linux-next/fs/kernfs/inode.c
Linus Torvalds ecd7db2047 v6.6-vfs.tmpfs
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZOXTkgAKCRCRxhvAZXjc
 ouZsAPwNBHB2aPKtzWURuKx5RX02vXTzHX+A/LpuDz5WBFe8zQD+NlaBa4j0MBtS
 rVYM+CjOXnjnsLc8W0euMnfYNvViKgQ=
 =L2+2
 -----END PGP SIGNATURE-----

Merge tag 'v6.6-vfs.tmpfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull libfs and tmpfs updates from Christian Brauner:
 "This cycle saw a lot of work for tmpfs that required changes to the
  vfs layer. Andrew, Hugh, and I decided to take tmpfs through vfs this
  cycle. Things will go back to mm next cycle.

  Features
  ========

   - By far the biggest work is the quota support for tmpfs. New tmpfs
     quota infrastructure is added to support it and a new QFMT_SHMEM
     uapi option is exposed.

     This offers user and group quotas to tmpfs (project quotas will be
     added later). Similar to other filesystems tmpfs quota are not
     supported within user namespaces yet.

   - Add support for user xattrs. While tmpfs already supports security
     xattrs (security.*) and POSIX ACLs for a long time it lacked
     support for user xattrs (user.*). With this pull request tmpfs will
     be able to support a limited number of user xattrs.

     This is accompanied by a fix (see below) to limit persistent simple
     xattr allocations.

   - Add support for stable directory offsets. Currently tmpfs relies on
     the libfs provided cursor-based mechanism for readdir. This causes
     issues when a tmpfs filesystem is exported via NFS.

     NFS clients do not open directories. Instead, each server-side
     readdir operation opens the directory, reads it, and then closes
     it. Since the cursor state for that directory is associated with
     the opened file it is discarded after each readdir operation. Such
     directory offsets are not just cached by NFS clients but also
     various userspace libraries based on these clients.

     As it stands there is no way to invalidate the caches when
     directory offsets have changed and the whole application depends on
     unchanging directory offsets.

     At LSFMM we discussed how to solve this problem and decided to
     support stable directory offsets. libfs now allows filesystems like
     tmpfs to use an xarrary to map a directory offset to a dentry. This
     mechanism is currently only used by tmpfs but can be supported by
     others as well.

  Fixes
  =====

   - Change persistent simple xattrs allocations in libfs from
     GFP_KERNEL to GPF_KERNEL_ACCOUNT so they're subject to memory
     cgroup limits. Since this is a change to libfs it affects both
     tmpfs and kernfs.

   - Correctly verify {g,u}id mount options.

     A new filesystem context is created via fsopen() which records the
     namespace that becomes the owning namespace of the superblock when
     fsconfig(FSCONFIG_CMD_CREATE) is called for filesystems that are
     mountable in namespaces. However, fsconfig() calls can occur in a
     namespace different from the namespace where fsopen() has been
     called.

     Currently, when fsconfig() is called to set {g,u}id mount options
     the requested {g,u}id is mapped into a k{g,u}id according to the
     namespace where fsconfig() was called from. The resulting k{g,u}id
     is not guaranteed to be resolvable in the namespace of the
     filesystem (the one that fsopen() was called in).

     This means it's possible for an unprivileged user to create files
     owned by any group in a tmpfs mount since it's possible to set the
     setid bits on the tmpfs directory.

     The contract for {g,u}id mount options and {g,u}id values in
     general set from userspace has always been that they are translated
     according to the caller's idmapping. In so far, tmpfs has been
     doing the correct thing. But since tmpfs is mountable in
     unprivileged contexts it is also necessary to verify that the
     resulting {k,g}uid is representable in the namespace of the
     superblock to avoid such bugs.

     The new mount api's cross-namespace delegation abilities are
     already widely used. Having talked to a bunch of userspace this is
     the most faithful solution with minimal regression risks"

* tag 'v6.6-vfs.tmpfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  tmpfs,xattr: GFP_KERNEL_ACCOUNT for simple xattrs
  mm: invalidation check mapping before folio_contains
  tmpfs: trivial support for direct IO
  tmpfs,xattr: enable limited user extended attributes
  tmpfs: track free_ispace instead of free_inodes
  xattr: simple_xattr_set() return old_xattr to be freed
  tmpfs: verify {g,u}id mount options correctly
  shmem: move spinlock into shmem_recalc_inode() to fix quota support
  libfs: Remove parent dentry locking in offset_iterate_dir()
  libfs: Add a lock class for the offset map's xa_lock
  shmem: stable directory offsets
  shmem: Refactor shmem_symlink()
  libfs: Add directory operations for stable offsets
  shmem: fix quota lock nesting in huge hole handling
  shmem: Add default quota limit mount options
  shmem: quota support
  shmem: prepare shmem quota infrastructure
  quota: Check presence of quota operation structures instead of ->quota_read and ->quota_write callbacks
  shmem: make shmem_get_inode() return ERR_PTR instead of NULL
  shmem: make shmem_inode_acct_block() return error
2023-08-28 09:55:25 -07:00

454 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* fs/kernfs/inode.c - kernfs inode implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*/
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/security.h>
#include "kernfs-internal.h"
static const struct inode_operations kernfs_iops = {
.permission = kernfs_iop_permission,
.setattr = kernfs_iop_setattr,
.getattr = kernfs_iop_getattr,
.listxattr = kernfs_iop_listxattr,
};
static struct kernfs_iattrs *__kernfs_iattrs(struct kernfs_node *kn, int alloc)
{
static DEFINE_MUTEX(iattr_mutex);
struct kernfs_iattrs *ret;
mutex_lock(&iattr_mutex);
if (kn->iattr || !alloc)
goto out_unlock;
kn->iattr = kmem_cache_zalloc(kernfs_iattrs_cache, GFP_KERNEL);
if (!kn->iattr)
goto out_unlock;
/* assign default attributes */
kn->iattr->ia_uid = GLOBAL_ROOT_UID;
kn->iattr->ia_gid = GLOBAL_ROOT_GID;
ktime_get_real_ts64(&kn->iattr->ia_atime);
kn->iattr->ia_mtime = kn->iattr->ia_atime;
kn->iattr->ia_ctime = kn->iattr->ia_atime;
simple_xattrs_init(&kn->iattr->xattrs);
atomic_set(&kn->iattr->nr_user_xattrs, 0);
atomic_set(&kn->iattr->user_xattr_size, 0);
out_unlock:
ret = kn->iattr;
mutex_unlock(&iattr_mutex);
return ret;
}
static struct kernfs_iattrs *kernfs_iattrs(struct kernfs_node *kn)
{
return __kernfs_iattrs(kn, 1);
}
static struct kernfs_iattrs *kernfs_iattrs_noalloc(struct kernfs_node *kn)
{
return __kernfs_iattrs(kn, 0);
}
int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
{
struct kernfs_iattrs *attrs;
unsigned int ia_valid = iattr->ia_valid;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
if (ia_valid & ATTR_UID)
attrs->ia_uid = iattr->ia_uid;
if (ia_valid & ATTR_GID)
attrs->ia_gid = iattr->ia_gid;
if (ia_valid & ATTR_ATIME)
attrs->ia_atime = iattr->ia_atime;
if (ia_valid & ATTR_MTIME)
attrs->ia_mtime = iattr->ia_mtime;
if (ia_valid & ATTR_CTIME)
attrs->ia_ctime = iattr->ia_ctime;
if (ia_valid & ATTR_MODE)
kn->mode = iattr->ia_mode;
return 0;
}
/**
* kernfs_setattr - set iattr on a node
* @kn: target node
* @iattr: iattr to set
*
* Return: %0 on success, -errno on failure.
*/
int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
{
int ret;
struct kernfs_root *root = kernfs_root(kn);
down_write(&root->kernfs_iattr_rwsem);
ret = __kernfs_setattr(kn, iattr);
up_write(&root->kernfs_iattr_rwsem);
return ret;
}
int kernfs_iop_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *iattr)
{
struct inode *inode = d_inode(dentry);
struct kernfs_node *kn = inode->i_private;
struct kernfs_root *root;
int error;
if (!kn)
return -EINVAL;
root = kernfs_root(kn);
down_write(&root->kernfs_iattr_rwsem);
error = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
if (error)
goto out;
error = __kernfs_setattr(kn, iattr);
if (error)
goto out;
/* this ignores size changes */
setattr_copy(&nop_mnt_idmap, inode, iattr);
out:
up_write(&root->kernfs_iattr_rwsem);
return error;
}
ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size)
{
struct kernfs_node *kn = kernfs_dentry_node(dentry);
struct kernfs_iattrs *attrs;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
return simple_xattr_list(d_inode(dentry), &attrs->xattrs, buf, size);
}
static inline void set_default_inode_attr(struct inode *inode, umode_t mode)
{
inode->i_mode = mode;
inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
}
static inline void set_inode_attr(struct inode *inode,
struct kernfs_iattrs *attrs)
{
inode->i_uid = attrs->ia_uid;
inode->i_gid = attrs->ia_gid;
inode->i_atime = attrs->ia_atime;
inode->i_mtime = attrs->ia_mtime;
inode_set_ctime_to_ts(inode, attrs->ia_ctime);
}
static void kernfs_refresh_inode(struct kernfs_node *kn, struct inode *inode)
{
struct kernfs_iattrs *attrs = kn->iattr;
inode->i_mode = kn->mode;
if (attrs)
/*
* kernfs_node has non-default attributes get them from
* persistent copy in kernfs_node.
*/
set_inode_attr(inode, attrs);
if (kernfs_type(kn) == KERNFS_DIR)
set_nlink(inode, kn->dir.subdirs + 2);
}
int kernfs_iop_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct kernfs_node *kn = inode->i_private;
struct kernfs_root *root = kernfs_root(kn);
down_read(&root->kernfs_iattr_rwsem);
kernfs_refresh_inode(kn, inode);
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
up_read(&root->kernfs_iattr_rwsem);
return 0;
}
static void kernfs_init_inode(struct kernfs_node *kn, struct inode *inode)
{
kernfs_get(kn);
inode->i_private = kn;
inode->i_mapping->a_ops = &ram_aops;
inode->i_op = &kernfs_iops;
inode->i_generation = kernfs_gen(kn);
set_default_inode_attr(inode, kn->mode);
kernfs_refresh_inode(kn, inode);
/* initialize inode according to type */
switch (kernfs_type(kn)) {
case KERNFS_DIR:
inode->i_op = &kernfs_dir_iops;
inode->i_fop = &kernfs_dir_fops;
if (kn->flags & KERNFS_EMPTY_DIR)
make_empty_dir_inode(inode);
break;
case KERNFS_FILE:
inode->i_size = kn->attr.size;
inode->i_fop = &kernfs_file_fops;
break;
case KERNFS_LINK:
inode->i_op = &kernfs_symlink_iops;
break;
default:
BUG();
}
unlock_new_inode(inode);
}
/**
* kernfs_get_inode - get inode for kernfs_node
* @sb: super block
* @kn: kernfs_node to allocate inode for
*
* Get inode for @kn. If such inode doesn't exist, a new inode is
* allocated and basics are initialized. New inode is returned
* locked.
*
* Locking:
* Kernel thread context (may sleep).
*
* Return:
* Pointer to allocated inode on success, %NULL on failure.
*/
struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn)
{
struct inode *inode;
inode = iget_locked(sb, kernfs_ino(kn));
if (inode && (inode->i_state & I_NEW))
kernfs_init_inode(kn, inode);
return inode;
}
/*
* The kernfs_node serves as both an inode and a directory entry for
* kernfs. To prevent the kernfs inode numbers from being freed
* prematurely we take a reference to kernfs_node from the kernfs inode. A
* super_operations.evict_inode() implementation is needed to drop that
* reference upon inode destruction.
*/
void kernfs_evict_inode(struct inode *inode)
{
struct kernfs_node *kn = inode->i_private;
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
kernfs_put(kn);
}
int kernfs_iop_permission(struct mnt_idmap *idmap,
struct inode *inode, int mask)
{
struct kernfs_node *kn;
struct kernfs_root *root;
int ret;
if (mask & MAY_NOT_BLOCK)
return -ECHILD;
kn = inode->i_private;
root = kernfs_root(kn);
down_read(&root->kernfs_iattr_rwsem);
kernfs_refresh_inode(kn, inode);
ret = generic_permission(&nop_mnt_idmap, inode, mask);
up_read(&root->kernfs_iattr_rwsem);
return ret;
}
int kernfs_xattr_get(struct kernfs_node *kn, const char *name,
void *value, size_t size)
{
struct kernfs_iattrs *attrs = kernfs_iattrs_noalloc(kn);
if (!attrs)
return -ENODATA;
return simple_xattr_get(&attrs->xattrs, name, value, size);
}
int kernfs_xattr_set(struct kernfs_node *kn, const char *name,
const void *value, size_t size, int flags)
{
struct simple_xattr *old_xattr;
struct kernfs_iattrs *attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
old_xattr = simple_xattr_set(&attrs->xattrs, name, value, size, flags);
if (IS_ERR(old_xattr))
return PTR_ERR(old_xattr);
simple_xattr_free(old_xattr);
return 0;
}
static int kernfs_vfs_xattr_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *suffix, void *value, size_t size)
{
const char *name = xattr_full_name(handler, suffix);
struct kernfs_node *kn = inode->i_private;
return kernfs_xattr_get(kn, name, value, size);
}
static int kernfs_vfs_xattr_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *suffix, const void *value,
size_t size, int flags)
{
const char *name = xattr_full_name(handler, suffix);
struct kernfs_node *kn = inode->i_private;
return kernfs_xattr_set(kn, name, value, size, flags);
}
static int kernfs_vfs_user_xattr_add(struct kernfs_node *kn,
const char *full_name,
struct simple_xattrs *xattrs,
const void *value, size_t size, int flags)
{
atomic_t *sz = &kn->iattr->user_xattr_size;
atomic_t *nr = &kn->iattr->nr_user_xattrs;
struct simple_xattr *old_xattr;
int ret;
if (atomic_inc_return(nr) > KERNFS_MAX_USER_XATTRS) {
ret = -ENOSPC;
goto dec_count_out;
}
if (atomic_add_return(size, sz) > KERNFS_USER_XATTR_SIZE_LIMIT) {
ret = -ENOSPC;
goto dec_size_out;
}
old_xattr = simple_xattr_set(xattrs, full_name, value, size, flags);
if (!old_xattr)
return 0;
if (IS_ERR(old_xattr)) {
ret = PTR_ERR(old_xattr);
goto dec_size_out;
}
ret = 0;
size = old_xattr->size;
simple_xattr_free(old_xattr);
dec_size_out:
atomic_sub(size, sz);
dec_count_out:
atomic_dec(nr);
return ret;
}
static int kernfs_vfs_user_xattr_rm(struct kernfs_node *kn,
const char *full_name,
struct simple_xattrs *xattrs,
const void *value, size_t size, int flags)
{
atomic_t *sz = &kn->iattr->user_xattr_size;
atomic_t *nr = &kn->iattr->nr_user_xattrs;
struct simple_xattr *old_xattr;
old_xattr = simple_xattr_set(xattrs, full_name, value, size, flags);
if (!old_xattr)
return 0;
if (IS_ERR(old_xattr))
return PTR_ERR(old_xattr);
atomic_sub(old_xattr->size, sz);
atomic_dec(nr);
simple_xattr_free(old_xattr);
return 0;
}
static int kernfs_vfs_user_xattr_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *suffix, const void *value,
size_t size, int flags)
{
const char *full_name = xattr_full_name(handler, suffix);
struct kernfs_node *kn = inode->i_private;
struct kernfs_iattrs *attrs;
if (!(kernfs_root(kn)->flags & KERNFS_ROOT_SUPPORT_USER_XATTR))
return -EOPNOTSUPP;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
if (value)
return kernfs_vfs_user_xattr_add(kn, full_name, &attrs->xattrs,
value, size, flags);
else
return kernfs_vfs_user_xattr_rm(kn, full_name, &attrs->xattrs,
value, size, flags);
}
static const struct xattr_handler kernfs_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = kernfs_vfs_xattr_get,
.set = kernfs_vfs_xattr_set,
};
static const struct xattr_handler kernfs_security_xattr_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = kernfs_vfs_xattr_get,
.set = kernfs_vfs_xattr_set,
};
static const struct xattr_handler kernfs_user_xattr_handler = {
.prefix = XATTR_USER_PREFIX,
.get = kernfs_vfs_xattr_get,
.set = kernfs_vfs_user_xattr_set,
};
const struct xattr_handler *kernfs_xattr_handlers[] = {
&kernfs_trusted_xattr_handler,
&kernfs_security_xattr_handler,
&kernfs_user_xattr_handler,
NULL
};