_nfit_system_address *spa)
{
struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
memdev->device_handle);
struct nd_blk_region_desc *ndbr_desc;
struct nfit_mem *nfit_mem;
int blk_valid = 0;
if (!nvdimm) {
dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
spa->range_index, memdev->device_handle);
return -ENODEV;
}
nd_mapping->nvdimm = nvdimm;
switch (nfit_spa_type(spa)) {
case NFIT_SPA_PM:
case NFIT_SPA_VOLATILE:
nd_mapping->start = memdev->address;
nd_mapping->size = memdev->region_size;
break;
case NFIT_SPA_DCR:
nfit_mem = nvdimm_provider_data(nvdimm);
if (!nfit_mem || !nfit_mem->bdw) {
dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
spa->range_index, nvdimm_name(nvdimm));
} else {
nd_mapping->size = nfit_mem->bdw->capacity;
nd_mapping->start = nfit_mem->bdw->start_address;
ndr_desc->num_lanes = nfit_mem->bdw->windows;
blk_valid = 1;
}
ndr_desc->nd_mapping = nd_mapping;
ndr_desc->num_mappings = blk_valid;
ndbr_desc = to_blk_region_desc(ndr_desc);
ndbr_desc->enable = acpi_nfit_blk_region_enable;
ndbr_desc->disable = acpi_nfit_blk_region_disable;
ndbr_desc->do_io = acpi_desc->blk_do_io;
if (!nvdimm_blk_region_create(acpi_desc->nvdimm_bus, ndr_desc))
return -ENOMEM;
break;
}
return 0;
}
static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
struct nfit_spa *nfit_spa)
{
static struct nd_mapping nd_mappings[ND_MAX_MAPPINGS];
struct acpi_nfit_system_address *spa = nfit_spa->spa;
struct nd_blk_region_desc ndbr_desc;
struct nd_region_desc *ndr_desc;
struct nfit_memdev *nfit_memdev;
struct nvdimm_bus *nvdimm_bus;
struct resource res;
int count = 0, rc;
if (nfit_spa->is_registered)
return 0;
if (spa->range_index == 0) {
dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
__func__);
return 0;
}
memset(&res, 0, sizeof(res));
memset(&nd_mappings, 0, sizeof(nd_mappings));
memset(&ndbr_desc, 0, sizeof(ndbr_desc));
res.start = spa->address;
res.end = res.start + spa->length - 1;
ndr_desc = &ndbr_desc.ndr_desc;
ndr_desc->res = &res;
ndr_desc->provider_data = nfit_spa;
ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
ndr_desc->numa_node = acpi_map_pxm_to_online_node(
spa->proximity_domain);
else
ndr_desc->numa_node = NUMA_NO_NODE;
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
struct nd_mapping *nd_mapping;
if (memdev->range_index != spa->range_index)
continue;
if (count >= ND_MAX_MAPPINGS) {
dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
spa->range_index, ND_MAX_MAPPINGS);
return -ENXIO;
}
nd_mapping = &nd_mappings[count++];
rc = acpi_nfit_init_mapping(acpi_desc, nd_mapping, ndr_desc,
memdev, spa);
if (rc)
return rc;
}
ndr_desc->nd_mapping = nd_mappings;
ndr_desc->num_mappings = count;
rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
if (rc)
return rc;
nvdimm_bus = acpi_desc->nvdimm_bus;
if (nfit_spa_type(spa) == NFIT_SPA_PM) {
rc = acpi_nfit_find_poison(acpi_desc, ndr_desc);
if (rc) {
dev_err(acpi_desc->dev,
"error while performing ARS to find poison: %d\n",
rc);
return rc;
}
if (!nvdimm_pmem_region_create(nvdimm_bus, ndr_desc))
return -ENOMEM;
} else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) {
if (!nvdimm_volatile_region_create(nvdimm_bus, ndr_desc))
return -ENOMEM;
}
nfit_spa->is_registered = 1;
return 0;
}
static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
{
struct nfit_spa *nfit_spa;
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
int rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
if (rc)
return rc;
}
return 0;
}
static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev)
{
struct device *dev = acpi_desc->dev;
if (!list_empty(&prev->spas) ||
!list_empty(&prev->memdevs) ||
!list_empty(&prev->dcrs) ||
!list_empty(&prev->bdws) ||
!list_empty(&prev->idts) ||
!list_empty(&prev->flushes)) {
dev_err(dev, "new nfit deletes entries (unsupported)\n");
return -ENXIO;
}
return 0;
}
int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, acpi_size sz)
{
struct device *dev = acpi_desc->dev;
struct nfit_table_prev prev;
const void *end;
u8 *data;
int rc;
mutex_lock(&acpi_desc->init_mutex);
INIT_LIST_HEAD(&prev.spas);
INIT_LIST_HEAD(&prev.memdevs);
INIT_LIST_HEAD(&prev.dcrs);
INIT_LIST_HEAD(&prev.bdws);
INIT_LIST_HEAD(&prev.idts);
INIT_LIST_HEAD(&prev.flushes);
list_cut_position(&prev.spas, &acpi_desc->spas,
acpi_desc->spas.prev);
list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
acpi_desc->memdevs.prev);
list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
acpi_desc->dcrs.prev);
list_cut_position(&prev.bdws, &acpi_desc->bdws,
acpi_desc->bdws.prev);
list_cut_position(&prev.idts, &acpi_desc->idts,
acpi_desc->idts.prev);
list_cut_position(&prev.flushes, &acpi_desc->flushes,
acpi_desc->flushes.prev);
data = (u8 *) acpi_desc->nfit;
end = data + sz;
while (!IS_ERR_OR_NULL(data))
data = add_table(acpi_desc, &prev, data, end);
if (IS_ERR(data)) {
dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
PTR_ERR(data));
rc = PTR_ERR(data);
goto out_unlock;
}
rc = acpi_nfit_check_deletions(acpi_desc, &prev);
if (rc)
goto out_unlock;
if (nfit_mem_init(acpi_desc) != 0) {
rc = -ENOMEM;
goto out_unlock;
}
acpi_nfit_init_dsms(acpi_desc);
rc = acpi_nfit_register_dimms(acpi_desc);
if (rc)
goto out_unlock;
rc = acpi_nfit_register_regions(acpi_desc);
out_unlock:
mutex_unlock(&acpi_desc->init_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(acpi_nfit_init);
static struct acpi_nfit_desc *acpi_nfit_desc_init(struct acpi_device *adev)
{
struct nvdimm_bus_descriptor *nd_desc;
struct acpi_nfit_desc *acpi_desc;
struct device *dev = &adev->dev;
acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
if (!acpi_desc)
return ERR_PTR(-ENOMEM);
dev_set_drvdata(dev, acpi_desc);
acpi_desc->dev = dev;
acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
nd_desc = &acpi_desc->nd_desc;
nd_desc->provider_name = "ACPI.NFIT";
nd_desc->ndctl = acpi_nfit_ctl;
nd_desc->attr_groups = acpi_nfit_attribute_groups;
acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, nd_desc);
if (!acpi_desc->nvdimm_bus) {
devm_kfree(dev, acpi_desc);
return ERR_PTR(-ENXIO);
}
INIT_LIST_HEAD(&acpi_desc->spa_maps);
INIT_LIST_HEAD(&acpi_desc->spas);
INIT_LIST_HEAD(&acpi_desc->dcrs);
INIT_LIST_HEAD(&acpi_desc->bdws);
INIT_LIST_HEAD(&acpi_desc->idts);
INIT_LIST_HEAD(&acpi_desc->flushes);
INIT_LIST_HEAD(&acpi_desc->memdevs);
INIT_LIST_HEAD(&acpi_desc->dimms);
mutex_init(&acpi_desc->spa_map_mutex);
mutex_init(&acpi_desc->init_mutex);
return acpi_desc;
}
static int acpi_nfit_add(struct acpi_device *adev)
{
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_nfit_desc *acpi_desc;
struct device *dev = &adev->dev;
struct acpi_table_header *tbl;
acpi_status status = AE_OK;
acpi_size sz;
int rc;
status = acpi_get_table_with_size("NFIT", 0, &tbl, &sz);
if (ACPI_FAILURE(status)) {
/* This is ok, we could have an nvdimm hotplugged later */
dev_dbg(dev, "failed to find NFIT at startup\n");
return 0;
}
acpi_desc = acpi_nfit_desc_init(adev);
if (IS_ERR(acpi_desc)) {
dev_err(dev, "%s: error initializing acpi_desc: %ld\n",
__func__, PTR_ERR(acpi_desc));
return PTR_ERR(acpi_desc);
}
/*
* Save the acpi header for later and then skip it,
* making nfit point to the first nfit table header.
*/
acpi_desc->acpi_header = *tbl;
acpi_desc->nfit = (void *) tbl + sizeof(struct acpi_table_nfit);
sz -= sizeof(struct acpi_table_nfit);
/* Evaluate _FIT and override with that if present */
status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
if (ACPI_SUCCESS(status) && buf.length > 0) {
union acpi_object *obj;
/*
* Adjust for the acpi_object header of the _FIT
*/
obj = buf.pointer;
if (obj->type == ACPI_TYPE_BUFFER) {
acpi_desc->nfit =
(struct acpi_nfit_header *)obj->buffer.pointer;
sz = obj->buffer.length;
} else
dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
__func__, (int) obj->type);
}
rc = acpi_nfit_init(acpi_desc, sz);
if (rc) {
nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
return rc;
}
return 0;
}
static int acpi_nfit_remove(struct acpi_device *adev)
{
struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(&adev->dev);
nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
return 0;
}
static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
{
struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(&adev->dev);
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_nfit_header *nfit_saved;
union acpi_object *obj;
struct device *dev = &adev->dev;
acpi_status status;
int ret;
dev_dbg(dev, "%s: event: %d\n", __func__, event);
device_lock(dev);
if (!dev->driver) {
/* dev->driver may be null if we're being removed */
dev_dbg(dev, "%s: no driver found for dev\n", __func__);
goto out_unlock;
}
if (!acpi_desc) {
acpi_desc = acpi_nfit_desc_init(adev);
if (IS_ERR(acpi_desc)) {
dev_err(dev, "%s: error initializing acpi_desc: %ld\n",
__func__, PTR_ERR(acpi_desc));
goto out_unlock;
}
}
/* Evaluate _FIT */
status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
if (ACPI_FAILURE(status)) {
dev_err(dev, "failed to evaluate _FIT\n");
goto out_unlock;
}
nfit_saved = acpi_desc->nfit;
obj = buf.pointer;
if (obj->type == ACPI_TYPE_BUFFER) {
acpi_desc->nfit =
(struct acpi_nfit_header *)obj->buffer.pointer;
ret = acpi_nfit_init(acpi_desc, obj->buffer.length);
if (ret) {
/* Merge failed, restore old nfit, and exit */
acpi_desc->nfit = nfit_saved;
dev_err(dev, "failed to merge updated NFIT\n");
}
} else {
/* Bad _FIT, restore old nfit */
dev_err(dev, "Invalid _FIT\n");
}
kfree(buf.pointer);
out_unlock:
device_unlock(dev);
}
static const struct acpi_device_id acpi_nfit_ids[] = {
{ "ACPI0012", 0 },
{ "", 0 },
};
MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
static struct acpi_driver acpi_nfit_driver = {
.name = KBUILD_MODNAME,
.ids = acpi_nfit_ids,
.ops = {
.add = acpi_nfit_add,
.remove = acpi_nfit_remove,
.notify = acpi_nfit_notify,
},
};
static __init int nfit_init(void)
{
BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
acpi_str_to_uuid(UUID_VOLATILE_MEMORY, nfit_uuid[NFIT_SPA_VOLATILE]);
acpi_str_to_uuid(UUID_PERSISTENT_MEMORY, nfit_uuid[NFIT_SPA_PM]);
acpi_str_to_uuid(UUID_CONTROL_REGION, nfit_uuid[NFIT_SPA_DCR]);
acpi_str_to_uuid(UUID_DATA_REGION, nfit_uuid[NFIT_SPA_BDW]);
acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_VDISK]);
acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_CD, nfit_uuid[NFIT_SPA_VCD]);
acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_PDISK]);
acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_CD, nfit_uuid[NFIT_SPA_PCD]);
acpi_str_to_uuid(UUID_NFIT_BUS, nfit_uuid[NFIT_DEV_BUS]);
acpi_str_to_uuid(UUID_NFIT_DIMM, nfit_uuid[NFIT_DEV_DIMM]);
return acpi_bus_register_driver(&acpi_nfit_driver);
}
static __exit void nfit_exit(void)
{
acpi_bus_unregister_driver(&acpi_nfit_driver);
}
module_init(nfit_init);
module_exit(nfit_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Intel Corporation");