Pierre-Louis Bossart e52cae0bb4 soundwire: intel_init: use eml_lock parameter
Now that the ASoC/SOF/HDAudio parts has retrieved the mutex and set
the parameter, we can use it to share the same synchronization across
the two domains.

Signed-off-by: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com>
Reviewed-by: Rander Wang <rander.wang@intel.com>
Reviewed-by: Péter Ujfalusi <peter.ujfalusi@linux.intel.com>
Reviewed-by: Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
Signed-off-by: Bard Liao <yung-chuan.liao@linux.intel.com>
Link: https://lore.kernel.org/r/20230515071042.2038-10-yung-chuan.liao@linux.intel.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-05-27 16:06:45 +05:30

391 lines
9.4 KiB
C

// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
// Copyright(c) 2015-17 Intel Corporation.
/*
* SDW Intel Init Routines
*
* Initializes and creates SDW devices based on ACPI and Hardware values
*/
#include <linux/acpi.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/auxiliary_bus.h>
#include <linux/pm_runtime.h>
#include <linux/soundwire/sdw_intel.h>
#include "cadence_master.h"
#include "intel.h"
#include "intel_auxdevice.h"
static void intel_link_dev_release(struct device *dev)
{
struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev);
kfree(ldev);
}
/* alloc, init and add link devices */
static struct sdw_intel_link_dev *intel_link_dev_register(struct sdw_intel_res *res,
struct sdw_intel_ctx *ctx,
struct fwnode_handle *fwnode,
const char *name,
int link_id)
{
struct sdw_intel_link_dev *ldev;
struct sdw_intel_link_res *link;
struct auxiliary_device *auxdev;
int ret;
ldev = kzalloc(sizeof(*ldev), GFP_KERNEL);
if (!ldev)
return ERR_PTR(-ENOMEM);
auxdev = &ldev->auxdev;
auxdev->name = name;
auxdev->dev.parent = res->parent;
auxdev->dev.fwnode = fwnode;
auxdev->dev.release = intel_link_dev_release;
/* we don't use an IDA since we already have a link ID */
auxdev->id = link_id;
/*
* keep a handle on the allocated memory, to be used in all other functions.
* Since the same pattern is used to skip links that are not enabled, there is
* no need to check if ctx->ldev[i] is NULL later on.
*/
ctx->ldev[link_id] = ldev;
/* Add link information used in the driver probe */
link = &ldev->link_res;
link->hw_ops = res->hw_ops;
link->mmio_base = res->mmio_base;
if (!res->ext) {
link->registers = res->mmio_base + SDW_LINK_BASE
+ (SDW_LINK_SIZE * link_id);
link->ip_offset = 0;
link->shim = res->mmio_base + res->shim_base;
link->alh = res->mmio_base + res->alh_base;
link->shim_lock = &ctx->shim_lock;
} else {
link->registers = res->mmio_base + SDW_IP_BASE(link_id);
link->ip_offset = SDW_CADENCE_MCP_IP_OFFSET;
link->shim = res->mmio_base + SDW_SHIM2_GENERIC_BASE(link_id);
link->shim_vs = res->mmio_base + SDW_SHIM2_VS_BASE(link_id);
link->shim_lock = res->eml_lock;
}
link->ops = res->ops;
link->dev = res->dev;
link->clock_stop_quirks = res->clock_stop_quirks;
link->shim_mask = &ctx->shim_mask;
link->link_mask = ctx->link_mask;
link->hbus = res->hbus;
/* now follow the two-step init/add sequence */
ret = auxiliary_device_init(auxdev);
if (ret < 0) {
dev_err(res->parent, "failed to initialize link dev %s link_id %d\n",
name, link_id);
kfree(ldev);
return ERR_PTR(ret);
}
ret = auxiliary_device_add(&ldev->auxdev);
if (ret < 0) {
dev_err(res->parent, "failed to add link dev %s link_id %d\n",
ldev->auxdev.name, link_id);
/* ldev will be freed with the put_device() and .release sequence */
auxiliary_device_uninit(&ldev->auxdev);
return ERR_PTR(ret);
}
return ldev;
}
static void intel_link_dev_unregister(struct sdw_intel_link_dev *ldev)
{
auxiliary_device_delete(&ldev->auxdev);
auxiliary_device_uninit(&ldev->auxdev);
}
static int sdw_intel_cleanup(struct sdw_intel_ctx *ctx)
{
struct sdw_intel_link_dev *ldev;
u32 link_mask;
int i;
link_mask = ctx->link_mask;
for (i = 0; i < ctx->count; i++) {
if (!(link_mask & BIT(i)))
continue;
ldev = ctx->ldev[i];
pm_runtime_disable(&ldev->auxdev.dev);
if (!ldev->link_res.clock_stop_quirks)
pm_runtime_put_noidle(ldev->link_res.dev);
intel_link_dev_unregister(ldev);
}
return 0;
}
irqreturn_t sdw_intel_thread(int irq, void *dev_id)
{
struct sdw_intel_ctx *ctx = dev_id;
struct sdw_intel_link_res *link;
list_for_each_entry(link, &ctx->link_list, list)
sdw_cdns_irq(irq, link->cdns);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_NS(sdw_intel_thread, SOUNDWIRE_INTEL_INIT);
static struct sdw_intel_ctx
*sdw_intel_probe_controller(struct sdw_intel_res *res)
{
struct sdw_intel_link_res *link;
struct sdw_intel_link_dev *ldev;
struct sdw_intel_ctx *ctx;
struct acpi_device *adev;
struct sdw_slave *slave;
struct list_head *node;
struct sdw_bus *bus;
u32 link_mask;
int num_slaves = 0;
int count;
int i;
if (!res)
return NULL;
adev = acpi_fetch_acpi_dev(res->handle);
if (!adev)
return NULL;
if (!res->count)
return NULL;
count = res->count;
dev_dbg(&adev->dev, "Creating %d SDW Link devices\n", count);
/*
* we need to alloc/free memory manually and can't use devm:
* this routine may be called from a workqueue, and not from
* the parent .probe.
* If devm_ was used, the memory might never be freed on errors.
*/
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
ctx->count = count;
/*
* allocate the array of pointers. The link-specific data is allocated
* as part of the first loop below and released with the auxiliary_device_uninit().
* If some links are disabled, the link pointer will remain NULL. Given that the
* number of links is small, this is simpler than using a list to keep track of links.
*/
ctx->ldev = kcalloc(ctx->count, sizeof(*ctx->ldev), GFP_KERNEL);
if (!ctx->ldev) {
kfree(ctx);
return NULL;
}
ctx->mmio_base = res->mmio_base;
ctx->shim_base = res->shim_base;
ctx->alh_base = res->alh_base;
ctx->link_mask = res->link_mask;
ctx->handle = res->handle;
mutex_init(&ctx->shim_lock);
link_mask = ctx->link_mask;
INIT_LIST_HEAD(&ctx->link_list);
for (i = 0; i < count; i++) {
if (!(link_mask & BIT(i)))
continue;
/*
* init and add a device for each link
*
* The name of the device will be soundwire_intel.link.[i],
* with the "soundwire_intel" module prefix automatically added
* by the auxiliary bus core.
*/
ldev = intel_link_dev_register(res,
ctx,
acpi_fwnode_handle(adev),
"link",
i);
if (IS_ERR(ldev))
goto err;
link = &ldev->link_res;
link->cdns = auxiliary_get_drvdata(&ldev->auxdev);
if (!link->cdns) {
dev_err(&adev->dev, "failed to get link->cdns\n");
/*
* 1 will be subtracted from i in the err label, but we need to call
* intel_link_dev_unregister for this ldev, so plus 1 now
*/
i++;
goto err;
}
list_add_tail(&link->list, &ctx->link_list);
bus = &link->cdns->bus;
/* Calculate number of slaves */
list_for_each(node, &bus->slaves)
num_slaves++;
}
ctx->ids = kcalloc(num_slaves, sizeof(*ctx->ids), GFP_KERNEL);
if (!ctx->ids)
goto err;
ctx->num_slaves = num_slaves;
i = 0;
list_for_each_entry(link, &ctx->link_list, list) {
bus = &link->cdns->bus;
list_for_each_entry(slave, &bus->slaves, node) {
ctx->ids[i].id = slave->id;
ctx->ids[i].link_id = bus->link_id;
i++;
}
}
return ctx;
err:
while (i--) {
if (!(link_mask & BIT(i)))
continue;
ldev = ctx->ldev[i];
intel_link_dev_unregister(ldev);
}
kfree(ctx->ldev);
kfree(ctx);
return NULL;
}
static int
sdw_intel_startup_controller(struct sdw_intel_ctx *ctx)
{
struct acpi_device *adev = acpi_fetch_acpi_dev(ctx->handle);
struct sdw_intel_link_dev *ldev;
u32 link_mask;
int i;
if (!adev)
return -EINVAL;
if (!ctx->ldev)
return -EINVAL;
link_mask = ctx->link_mask;
/* Startup SDW Master devices */
for (i = 0; i < ctx->count; i++) {
if (!(link_mask & BIT(i)))
continue;
ldev = ctx->ldev[i];
intel_link_startup(&ldev->auxdev);
if (!ldev->link_res.clock_stop_quirks) {
/*
* we need to prevent the parent PCI device
* from entering pm_runtime suspend, so that
* power rails to the SoundWire IP are not
* turned off.
*/
pm_runtime_get_noresume(ldev->link_res.dev);
}
}
return 0;
}
/**
* sdw_intel_probe() - SoundWire Intel probe routine
* @res: resource data
*
* This registers an auxiliary device for each Master handled by the controller,
* and SoundWire Master and Slave devices will be created by the auxiliary
* device probe. All the information necessary is stored in the context, and
* the res argument pointer can be freed after this step.
* This function will be called after sdw_intel_acpi_scan() by SOF probe.
*/
struct sdw_intel_ctx
*sdw_intel_probe(struct sdw_intel_res *res)
{
return sdw_intel_probe_controller(res);
}
EXPORT_SYMBOL_NS(sdw_intel_probe, SOUNDWIRE_INTEL_INIT);
/**
* sdw_intel_startup() - SoundWire Intel startup
* @ctx: SoundWire context allocated in the probe
*
* Startup Intel SoundWire controller. This function will be called after
* Intel Audio DSP is powered up.
*/
int sdw_intel_startup(struct sdw_intel_ctx *ctx)
{
return sdw_intel_startup_controller(ctx);
}
EXPORT_SYMBOL_NS(sdw_intel_startup, SOUNDWIRE_INTEL_INIT);
/**
* sdw_intel_exit() - SoundWire Intel exit
* @ctx: SoundWire context allocated in the probe
*
* Delete the controller instances created and cleanup
*/
void sdw_intel_exit(struct sdw_intel_ctx *ctx)
{
sdw_intel_cleanup(ctx);
kfree(ctx->ids);
kfree(ctx->ldev);
kfree(ctx);
}
EXPORT_SYMBOL_NS(sdw_intel_exit, SOUNDWIRE_INTEL_INIT);
void sdw_intel_process_wakeen_event(struct sdw_intel_ctx *ctx)
{
struct sdw_intel_link_dev *ldev;
u32 link_mask;
int i;
if (!ctx->ldev)
return;
link_mask = ctx->link_mask;
/* Startup SDW Master devices */
for (i = 0; i < ctx->count; i++) {
if (!(link_mask & BIT(i)))
continue;
ldev = ctx->ldev[i];
intel_link_process_wakeen_event(&ldev->auxdev);
}
}
EXPORT_SYMBOL_NS(sdw_intel_process_wakeen_event, SOUNDWIRE_INTEL_INIT);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Intel Soundwire Init Library");