linux-next/net/core/pktgen.c
David S. Miller ee74baa7d8 [PKTGEN]: Convert to kthread API.
Based upon a suggestion from Christoph Hellwig.

This fixes various races in module load/unload handling
too.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-01-03 18:38:09 -08:00

3640 lines
87 KiB
C

/*
* Authors:
* Copyright 2001, 2002 by Robert Olsson <robert.olsson@its.uu.se>
* Uppsala University and
* Swedish University of Agricultural Sciences
*
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
* Ben Greear <greearb@candelatech.com>
* Jens Låås <jens.laas@data.slu.se>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*
* A tool for loading the network with preconfigurated packets.
* The tool is implemented as a linux module. Parameters are output
* device, delay (to hard_xmit), number of packets, and whether
* to use multiple SKBs or just the same one.
* pktgen uses the installed interface's output routine.
*
* Additional hacking by:
*
* Jens.Laas@data.slu.se
* Improved by ANK. 010120.
* Improved by ANK even more. 010212.
* MAC address typo fixed. 010417 --ro
* Integrated. 020301 --DaveM
* Added multiskb option 020301 --DaveM
* Scaling of results. 020417--sigurdur@linpro.no
* Significant re-work of the module:
* * Convert to threaded model to more efficiently be able to transmit
* and receive on multiple interfaces at once.
* * Converted many counters to __u64 to allow longer runs.
* * Allow configuration of ranges, like min/max IP address, MACs,
* and UDP-ports, for both source and destination, and can
* set to use a random distribution or sequentially walk the range.
* * Can now change most values after starting.
* * Place 12-byte packet in UDP payload with magic number,
* sequence number, and timestamp.
* * Add receiver code that detects dropped pkts, re-ordered pkts, and
* latencies (with micro-second) precision.
* * Add IOCTL interface to easily get counters & configuration.
* --Ben Greear <greearb@candelatech.com>
*
* Renamed multiskb to clone_skb and cleaned up sending core for two distinct
* skb modes. A clone_skb=0 mode for Ben "ranges" work and a clone_skb != 0
* as a "fastpath" with a configurable number of clones after alloc's.
* clone_skb=0 means all packets are allocated this also means ranges time
* stamps etc can be used. clone_skb=100 means 1 malloc is followed by 100
* clones.
*
* Also moved to /proc/net/pktgen/
* --ro
*
* Sept 10: Fixed threading/locking. Lots of bone-headed and more clever
* mistakes. Also merged in DaveM's patch in the -pre6 patch.
* --Ben Greear <greearb@candelatech.com>
*
* Integrated to 2.5.x 021029 --Lucio Maciel (luciomaciel@zipmail.com.br)
*
*
* 021124 Finished major redesign and rewrite for new functionality.
* See Documentation/networking/pktgen.txt for how to use this.
*
* The new operation:
* For each CPU one thread/process is created at start. This process checks
* for running devices in the if_list and sends packets until count is 0 it
* also the thread checks the thread->control which is used for inter-process
* communication. controlling process "posts" operations to the threads this
* way. The if_lock should be possible to remove when add/rem_device is merged
* into this too.
*
* By design there should only be *one* "controlling" process. In practice
* multiple write accesses gives unpredictable result. Understood by "write"
* to /proc gives result code thats should be read be the "writer".
* For practical use this should be no problem.
*
* Note when adding devices to a specific CPU there good idea to also assign
* /proc/irq/XX/smp_affinity so TX-interrupts gets bound to the same CPU.
* --ro
*
* Fix refcount off by one if first packet fails, potential null deref,
* memleak 030710- KJP
*
* First "ranges" functionality for ipv6 030726 --ro
*
* Included flow support. 030802 ANK.
*
* Fixed unaligned access on IA-64 Grant Grundler <grundler@parisc-linux.org>
*
* Remove if fix from added Harald Welte <laforge@netfilter.org> 040419
* ia64 compilation fix from Aron Griffis <aron@hp.com> 040604
*
* New xmit() return, do_div and misc clean up by Stephen Hemminger
* <shemminger@osdl.org> 040923
*
* Randy Dunlap fixed u64 printk compiler waring
*
* Remove FCS from BW calculation. Lennert Buytenhek <buytenh@wantstofly.org>
* New time handling. Lennert Buytenhek <buytenh@wantstofly.org> 041213
*
* Corrections from Nikolai Malykh (nmalykh@bilim.com)
* Removed unused flags F_SET_SRCMAC & F_SET_SRCIP 041230
*
* interruptible_sleep_on_timeout() replaced Nishanth Aravamudan <nacc@us.ibm.com>
* 050103
*
* MPLS support by Steven Whitehouse <steve@chygwyn.com>
*
* 802.1Q/Q-in-Q support by Francesco Fondelli (FF) <francesco.fondelli@gmail.com>
*
*/
#include <linux/sys.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/smp_lock.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/unistd.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/inet.h>
#include <linux/inetdevice.h>
#include <linux/rtnetlink.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/wait.h>
#include <linux/etherdevice.h>
#include <linux/kthread.h>
#include <net/checksum.h>
#include <net/ipv6.h>
#include <net/addrconf.h>
#include <asm/byteorder.h>
#include <linux/rcupdate.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/uaccess.h>
#include <asm/div64.h> /* do_div */
#include <asm/timex.h>
#define VERSION "pktgen v2.68: Packet Generator for packet performance testing.\n"
/* #define PG_DEBUG(a) a */
#define PG_DEBUG(a)
/* The buckets are exponential in 'width' */
#define LAT_BUCKETS_MAX 32
#define IP_NAME_SZ 32
#define MAX_MPLS_LABELS 16 /* This is the max label stack depth */
#define MPLS_STACK_BOTTOM __constant_htonl(0x00000100)
/* Device flag bits */
#define F_IPSRC_RND (1<<0) /* IP-Src Random */
#define F_IPDST_RND (1<<1) /* IP-Dst Random */
#define F_UDPSRC_RND (1<<2) /* UDP-Src Random */
#define F_UDPDST_RND (1<<3) /* UDP-Dst Random */
#define F_MACSRC_RND (1<<4) /* MAC-Src Random */
#define F_MACDST_RND (1<<5) /* MAC-Dst Random */
#define F_TXSIZE_RND (1<<6) /* Transmit size is random */
#define F_IPV6 (1<<7) /* Interface in IPV6 Mode */
#define F_MPLS_RND (1<<8) /* Random MPLS labels */
#define F_VID_RND (1<<9) /* Random VLAN ID */
#define F_SVID_RND (1<<10) /* Random SVLAN ID */
/* Thread control flag bits */
#define T_TERMINATE (1<<0)
#define T_STOP (1<<1) /* Stop run */
#define T_RUN (1<<2) /* Start run */
#define T_REMDEVALL (1<<3) /* Remove all devs */
#define T_REMDEV (1<<4) /* Remove one dev */
/* If lock -- can be removed after some work */
#define if_lock(t) spin_lock(&(t->if_lock));
#define if_unlock(t) spin_unlock(&(t->if_lock));
/* Used to help with determining the pkts on receive */
#define PKTGEN_MAGIC 0xbe9be955
#define PG_PROC_DIR "pktgen"
#define PGCTRL "pgctrl"
static struct proc_dir_entry *pg_proc_dir = NULL;
#define MAX_CFLOWS 65536
#define VLAN_TAG_SIZE(x) ((x)->vlan_id == 0xffff ? 0 : 4)
#define SVLAN_TAG_SIZE(x) ((x)->svlan_id == 0xffff ? 0 : 4)
struct flow_state {
__be32 cur_daddr;
int count;
};
struct pktgen_dev {
/*
* Try to keep frequent/infrequent used vars. separated.
*/
char ifname[IFNAMSIZ];
char result[512];
struct pktgen_thread *pg_thread; /* the owner */
struct list_head list; /* Used for chaining in the thread's run-queue */
int running; /* if this changes to false, the test will stop */
/* If min != max, then we will either do a linear iteration, or
* we will do a random selection from within the range.
*/
__u32 flags;
int removal_mark; /* non-zero => the device is marked for
* removal by worker thread */
int min_pkt_size; /* = ETH_ZLEN; */
int max_pkt_size; /* = ETH_ZLEN; */
int nfrags;
__u32 delay_us; /* Default delay */
__u32 delay_ns;
__u64 count; /* Default No packets to send */
__u64 sofar; /* How many pkts we've sent so far */
__u64 tx_bytes; /* How many bytes we've transmitted */
__u64 errors; /* Errors when trying to transmit, pkts will be re-sent */
/* runtime counters relating to clone_skb */
__u64 next_tx_us; /* timestamp of when to tx next */
__u32 next_tx_ns;
__u64 allocated_skbs;
__u32 clone_count;
int last_ok; /* Was last skb sent?
* Or a failed transmit of some sort? This will keep
* sequence numbers in order, for example.
*/
__u64 started_at; /* micro-seconds */
__u64 stopped_at; /* micro-seconds */
__u64 idle_acc; /* micro-seconds */
__u32 seq_num;
int clone_skb; /* Use multiple SKBs during packet gen. If this number
* is greater than 1, then that many copies of the same
* packet will be sent before a new packet is allocated.
* For instance, if you want to send 1024 identical packets
* before creating a new packet, set clone_skb to 1024.
*/
char dst_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
char dst_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
char src_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
char src_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
struct in6_addr in6_saddr;
struct in6_addr in6_daddr;
struct in6_addr cur_in6_daddr;
struct in6_addr cur_in6_saddr;
/* For ranges */
struct in6_addr min_in6_daddr;
struct in6_addr max_in6_daddr;
struct in6_addr min_in6_saddr;
struct in6_addr max_in6_saddr;
/* If we're doing ranges, random or incremental, then this
* defines the min/max for those ranges.
*/
__be32 saddr_min; /* inclusive, source IP address */
__be32 saddr_max; /* exclusive, source IP address */
__be32 daddr_min; /* inclusive, dest IP address */
__be32 daddr_max; /* exclusive, dest IP address */
__u16 udp_src_min; /* inclusive, source UDP port */
__u16 udp_src_max; /* exclusive, source UDP port */
__u16 udp_dst_min; /* inclusive, dest UDP port */
__u16 udp_dst_max; /* exclusive, dest UDP port */
/* DSCP + ECN */
__u8 tos; /* six most significant bits of (former) IPv4 TOS are for dscp codepoint */
__u8 traffic_class; /* ditto for the (former) Traffic Class in IPv6 (see RFC 3260, sec. 4) */
/* MPLS */
unsigned nr_labels; /* Depth of stack, 0 = no MPLS */
__be32 labels[MAX_MPLS_LABELS];
/* VLAN/SVLAN (802.1Q/Q-in-Q) */
__u8 vlan_p;
__u8 vlan_cfi;
__u16 vlan_id; /* 0xffff means no vlan tag */
__u8 svlan_p;
__u8 svlan_cfi;
__u16 svlan_id; /* 0xffff means no svlan tag */
__u32 src_mac_count; /* How many MACs to iterate through */
__u32 dst_mac_count; /* How many MACs to iterate through */
unsigned char dst_mac[ETH_ALEN];
unsigned char src_mac[ETH_ALEN];
__u32 cur_dst_mac_offset;
__u32 cur_src_mac_offset;
__be32 cur_saddr;
__be32 cur_daddr;
__u16 cur_udp_dst;
__u16 cur_udp_src;
__u32 cur_pkt_size;
__u8 hh[14];
/* = {
0x00, 0x80, 0xC8, 0x79, 0xB3, 0xCB,
We fill in SRC address later
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x00
};
*/
__u16 pad; /* pad out the hh struct to an even 16 bytes */
struct sk_buff *skb; /* skb we are to transmit next, mainly used for when we
* are transmitting the same one multiple times
*/
struct net_device *odev; /* The out-going device. Note that the device should
* have it's pg_info pointer pointing back to this
* device. This will be set when the user specifies
* the out-going device name (not when the inject is
* started as it used to do.)
*/
struct flow_state *flows;
unsigned cflows; /* Concurrent flows (config) */
unsigned lflow; /* Flow length (config) */
unsigned nflows; /* accumulated flows (stats) */
};
struct pktgen_hdr {
__be32 pgh_magic;
__be32 seq_num;
__be32 tv_sec;
__be32 tv_usec;
};
struct pktgen_thread {
spinlock_t if_lock;
struct list_head if_list; /* All device here */
struct list_head th_list;
struct task_struct *tsk;
char result[512];
u32 max_before_softirq; /* We'll call do_softirq to prevent starvation. */
/* Field for thread to receive "posted" events terminate, stop ifs etc. */
u32 control;
int pid;
int cpu;
wait_queue_head_t queue;
};
#define REMOVE 1
#define FIND 0
/* This code works around the fact that do_div cannot handle two 64-bit
numbers, and regular 64-bit division doesn't work on x86 kernels.
--Ben
*/
#define PG_DIV 0
/* This was emailed to LMKL by: Chris Caputo <ccaputo@alt.net>
* Function copied/adapted/optimized from:
*
* nemesis.sourceforge.net/browse/lib/static/intmath/ix86/intmath.c.html
*
* Copyright 1994, University of Cambridge Computer Laboratory
* All Rights Reserved.
*
*/
static inline s64 divremdi3(s64 x, s64 y, int type)
{
u64 a = (x < 0) ? -x : x;
u64 b = (y < 0) ? -y : y;
u64 res = 0, d = 1;
if (b > 0) {
while (b < a) {
b <<= 1;
d <<= 1;
}
}
do {
if (a >= b) {
a -= b;
res += d;
}
b >>= 1;
d >>= 1;
}
while (d);
if (PG_DIV == type) {
return (((x ^ y) & (1ll << 63)) == 0) ? res : -(s64) res;
} else {
return ((x & (1ll << 63)) == 0) ? a : -(s64) a;
}
}
/* End of hacks to deal with 64-bit math on x86 */
/** Convert to milliseconds */
static inline __u64 tv_to_ms(const struct timeval *tv)
{
__u64 ms = tv->tv_usec / 1000;
ms += (__u64) tv->tv_sec * (__u64) 1000;
return ms;
}
/** Convert to micro-seconds */
static inline __u64 tv_to_us(const struct timeval *tv)
{
__u64 us = tv->tv_usec;
us += (__u64) tv->tv_sec * (__u64) 1000000;
return us;
}
static inline __u64 pg_div(__u64 n, __u32 base)
{
__u64 tmp = n;
do_div(tmp, base);
/* printk("pktgen: pg_div, n: %llu base: %d rv: %llu\n",
n, base, tmp); */
return tmp;
}
static inline __u64 pg_div64(__u64 n, __u64 base)
{
__u64 tmp = n;
/*
* How do we know if the architecture we are running on
* supports division with 64 bit base?
*
*/
#if defined(__sparc_v9__) || defined(__powerpc64__) || defined(__alpha__) || defined(__x86_64__) || defined(__ia64__)
do_div(tmp, base);
#else
tmp = divremdi3(n, base, PG_DIV);
#endif
return tmp;
}
static inline u32 pktgen_random(void)
{
#if 0
__u32 n;
get_random_bytes(&n, 4);
return n;
#else
return net_random();
#endif
}
static inline __u64 getCurMs(void)
{
struct timeval tv;
do_gettimeofday(&tv);
return tv_to_ms(&tv);
}
static inline __u64 getCurUs(void)
{
struct timeval tv;
do_gettimeofday(&tv);
return tv_to_us(&tv);
}
static inline __u64 tv_diff(const struct timeval *a, const struct timeval *b)
{
return tv_to_us(a) - tv_to_us(b);
}
/* old include end */
static char version[] __initdata = VERSION;
static int pktgen_remove_device(struct pktgen_thread *t, struct pktgen_dev *i);
static int pktgen_add_device(struct pktgen_thread *t, const char *ifname);
static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t,
const char *ifname);
static int pktgen_device_event(struct notifier_block *, unsigned long, void *);
static void pktgen_run_all_threads(void);
static void pktgen_stop_all_threads_ifs(void);
static int pktgen_stop_device(struct pktgen_dev *pkt_dev);
static void pktgen_stop(struct pktgen_thread *t);
static void pktgen_clear_counters(struct pktgen_dev *pkt_dev);
static int pktgen_mark_device(const char *ifname);
static unsigned int scan_ip6(const char *s, char ip[16]);
static unsigned int fmt_ip6(char *s, const char ip[16]);
/* Module parameters, defaults. */
static int pg_count_d = 1000; /* 1000 pkts by default */
static int pg_delay_d;
static int pg_clone_skb_d;
static int debug;
static DEFINE_MUTEX(pktgen_thread_lock);
static LIST_HEAD(pktgen_threads);
static struct notifier_block pktgen_notifier_block = {
.notifier_call = pktgen_device_event,
};
/*
* /proc handling functions
*
*/
static int pgctrl_show(struct seq_file *seq, void *v)
{
seq_puts(seq, VERSION);
return 0;
}
static ssize_t pgctrl_write(struct file *file, const char __user * buf,
size_t count, loff_t * ppos)
{
int err = 0;
char data[128];
if (!capable(CAP_NET_ADMIN)) {
err = -EPERM;
goto out;
}
if (count > sizeof(data))
count = sizeof(data);
if (copy_from_user(data, buf, count)) {
err = -EFAULT;
goto out;
}
data[count - 1] = 0; /* Make string */
if (!strcmp(data, "stop"))
pktgen_stop_all_threads_ifs();
else if (!strcmp(data, "start"))
pktgen_run_all_threads();
else
printk("pktgen: Unknown command: %s\n", data);
err = count;
out:
return err;
}
static int pgctrl_open(struct inode *inode, struct file *file)
{
return single_open(file, pgctrl_show, PDE(inode)->data);
}
static struct file_operations pktgen_fops = {
.owner = THIS_MODULE,
.open = pgctrl_open,
.read = seq_read,
.llseek = seq_lseek,
.write = pgctrl_write,
.release = single_release,
};
static int pktgen_if_show(struct seq_file *seq, void *v)
{
int i;
struct pktgen_dev *pkt_dev = seq->private;
__u64 sa;
__u64 stopped;
__u64 now = getCurUs();
seq_printf(seq,
"Params: count %llu min_pkt_size: %u max_pkt_size: %u\n",
(unsigned long long)pkt_dev->count, pkt_dev->min_pkt_size,
pkt_dev->max_pkt_size);
seq_printf(seq,
" frags: %d delay: %u clone_skb: %d ifname: %s\n",
pkt_dev->nfrags,
1000 * pkt_dev->delay_us + pkt_dev->delay_ns,
pkt_dev->clone_skb, pkt_dev->ifname);
seq_printf(seq, " flows: %u flowlen: %u\n", pkt_dev->cflows,
pkt_dev->lflow);
if (pkt_dev->flags & F_IPV6) {
char b1[128], b2[128], b3[128];
fmt_ip6(b1, pkt_dev->in6_saddr.s6_addr);
fmt_ip6(b2, pkt_dev->min_in6_saddr.s6_addr);
fmt_ip6(b3, pkt_dev->max_in6_saddr.s6_addr);
seq_printf(seq,
" saddr: %s min_saddr: %s max_saddr: %s\n", b1,
b2, b3);
fmt_ip6(b1, pkt_dev->in6_daddr.s6_addr);
fmt_ip6(b2, pkt_dev->min_in6_daddr.s6_addr);
fmt_ip6(b3, pkt_dev->max_in6_daddr.s6_addr);
seq_printf(seq,
" daddr: %s min_daddr: %s max_daddr: %s\n", b1,
b2, b3);
} else
seq_printf(seq,
" dst_min: %s dst_max: %s\n src_min: %s src_max: %s\n",
pkt_dev->dst_min, pkt_dev->dst_max, pkt_dev->src_min,
pkt_dev->src_max);
seq_puts(seq, " src_mac: ");
if (is_zero_ether_addr(pkt_dev->src_mac))
for (i = 0; i < 6; i++)
seq_printf(seq, "%02X%s", pkt_dev->odev->dev_addr[i],
i == 5 ? " " : ":");
else
for (i = 0; i < 6; i++)
seq_printf(seq, "%02X%s", pkt_dev->src_mac[i],
i == 5 ? " " : ":");
seq_printf(seq, "dst_mac: ");
for (i = 0; i < 6; i++)
seq_printf(seq, "%02X%s", pkt_dev->dst_mac[i],
i == 5 ? "\n" : ":");
seq_printf(seq,
" udp_src_min: %d udp_src_max: %d udp_dst_min: %d udp_dst_max: %d\n",
pkt_dev->udp_src_min, pkt_dev->udp_src_max,
pkt_dev->udp_dst_min, pkt_dev->udp_dst_max);
seq_printf(seq,
" src_mac_count: %d dst_mac_count: %d\n",
pkt_dev->src_mac_count, pkt_dev->dst_mac_count);
if (pkt_dev->nr_labels) {
unsigned i;
seq_printf(seq, " mpls: ");
for(i = 0; i < pkt_dev->nr_labels; i++)
seq_printf(seq, "%08x%s", ntohl(pkt_dev->labels[i]),
i == pkt_dev->nr_labels-1 ? "\n" : ", ");
}
if (pkt_dev->vlan_id != 0xffff) {
seq_printf(seq, " vlan_id: %u vlan_p: %u vlan_cfi: %u\n",
pkt_dev->vlan_id, pkt_dev->vlan_p, pkt_dev->vlan_cfi);
}
if (pkt_dev->svlan_id != 0xffff) {
seq_printf(seq, " svlan_id: %u vlan_p: %u vlan_cfi: %u\n",
pkt_dev->svlan_id, pkt_dev->svlan_p, pkt_dev->svlan_cfi);
}
if (pkt_dev->tos) {
seq_printf(seq, " tos: 0x%02x\n", pkt_dev->tos);
}
if (pkt_dev->traffic_class) {
seq_printf(seq, " traffic_class: 0x%02x\n", pkt_dev->traffic_class);
}
seq_printf(seq, " Flags: ");
if (pkt_dev->flags & F_IPV6)
seq_printf(seq, "IPV6 ");
if (pkt_dev->flags & F_IPSRC_RND)
seq_printf(seq, "IPSRC_RND ");
if (pkt_dev->flags & F_IPDST_RND)
seq_printf(seq, "IPDST_RND ");
if (pkt_dev->flags & F_TXSIZE_RND)
seq_printf(seq, "TXSIZE_RND ");
if (pkt_dev->flags & F_UDPSRC_RND)
seq_printf(seq, "UDPSRC_RND ");
if (pkt_dev->flags & F_UDPDST_RND)
seq_printf(seq, "UDPDST_RND ");
if (pkt_dev->flags & F_MPLS_RND)
seq_printf(seq, "MPLS_RND ");
if (pkt_dev->flags & F_MACSRC_RND)
seq_printf(seq, "MACSRC_RND ");
if (pkt_dev->flags & F_MACDST_RND)
seq_printf(seq, "MACDST_RND ");
if (pkt_dev->flags & F_VID_RND)
seq_printf(seq, "VID_RND ");
if (pkt_dev->flags & F_SVID_RND)
seq_printf(seq, "SVID_RND ");
seq_puts(seq, "\n");
sa = pkt_dev->started_at;
stopped = pkt_dev->stopped_at;
if (pkt_dev->running)
stopped = now; /* not really stopped, more like last-running-at */
seq_printf(seq,
"Current:\n pkts-sofar: %llu errors: %llu\n started: %lluus stopped: %lluus idle: %lluus\n",
(unsigned long long)pkt_dev->sofar,
(unsigned long long)pkt_dev->errors, (unsigned long long)sa,
(unsigned long long)stopped,
(unsigned long long)pkt_dev->idle_acc);
seq_printf(seq,
" seq_num: %d cur_dst_mac_offset: %d cur_src_mac_offset: %d\n",
pkt_dev->seq_num, pkt_dev->cur_dst_mac_offset,
pkt_dev->cur_src_mac_offset);
if (pkt_dev->flags & F_IPV6) {
char b1[128], b2[128];
fmt_ip6(b1, pkt_dev->cur_in6_daddr.s6_addr);
fmt_ip6(b2, pkt_dev->cur_in6_saddr.s6_addr);
seq_printf(seq, " cur_saddr: %s cur_daddr: %s\n", b2, b1);
} else
seq_printf(seq, " cur_saddr: 0x%x cur_daddr: 0x%x\n",
pkt_dev->cur_saddr, pkt_dev->cur_daddr);
seq_printf(seq, " cur_udp_dst: %d cur_udp_src: %d\n",
pkt_dev->cur_udp_dst, pkt_dev->cur_udp_src);
seq_printf(seq, " flows: %u\n", pkt_dev->nflows);
if (pkt_dev->result[0])
seq_printf(seq, "Result: %s\n", pkt_dev->result);
else
seq_printf(seq, "Result: Idle\n");
return 0;
}
static int hex32_arg(const char __user *user_buffer, unsigned long maxlen, __u32 *num)
{
int i = 0;
*num = 0;
for(; i < maxlen; i++) {
char c;
*num <<= 4;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
if ((c >= '0') && (c <= '9'))
*num |= c - '0';
else if ((c >= 'a') && (c <= 'f'))
*num |= c - 'a' + 10;
else if ((c >= 'A') && (c <= 'F'))
*num |= c - 'A' + 10;
else
break;
}
return i;
}
static int count_trail_chars(const char __user * user_buffer,
unsigned int maxlen)
{
int i;
for (i = 0; i < maxlen; i++) {
char c;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
switch (c) {
case '\"':
case '\n':
case '\r':
case '\t':
case ' ':
case '=':
break;
default:
goto done;
};
}
done:
return i;
}
static unsigned long num_arg(const char __user * user_buffer,
unsigned long maxlen, unsigned long *num)
{
int i = 0;
*num = 0;
for (; i < maxlen; i++) {
char c;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
if ((c >= '0') && (c <= '9')) {
*num *= 10;
*num += c - '0';
} else
break;
}
return i;
}
static int strn_len(const char __user * user_buffer, unsigned int maxlen)
{
int i = 0;
for (; i < maxlen; i++) {
char c;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
switch (c) {
case '\"':
case '\n':
case '\r':
case '\t':
case ' ':
goto done_str;
break;
default:
break;
};
}
done_str:
return i;
}
static ssize_t get_labels(const char __user *buffer, struct pktgen_dev *pkt_dev)
{
unsigned n = 0;
char c;
ssize_t i = 0;
int len;
pkt_dev->nr_labels = 0;
do {
__u32 tmp;
len = hex32_arg(&buffer[i], 8, &tmp);
if (len <= 0)
return len;
pkt_dev->labels[n] = htonl(tmp);
if (pkt_dev->labels[n] & MPLS_STACK_BOTTOM)
pkt_dev->flags |= F_MPLS_RND;
i += len;
if (get_user(c, &buffer[i]))
return -EFAULT;
i++;
n++;
if (n >= MAX_MPLS_LABELS)
return -E2BIG;
} while(c == ',');
pkt_dev->nr_labels = n;
return i;
}
static ssize_t pktgen_if_write(struct file *file,
const char __user * user_buffer, size_t count,
loff_t * offset)
{
struct seq_file *seq = (struct seq_file *)file->private_data;
struct pktgen_dev *pkt_dev = seq->private;
int i = 0, max, len;
char name[16], valstr[32];
unsigned long value = 0;
char *pg_result = NULL;
int tmp = 0;
char buf[128];
pg_result = &(pkt_dev->result[0]);
if (count < 1) {
printk("pktgen: wrong command format\n");
return -EINVAL;
}
max = count - i;
tmp = count_trail_chars(&user_buffer[i], max);
if (tmp < 0) {
printk("pktgen: illegal format\n");
return tmp;
}
i += tmp;
/* Read variable name */
len = strn_len(&user_buffer[i], sizeof(name) - 1);
if (len < 0) {
return len;
}
memset(name, 0, sizeof(name));
if (copy_from_user(name, &user_buffer[i], len))
return -EFAULT;
i += len;
max = count - i;
len = count_trail_chars(&user_buffer[i], max);
if (len < 0)
return len;
i += len;
if (debug) {
char tb[count + 1];
if (copy_from_user(tb, user_buffer, count))
return -EFAULT;
tb[count] = 0;
printk("pktgen: %s,%lu buffer -:%s:-\n", name,
(unsigned long)count, tb);
}
if (!strcmp(name, "min_pkt_size")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value < 14 + 20 + 8)
value = 14 + 20 + 8;
if (value != pkt_dev->min_pkt_size) {
pkt_dev->min_pkt_size = value;
pkt_dev->cur_pkt_size = value;
}
sprintf(pg_result, "OK: min_pkt_size=%u",
pkt_dev->min_pkt_size);
return count;
}
if (!strcmp(name, "max_pkt_size")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value < 14 + 20 + 8)
value = 14 + 20 + 8;
if (value != pkt_dev->max_pkt_size) {
pkt_dev->max_pkt_size = value;
pkt_dev->cur_pkt_size = value;
}
sprintf(pg_result, "OK: max_pkt_size=%u",
pkt_dev->max_pkt_size);
return count;
}
/* Shortcut for min = max */
if (!strcmp(name, "pkt_size")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value < 14 + 20 + 8)
value = 14 + 20 + 8;
if (value != pkt_dev->min_pkt_size) {
pkt_dev->min_pkt_size = value;
pkt_dev->max_pkt_size = value;
pkt_dev->cur_pkt_size = value;
}
sprintf(pg_result, "OK: pkt_size=%u", pkt_dev->min_pkt_size);
return count;
}
if (!strcmp(name, "debug")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
debug = value;
sprintf(pg_result, "OK: debug=%u", debug);
return count;
}
if (!strcmp(name, "frags")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
pkt_dev->nfrags = value;
sprintf(pg_result, "OK: frags=%u", pkt_dev->nfrags);
return count;
}
if (!strcmp(name, "delay")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value == 0x7FFFFFFF) {
pkt_dev->delay_us = 0x7FFFFFFF;
pkt_dev->delay_ns = 0;
} else {
pkt_dev->delay_us = value / 1000;
pkt_dev->delay_ns = value % 1000;
}
sprintf(pg_result, "OK: delay=%u",
1000 * pkt_dev->delay_us + pkt_dev->delay_ns);
return count;
}
if (!strcmp(name, "udp_src_min")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value != pkt_dev->udp_src_min) {
pkt_dev->udp_src_min = value;
pkt_dev->cur_udp_src = value;
}
sprintf(pg_result, "OK: udp_src_min=%u", pkt_dev->udp_src_min);
return count;
}
if (!strcmp(name, "udp_dst_min")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value != pkt_dev->udp_dst_min) {
pkt_dev->udp_dst_min = value;
pkt_dev->cur_udp_dst = value;
}
sprintf(pg_result, "OK: udp_dst_min=%u", pkt_dev->udp_dst_min);
return count;
}
if (!strcmp(name, "udp_src_max")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value != pkt_dev->udp_src_max) {
pkt_dev->udp_src_max = value;
pkt_dev->cur_udp_src = value;
}
sprintf(pg_result, "OK: udp_src_max=%u", pkt_dev->udp_src_max);
return count;
}
if (!strcmp(name, "udp_dst_max")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value != pkt_dev->udp_dst_max) {
pkt_dev->udp_dst_max = value;
pkt_dev->cur_udp_dst = value;
}
sprintf(pg_result, "OK: udp_dst_max=%u", pkt_dev->udp_dst_max);
return count;
}
if (!strcmp(name, "clone_skb")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
pkt_dev->clone_skb = value;
sprintf(pg_result, "OK: clone_skb=%d", pkt_dev->clone_skb);
return count;
}
if (!strcmp(name, "count")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
pkt_dev->count = value;
sprintf(pg_result, "OK: count=%llu",
(unsigned long long)pkt_dev->count);
return count;
}
if (!strcmp(name, "src_mac_count")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (pkt_dev->src_mac_count != value) {
pkt_dev->src_mac_count = value;
pkt_dev->cur_src_mac_offset = 0;
}
sprintf(pg_result, "OK: src_mac_count=%d",
pkt_dev->src_mac_count);
return count;
}
if (!strcmp(name, "dst_mac_count")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (pkt_dev->dst_mac_count != value) {
pkt_dev->dst_mac_count = value;
pkt_dev->cur_dst_mac_offset = 0;
}
sprintf(pg_result, "OK: dst_mac_count=%d",
pkt_dev->dst_mac_count);
return count;
}
if (!strcmp(name, "flag")) {
char f[32];
memset(f, 0, 32);
len = strn_len(&user_buffer[i], sizeof(f) - 1);
if (len < 0) {
return len;
}
if (copy_from_user(f, &user_buffer[i], len))
return -EFAULT;
i += len;
if (strcmp(f, "IPSRC_RND") == 0)
pkt_dev->flags |= F_IPSRC_RND;
else if (strcmp(f, "!IPSRC_RND") == 0)
pkt_dev->flags &= ~F_IPSRC_RND;
else if (strcmp(f, "TXSIZE_RND") == 0)
pkt_dev->flags |= F_TXSIZE_RND;
else if (strcmp(f, "!TXSIZE_RND") == 0)
pkt_dev->flags &= ~F_TXSIZE_RND;
else if (strcmp(f, "IPDST_RND") == 0)
pkt_dev->flags |= F_IPDST_RND;
else if (strcmp(f, "!IPDST_RND") == 0)
pkt_dev->flags &= ~F_IPDST_RND;
else if (strcmp(f, "UDPSRC_RND") == 0)
pkt_dev->flags |= F_UDPSRC_RND;
else if (strcmp(f, "!UDPSRC_RND") == 0)
pkt_dev->flags &= ~F_UDPSRC_RND;
else if (strcmp(f, "UDPDST_RND") == 0)
pkt_dev->flags |= F_UDPDST_RND;
else if (strcmp(f, "!UDPDST_RND") == 0)
pkt_dev->flags &= ~F_UDPDST_RND;
else if (strcmp(f, "MACSRC_RND") == 0)
pkt_dev->flags |= F_MACSRC_RND;
else if (strcmp(f, "!MACSRC_RND") == 0)
pkt_dev->flags &= ~F_MACSRC_RND;
else if (strcmp(f, "MACDST_RND") == 0)
pkt_dev->flags |= F_MACDST_RND;
else if (strcmp(f, "!MACDST_RND") == 0)
pkt_dev->flags &= ~F_MACDST_RND;
else if (strcmp(f, "MPLS_RND") == 0)
pkt_dev->flags |= F_MPLS_RND;
else if (strcmp(f, "!MPLS_RND") == 0)
pkt_dev->flags &= ~F_MPLS_RND;
else if (strcmp(f, "VID_RND") == 0)
pkt_dev->flags |= F_VID_RND;
else if (strcmp(f, "!VID_RND") == 0)
pkt_dev->flags &= ~F_VID_RND;
else if (strcmp(f, "SVID_RND") == 0)
pkt_dev->flags |= F_SVID_RND;
else if (strcmp(f, "!SVID_RND") == 0)
pkt_dev->flags &= ~F_SVID_RND;
else if (strcmp(f, "!IPV6") == 0)
pkt_dev->flags &= ~F_IPV6;
else {
sprintf(pg_result,
"Flag -:%s:- unknown\nAvailable flags, (prepend ! to un-set flag):\n%s",
f,
"IPSRC_RND, IPDST_RND, UDPSRC_RND, UDPDST_RND, "
"MACSRC_RND, MACDST_RND, TXSIZE_RND, IPV6, MPLS_RND, VID_RND, SVID_RND\n");
return count;
}
sprintf(pg_result, "OK: flags=0x%x", pkt_dev->flags);
return count;
}
if (!strcmp(name, "dst_min") || !strcmp(name, "dst")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_min) - 1);
if (len < 0) {
return len;
}
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->dst_min) != 0) {
memset(pkt_dev->dst_min, 0, sizeof(pkt_dev->dst_min));
strncpy(pkt_dev->dst_min, buf, len);
pkt_dev->daddr_min = in_aton(pkt_dev->dst_min);
pkt_dev->cur_daddr = pkt_dev->daddr_min;
}
if (debug)
printk("pktgen: dst_min set to: %s\n",
pkt_dev->dst_min);
i += len;
sprintf(pg_result, "OK: dst_min=%s", pkt_dev->dst_min);
return count;
}
if (!strcmp(name, "dst_max")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_max) - 1);
if (len < 0) {
return len;
}
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->dst_max) != 0) {
memset(pkt_dev->dst_max, 0, sizeof(pkt_dev->dst_max));
strncpy(pkt_dev->dst_max, buf, len);
pkt_dev->daddr_max = in_aton(pkt_dev->dst_max);
pkt_dev->cur_daddr = pkt_dev->daddr_max;
}
if (debug)
printk("pktgen: dst_max set to: %s\n",
pkt_dev->dst_max);
i += len;
sprintf(pg_result, "OK: dst_max=%s", pkt_dev->dst_max);
return count;
}
if (!strcmp(name, "dst6")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
scan_ip6(buf, pkt_dev->in6_daddr.s6_addr);
fmt_ip6(buf, pkt_dev->in6_daddr.s6_addr);
ipv6_addr_copy(&pkt_dev->cur_in6_daddr, &pkt_dev->in6_daddr);
if (debug)
printk("pktgen: dst6 set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: dst6=%s", buf);
return count;
}
if (!strcmp(name, "dst6_min")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
scan_ip6(buf, pkt_dev->min_in6_daddr.s6_addr);
fmt_ip6(buf, pkt_dev->min_in6_daddr.s6_addr);
ipv6_addr_copy(&pkt_dev->cur_in6_daddr,
&pkt_dev->min_in6_daddr);
if (debug)
printk("pktgen: dst6_min set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: dst6_min=%s", buf);
return count;
}
if (!strcmp(name, "dst6_max")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
scan_ip6(buf, pkt_dev->max_in6_daddr.s6_addr);
fmt_ip6(buf, pkt_dev->max_in6_daddr.s6_addr);
if (debug)
printk("pktgen: dst6_max set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: dst6_max=%s", buf);
return count;
}
if (!strcmp(name, "src6")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
scan_ip6(buf, pkt_dev->in6_saddr.s6_addr);
fmt_ip6(buf, pkt_dev->in6_saddr.s6_addr);
ipv6_addr_copy(&pkt_dev->cur_in6_saddr, &pkt_dev->in6_saddr);
if (debug)
printk("pktgen: src6 set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: src6=%s", buf);
return count;
}
if (!strcmp(name, "src_min")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_min) - 1);
if (len < 0) {
return len;
}
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->src_min) != 0) {
memset(pkt_dev->src_min, 0, sizeof(pkt_dev->src_min));
strncpy(pkt_dev->src_min, buf, len);
pkt_dev->saddr_min = in_aton(pkt_dev->src_min);
pkt_dev->cur_saddr = pkt_dev->saddr_min;
}
if (debug)
printk("pktgen: src_min set to: %s\n",
pkt_dev->src_min);
i += len;
sprintf(pg_result, "OK: src_min=%s", pkt_dev->src_min);
return count;
}
if (!strcmp(name, "src_max")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_max) - 1);
if (len < 0) {
return len;
}
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->src_max) != 0) {
memset(pkt_dev->src_max, 0, sizeof(pkt_dev->src_max));
strncpy(pkt_dev->src_max, buf, len);
pkt_dev->saddr_max = in_aton(pkt_dev->src_max);
pkt_dev->cur_saddr = pkt_dev->saddr_max;
}
if (debug)
printk("pktgen: src_max set to: %s\n",
pkt_dev->src_max);
i += len;
sprintf(pg_result, "OK: src_max=%s", pkt_dev->src_max);
return count;
}
if (!strcmp(name, "dst_mac")) {
char *v = valstr;
unsigned char old_dmac[ETH_ALEN];
unsigned char *m = pkt_dev->dst_mac;
memcpy(old_dmac, pkt_dev->dst_mac, ETH_ALEN);
len = strn_len(&user_buffer[i], sizeof(valstr) - 1);
if (len < 0) {
return len;
}
memset(valstr, 0, sizeof(valstr));
if (copy_from_user(valstr, &user_buffer[i], len))
return -EFAULT;
i += len;
for (*m = 0; *v && m < pkt_dev->dst_mac + 6; v++) {
if (*v >= '0' && *v <= '9') {
*m *= 16;
*m += *v - '0';
}
if (*v >= 'A' && *v <= 'F') {
*m *= 16;
*m += *v - 'A' + 10;
}
if (*v >= 'a' && *v <= 'f') {
*m *= 16;
*m += *v - 'a' + 10;
}
if (*v == ':') {
m++;
*m = 0;
}
}
/* Set up Dest MAC */
if (compare_ether_addr(old_dmac, pkt_dev->dst_mac))
memcpy(&(pkt_dev->hh[0]), pkt_dev->dst_mac, ETH_ALEN);
sprintf(pg_result, "OK: dstmac");
return count;
}
if (!strcmp(name, "src_mac")) {
char *v = valstr;
unsigned char *m = pkt_dev->src_mac;
len = strn_len(&user_buffer[i], sizeof(valstr) - 1);
if (len < 0) {
return len;
}
memset(valstr, 0, sizeof(valstr));
if (copy_from_user(valstr, &user_buffer[i], len))
return -EFAULT;
i += len;
for (*m = 0; *v && m < pkt_dev->src_mac + 6; v++) {
if (*v >= '0' && *v <= '9') {
*m *= 16;
*m += *v - '0';
}
if (*v >= 'A' && *v <= 'F') {
*m *= 16;
*m += *v - 'A' + 10;
}
if (*v >= 'a' && *v <= 'f') {
*m *= 16;
*m += *v - 'a' + 10;
}
if (*v == ':') {
m++;
*m = 0;
}
}
sprintf(pg_result, "OK: srcmac");
return count;
}
if (!strcmp(name, "clear_counters")) {
pktgen_clear_counters(pkt_dev);
sprintf(pg_result, "OK: Clearing counters.\n");
return count;
}
if (!strcmp(name, "flows")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
if (value > MAX_CFLOWS)
value = MAX_CFLOWS;
pkt_dev->cflows = value;
sprintf(pg_result, "OK: flows=%u", pkt_dev->cflows);
return count;
}
if (!strcmp(name, "flowlen")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0) {
return len;
}
i += len;
pkt_dev->lflow = value;
sprintf(pg_result, "OK: flowlen=%u", pkt_dev->lflow);
return count;
}
if (!strcmp(name, "mpls")) {
unsigned n, offset;
len = get_labels(&user_buffer[i], pkt_dev);
if (len < 0) { return len; }
i += len;
offset = sprintf(pg_result, "OK: mpls=");
for(n = 0; n < pkt_dev->nr_labels; n++)
offset += sprintf(pg_result + offset,
"%08x%s", ntohl(pkt_dev->labels[n]),
n == pkt_dev->nr_labels-1 ? "" : ",");
if (pkt_dev->nr_labels && pkt_dev->vlan_id != 0xffff) {
pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
pkt_dev->svlan_id = 0xffff;
if (debug)
printk("pktgen: VLAN/SVLAN auto turned off\n");
}
return count;
}
if (!strcmp(name, "vlan_id")) {
len = num_arg(&user_buffer[i], 4, &value);
if (len < 0) {
return len;
}
i += len;
if (value <= 4095) {
pkt_dev->vlan_id = value; /* turn on VLAN */
if (debug)
printk("pktgen: VLAN turned on\n");
if (debug && pkt_dev->nr_labels)
printk("pktgen: MPLS auto turned off\n");
pkt_dev->nr_labels = 0; /* turn off MPLS */
sprintf(pg_result, "OK: vlan_id=%u", pkt_dev->vlan_id);
} else {
pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
pkt_dev->svlan_id = 0xffff;
if (debug)
printk("pktgen: VLAN/SVLAN turned off\n");
}
return count;
}
if (!strcmp(name, "vlan_p")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0) {
return len;
}
i += len;
if ((value <= 7) && (pkt_dev->vlan_id != 0xffff)) {
pkt_dev->vlan_p = value;
sprintf(pg_result, "OK: vlan_p=%u", pkt_dev->vlan_p);
} else {
sprintf(pg_result, "ERROR: vlan_p must be 0-7");
}
return count;
}
if (!strcmp(name, "vlan_cfi")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0) {
return len;
}
i += len;
if ((value <= 1) && (pkt_dev->vlan_id != 0xffff)) {
pkt_dev->vlan_cfi = value;
sprintf(pg_result, "OK: vlan_cfi=%u", pkt_dev->vlan_cfi);
} else {
sprintf(pg_result, "ERROR: vlan_cfi must be 0-1");
}
return count;
}
if (!strcmp(name, "svlan_id")) {
len = num_arg(&user_buffer[i], 4, &value);
if (len < 0) {
return len;
}
i += len;
if ((value <= 4095) && ((pkt_dev->vlan_id != 0xffff))) {
pkt_dev->svlan_id = value; /* turn on SVLAN */
if (debug)
printk("pktgen: SVLAN turned on\n");
if (debug && pkt_dev->nr_labels)
printk("pktgen: MPLS auto turned off\n");
pkt_dev->nr_labels = 0; /* turn off MPLS */
sprintf(pg_result, "OK: svlan_id=%u", pkt_dev->svlan_id);
} else {
pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
pkt_dev->svlan_id = 0xffff;
if (debug)
printk("pktgen: VLAN/SVLAN turned off\n");
}
return count;
}
if (!strcmp(name, "svlan_p")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0) {
return len;
}
i += len;
if ((value <= 7) && (pkt_dev->svlan_id != 0xffff)) {
pkt_dev->svlan_p = value;
sprintf(pg_result, "OK: svlan_p=%u", pkt_dev->svlan_p);
} else {
sprintf(pg_result, "ERROR: svlan_p must be 0-7");
}
return count;
}
if (!strcmp(name, "svlan_cfi")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0) {
return len;
}
i += len;
if ((value <= 1) && (pkt_dev->svlan_id != 0xffff)) {
pkt_dev->svlan_cfi = value;
sprintf(pg_result, "OK: svlan_cfi=%u", pkt_dev->svlan_cfi);
} else {
sprintf(pg_result, "ERROR: svlan_cfi must be 0-1");
}
return count;
}
if (!strcmp(name, "tos")) {
__u32 tmp_value = 0;
len = hex32_arg(&user_buffer[i], 2, &tmp_value);
if (len < 0) {
return len;
}
i += len;
if (len == 2) {
pkt_dev->tos = tmp_value;
sprintf(pg_result, "OK: tos=0x%02x", pkt_dev->tos);
} else {
sprintf(pg_result, "ERROR: tos must be 00-ff");
}
return count;
}
if (!strcmp(name, "traffic_class")) {
__u32 tmp_value = 0;
len = hex32_arg(&user_buffer[i], 2, &tmp_value);
if (len < 0) {
return len;
}
i += len;
if (len == 2) {
pkt_dev->traffic_class = tmp_value;
sprintf(pg_result, "OK: traffic_class=0x%02x", pkt_dev->traffic_class);
} else {
sprintf(pg_result, "ERROR: traffic_class must be 00-ff");
}
return count;
}
sprintf(pkt_dev->result, "No such parameter \"%s\"", name);
return -EINVAL;
}
static int pktgen_if_open(struct inode *inode, struct file *file)
{
return single_open(file, pktgen_if_show, PDE(inode)->data);
}
static struct file_operations pktgen_if_fops = {
.owner = THIS_MODULE,
.open = pktgen_if_open,
.read = seq_read,
.llseek = seq_lseek,
.write = pktgen_if_write,
.release = single_release,
};
static int pktgen_thread_show(struct seq_file *seq, void *v)
{
struct pktgen_thread *t = seq->private;
struct pktgen_dev *pkt_dev;
BUG_ON(!t);
seq_printf(seq, "Name: %s max_before_softirq: %d\n",
t->tsk->comm, t->max_before_softirq);
seq_printf(seq, "Running: ");
if_lock(t);
list_for_each_entry(pkt_dev, &t->if_list, list)
if (pkt_dev->running)
seq_printf(seq, "%s ", pkt_dev->ifname);
seq_printf(seq, "\nStopped: ");
list_for_each_entry(pkt_dev, &t->if_list, list)
if (!pkt_dev->running)
seq_printf(seq, "%s ", pkt_dev->ifname);
if (t->result[0])
seq_printf(seq, "\nResult: %s\n", t->result);
else
seq_printf(seq, "\nResult: NA\n");
if_unlock(t);
return 0;
}
static ssize_t pktgen_thread_write(struct file *file,
const char __user * user_buffer,
size_t count, loff_t * offset)
{
struct seq_file *seq = (struct seq_file *)file->private_data;
struct pktgen_thread *t = seq->private;
int i = 0, max, len, ret;
char name[40];
char *pg_result;
unsigned long value = 0;
if (count < 1) {
// sprintf(pg_result, "Wrong command format");
return -EINVAL;
}
max = count - i;
len = count_trail_chars(&user_buffer[i], max);
if (len < 0)
return len;
i += len;
/* Read variable name */
len = strn_len(&user_buffer[i], sizeof(name) - 1);
if (len < 0)
return len;
memset(name, 0, sizeof(name));
if (copy_from_user(name, &user_buffer[i], len))
return -EFAULT;
i += len;
max = count - i;
len = count_trail_chars(&user_buffer[i], max);
if (len < 0)
return len;
i += len;
if (debug)
printk("pktgen: t=%s, count=%lu\n", name, (unsigned long)count);
if (!t) {
printk("pktgen: ERROR: No thread\n");
ret = -EINVAL;
goto out;
}
pg_result = &(t->result[0]);
if (!strcmp(name, "add_device")) {
char f[32];
memset(f, 0, 32);
len = strn_len(&user_buffer[i], sizeof(f) - 1);
if (len < 0) {
ret = len;
goto out;
}
if (copy_from_user(f, &user_buffer[i], len))
return -EFAULT;
i += len;
mutex_lock(&pktgen_thread_lock);
pktgen_add_device(t, f);
mutex_unlock(&pktgen_thread_lock);
ret = count;
sprintf(pg_result, "OK: add_device=%s", f);
goto out;
}
if (!strcmp(name, "rem_device_all")) {
mutex_lock(&pktgen_thread_lock);
t->control |= T_REMDEVALL;
mutex_unlock(&pktgen_thread_lock);
schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */
ret = count;
sprintf(pg_result, "OK: rem_device_all");
goto out;
}
if (!strcmp(name, "max_before_softirq")) {
len = num_arg(&user_buffer[i], 10, &value);
mutex_lock(&pktgen_thread_lock);
t->max_before_softirq = value;
mutex_unlock(&pktgen_thread_lock);
ret = count;
sprintf(pg_result, "OK: max_before_softirq=%lu", value);
goto out;
}
ret = -EINVAL;
out:
return ret;
}
static int pktgen_thread_open(struct inode *inode, struct file *file)
{
return single_open(file, pktgen_thread_show, PDE(inode)->data);
}
static struct file_operations pktgen_thread_fops = {
.owner = THIS_MODULE,
.open = pktgen_thread_open,
.read = seq_read,
.llseek = seq_lseek,
.write = pktgen_thread_write,
.release = single_release,
};
/* Think find or remove for NN */
static struct pktgen_dev *__pktgen_NN_threads(const char *ifname, int remove)
{
struct pktgen_thread *t;
struct pktgen_dev *pkt_dev = NULL;
list_for_each_entry(t, &pktgen_threads, th_list) {
pkt_dev = pktgen_find_dev(t, ifname);
if (pkt_dev) {
if (remove) {
if_lock(t);
pkt_dev->removal_mark = 1;
t->control |= T_REMDEV;
if_unlock(t);
}
break;
}
}
return pkt_dev;
}
/*
* mark a device for removal
*/
static int pktgen_mark_device(const char *ifname)
{
struct pktgen_dev *pkt_dev = NULL;
const int max_tries = 10, msec_per_try = 125;
int i = 0;
int ret = 0;
mutex_lock(&pktgen_thread_lock);
PG_DEBUG(printk("pktgen: pktgen_mark_device marking %s for removal\n",
ifname));
while (1) {
pkt_dev = __pktgen_NN_threads(ifname, REMOVE);
if (pkt_dev == NULL)
break; /* success */
mutex_unlock(&pktgen_thread_lock);
PG_DEBUG(printk("pktgen: pktgen_mark_device waiting for %s "
"to disappear....\n", ifname));
schedule_timeout_interruptible(msecs_to_jiffies(msec_per_try));
mutex_lock(&pktgen_thread_lock);
if (++i >= max_tries) {
printk("pktgen_mark_device: timed out after waiting "
"%d msec for device %s to be removed\n",
msec_per_try * i, ifname);
ret = 1;
break;
}
}
mutex_unlock(&pktgen_thread_lock);
return ret;
}
static int pktgen_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = (struct net_device *)(ptr);
/* It is OK that we do not hold the group lock right now,
* as we run under the RTNL lock.
*/
switch (event) {
case NETDEV_CHANGEADDR:
case NETDEV_GOING_DOWN:
case NETDEV_DOWN:
case NETDEV_UP:
/* Ignore for now */
break;
case NETDEV_UNREGISTER:
pktgen_mark_device(dev->name);
break;
};
return NOTIFY_DONE;
}
/* Associate pktgen_dev with a device. */
static struct net_device *pktgen_setup_dev(struct pktgen_dev *pkt_dev)
{
struct net_device *odev;
/* Clean old setups */
if (pkt_dev->odev) {
dev_put(pkt_dev->odev);
pkt_dev->odev = NULL;
}
odev = dev_get_by_name(pkt_dev->ifname);
if (!odev) {
printk("pktgen: no such netdevice: \"%s\"\n", pkt_dev->ifname);
goto out;
}
if (odev->type != ARPHRD_ETHER) {
printk("pktgen: not an ethernet device: \"%s\"\n",
pkt_dev->ifname);
goto out_put;
}
if (!netif_running(odev)) {
printk("pktgen: device is down: \"%s\"\n", pkt_dev->ifname);
goto out_put;
}
pkt_dev->odev = odev;
return pkt_dev->odev;
out_put:
dev_put(odev);
out:
return NULL;
}
/* Read pkt_dev from the interface and set up internal pktgen_dev
* structure to have the right information to create/send packets
*/
static void pktgen_setup_inject(struct pktgen_dev *pkt_dev)
{
/* Try once more, just in case it works now. */
if (!pkt_dev->odev)
pktgen_setup_dev(pkt_dev);
if (!pkt_dev->odev) {
printk("pktgen: ERROR: pkt_dev->odev == NULL in setup_inject.\n");
sprintf(pkt_dev->result,
"ERROR: pkt_dev->odev == NULL in setup_inject.\n");
return;
}
/* Default to the interface's mac if not explicitly set. */
if (is_zero_ether_addr(pkt_dev->src_mac))
memcpy(&(pkt_dev->hh[6]), pkt_dev->odev->dev_addr, ETH_ALEN);
/* Set up Dest MAC */
memcpy(&(pkt_dev->hh[0]), pkt_dev->dst_mac, ETH_ALEN);
/* Set up pkt size */
pkt_dev->cur_pkt_size = pkt_dev->min_pkt_size;
if (pkt_dev->flags & F_IPV6) {
/*
* Skip this automatic address setting until locks or functions
* gets exported
*/
#ifdef NOTNOW
int i, set = 0, err = 1;
struct inet6_dev *idev;
for (i = 0; i < IN6_ADDR_HSIZE; i++)
if (pkt_dev->cur_in6_saddr.s6_addr[i]) {
set = 1;
break;
}
if (!set) {
/*
* Use linklevel address if unconfigured.
*
* use ipv6_get_lladdr if/when it's get exported
*/
rcu_read_lock();
if ((idev = __in6_dev_get(pkt_dev->odev)) != NULL) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp = idev->addr_list; ifp;
ifp = ifp->if_next) {
if (ifp->scope == IFA_LINK
&& !(ifp->
flags & IFA_F_TENTATIVE)) {
ipv6_addr_copy(&pkt_dev->
cur_in6_saddr,
&ifp->addr);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
if (err)
printk("pktgen: ERROR: IPv6 link address not availble.\n");
}
#endif
} else {
pkt_dev->saddr_min = 0;
pkt_dev->saddr_max = 0;
if (strlen(pkt_dev->src_min) == 0) {
struct in_device *in_dev;
rcu_read_lock();
in_dev = __in_dev_get_rcu(pkt_dev->odev);
if (in_dev) {
if (in_dev->ifa_list) {
pkt_dev->saddr_min =
in_dev->ifa_list->ifa_address;
pkt_dev->saddr_max = pkt_dev->saddr_min;
}
}
rcu_read_unlock();
} else {
pkt_dev->saddr_min = in_aton(pkt_dev->src_min);
pkt_dev->saddr_max = in_aton(pkt_dev->src_max);
}
pkt_dev->daddr_min = in_aton(pkt_dev->dst_min);
pkt_dev->daddr_max = in_aton(pkt_dev->dst_max);
}
/* Initialize current values. */
pkt_dev->cur_dst_mac_offset = 0;
pkt_dev->cur_src_mac_offset = 0;
pkt_dev->cur_saddr = pkt_dev->saddr_min;
pkt_dev->cur_daddr = pkt_dev->daddr_min;
pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min;
pkt_dev->cur_udp_src = pkt_dev->udp_src_min;
pkt_dev->nflows = 0;
}
static void spin(struct pktgen_dev *pkt_dev, __u64 spin_until_us)
{
__u64 start;
__u64 now;
start = now = getCurUs();
printk(KERN_INFO "sleeping for %d\n", (int)(spin_until_us - now));
while (now < spin_until_us) {
/* TODO: optimize sleeping behavior */
if (spin_until_us - now > jiffies_to_usecs(1) + 1)
schedule_timeout_interruptible(1);
else if (spin_until_us - now > 100) {
do_softirq();
if (!pkt_dev->running)
return;
if (need_resched())
schedule();
}
now = getCurUs();
}
pkt_dev->idle_acc += now - start;
}
/* Increment/randomize headers according to flags and current values
* for IP src/dest, UDP src/dst port, MAC-Addr src/dst
*/
static void mod_cur_headers(struct pktgen_dev *pkt_dev)
{
__u32 imn;
__u32 imx;
int flow = 0;
if (pkt_dev->cflows) {
flow = pktgen_random() % pkt_dev->cflows;
if (pkt_dev->flows[flow].count > pkt_dev->lflow)
pkt_dev->flows[flow].count = 0;
}
/* Deal with source MAC */
if (pkt_dev->src_mac_count > 1) {
__u32 mc;
__u32 tmp;
if (pkt_dev->flags & F_MACSRC_RND)
mc = pktgen_random() % (pkt_dev->src_mac_count);
else {
mc = pkt_dev->cur_src_mac_offset++;
if (pkt_dev->cur_src_mac_offset >
pkt_dev->src_mac_count)
pkt_dev->cur_src_mac_offset = 0;
}
tmp = pkt_dev->src_mac[5] + (mc & 0xFF);
pkt_dev->hh[11] = tmp;
tmp = (pkt_dev->src_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8));
pkt_dev->hh[10] = tmp;
tmp = (pkt_dev->src_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8));
pkt_dev->hh[9] = tmp;
tmp = (pkt_dev->src_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8));
pkt_dev->hh[8] = tmp;
tmp = (pkt_dev->src_mac[1] + (tmp >> 8));
pkt_dev->hh[7] = tmp;
}
/* Deal with Destination MAC */
if (pkt_dev->dst_mac_count > 1) {
__u32 mc;
__u32 tmp;
if (pkt_dev->flags & F_MACDST_RND)
mc = pktgen_random() % (pkt_dev->dst_mac_count);
else {
mc = pkt_dev->cur_dst_mac_offset++;
if (pkt_dev->cur_dst_mac_offset >
pkt_dev->dst_mac_count) {
pkt_dev->cur_dst_mac_offset = 0;
}
}
tmp = pkt_dev->dst_mac[5] + (mc & 0xFF);
pkt_dev->hh[5] = tmp;
tmp = (pkt_dev->dst_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8));
pkt_dev->hh[4] = tmp;
tmp = (pkt_dev->dst_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8));
pkt_dev->hh[3] = tmp;
tmp = (pkt_dev->dst_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8));
pkt_dev->hh[2] = tmp;
tmp = (pkt_dev->dst_mac[1] + (tmp >> 8));
pkt_dev->hh[1] = tmp;
}
if (pkt_dev->flags & F_MPLS_RND) {
unsigned i;
for(i = 0; i < pkt_dev->nr_labels; i++)
if (pkt_dev->labels[i] & MPLS_STACK_BOTTOM)
pkt_dev->labels[i] = MPLS_STACK_BOTTOM |
((__force __be32)pktgen_random() &
htonl(0x000fffff));
}
if ((pkt_dev->flags & F_VID_RND) && (pkt_dev->vlan_id != 0xffff)) {
pkt_dev->vlan_id = pktgen_random() % 4096;
}
if ((pkt_dev->flags & F_SVID_RND) && (pkt_dev->svlan_id != 0xffff)) {
pkt_dev->svlan_id = pktgen_random() % 4096;
}
if (pkt_dev->udp_src_min < pkt_dev->udp_src_max) {
if (pkt_dev->flags & F_UDPSRC_RND)
pkt_dev->cur_udp_src =
((pktgen_random() %
(pkt_dev->udp_src_max - pkt_dev->udp_src_min)) +
pkt_dev->udp_src_min);
else {
pkt_dev->cur_udp_src++;
if (pkt_dev->cur_udp_src >= pkt_dev->udp_src_max)
pkt_dev->cur_udp_src = pkt_dev->udp_src_min;
}
}
if (pkt_dev->udp_dst_min < pkt_dev->udp_dst_max) {
if (pkt_dev->flags & F_UDPDST_RND) {
pkt_dev->cur_udp_dst =
((pktgen_random() %
(pkt_dev->udp_dst_max - pkt_dev->udp_dst_min)) +
pkt_dev->udp_dst_min);
} else {
pkt_dev->cur_udp_dst++;
if (pkt_dev->cur_udp_dst >= pkt_dev->udp_dst_max)
pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min;
}
}
if (!(pkt_dev->flags & F_IPV6)) {
if ((imn = ntohl(pkt_dev->saddr_min)) < (imx =
ntohl(pkt_dev->
saddr_max))) {
__u32 t;
if (pkt_dev->flags & F_IPSRC_RND)
t = ((pktgen_random() % (imx - imn)) + imn);
else {
t = ntohl(pkt_dev->cur_saddr);
t++;
if (t > imx) {
t = imn;
}
}
pkt_dev->cur_saddr = htonl(t);
}
if (pkt_dev->cflows && pkt_dev->flows[flow].count != 0) {
pkt_dev->cur_daddr = pkt_dev->flows[flow].cur_daddr;
} else {
imn = ntohl(pkt_dev->daddr_min);
imx = ntohl(pkt_dev->daddr_max);
if (imn < imx) {
__u32 t;
__be32 s;
if (pkt_dev->flags & F_IPDST_RND) {
t = pktgen_random() % (imx - imn) + imn;
s = htonl(t);
while (LOOPBACK(s) || MULTICAST(s)
|| BADCLASS(s) || ZERONET(s)
|| LOCAL_MCAST(s)) {
t = (pktgen_random() %
(imx - imn)) + imn;
s = htonl(t);
}
pkt_dev->cur_daddr = s;
} else {
t = ntohl(pkt_dev->cur_daddr);
t++;
if (t > imx) {
t = imn;
}
pkt_dev->cur_daddr = htonl(t);
}
}
if (pkt_dev->cflows) {
pkt_dev->flows[flow].cur_daddr =
pkt_dev->cur_daddr;
pkt_dev->nflows++;
}
}
} else { /* IPV6 * */
if (pkt_dev->min_in6_daddr.s6_addr32[0] == 0 &&
pkt_dev->min_in6_daddr.s6_addr32[1] == 0 &&
pkt_dev->min_in6_daddr.s6_addr32[2] == 0 &&
pkt_dev->min_in6_daddr.s6_addr32[3] == 0) ;
else {
int i;
/* Only random destinations yet */
for (i = 0; i < 4; i++) {
pkt_dev->cur_in6_daddr.s6_addr32[i] =
(((__force __be32)pktgen_random() |
pkt_dev->min_in6_daddr.s6_addr32[i]) &
pkt_dev->max_in6_daddr.s6_addr32[i]);
}
}
}
if (pkt_dev->min_pkt_size < pkt_dev->max_pkt_size) {
__u32 t;
if (pkt_dev->flags & F_TXSIZE_RND) {
t = ((pktgen_random() %
(pkt_dev->max_pkt_size - pkt_dev->min_pkt_size))
+ pkt_dev->min_pkt_size);
} else {
t = pkt_dev->cur_pkt_size + 1;
if (t > pkt_dev->max_pkt_size)
t = pkt_dev->min_pkt_size;
}
pkt_dev->cur_pkt_size = t;
}
pkt_dev->flows[flow].count++;
}
static void mpls_push(__be32 *mpls, struct pktgen_dev *pkt_dev)
{
unsigned i;
for(i = 0; i < pkt_dev->nr_labels; i++) {
*mpls++ = pkt_dev->labels[i] & ~MPLS_STACK_BOTTOM;
}
mpls--;
*mpls |= MPLS_STACK_BOTTOM;
}
static inline __be16 build_tci(unsigned int id, unsigned int cfi,
unsigned int prio)
{
return htons(id | (cfi << 12) | (prio << 13));
}
static struct sk_buff *fill_packet_ipv4(struct net_device *odev,
struct pktgen_dev *pkt_dev)
{
struct sk_buff *skb = NULL;
__u8 *eth;
struct udphdr *udph;
int datalen, iplen;
struct iphdr *iph;
struct pktgen_hdr *pgh = NULL;
__be16 protocol = __constant_htons(ETH_P_IP);
__be32 *mpls;
__be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */
__be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */
__be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */
__be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */
if (pkt_dev->nr_labels)
protocol = __constant_htons(ETH_P_MPLS_UC);
if (pkt_dev->vlan_id != 0xffff)
protocol = __constant_htons(ETH_P_8021Q);
/* Update any of the values, used when we're incrementing various
* fields.
*/
mod_cur_headers(pkt_dev);
datalen = (odev->hard_header_len + 16) & ~0xf;
skb = alloc_skb(pkt_dev->cur_pkt_size + 64 + datalen +
pkt_dev->nr_labels*sizeof(u32) +
VLAN_TAG_SIZE(pkt_dev) + SVLAN_TAG_SIZE(pkt_dev),
GFP_ATOMIC);
if (!skb) {
sprintf(pkt_dev->result, "No memory");
return NULL;
}
skb_reserve(skb, datalen);
/* Reserve for ethernet and IP header */
eth = (__u8 *) skb_push(skb, 14);
mpls = (__be32 *)skb_put(skb, pkt_dev->nr_labels*sizeof(__u32));
if (pkt_dev->nr_labels)
mpls_push(mpls, pkt_dev);
if (pkt_dev->vlan_id != 0xffff) {
if(pkt_dev->svlan_id != 0xffff) {
svlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_tci = build_tci(pkt_dev->svlan_id,
pkt_dev->svlan_cfi,
pkt_dev->svlan_p);
svlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_encapsulated_proto = __constant_htons(ETH_P_8021Q);
}
vlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_tci = build_tci(pkt_dev->vlan_id,
pkt_dev->vlan_cfi,
pkt_dev->vlan_p);
vlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_encapsulated_proto = __constant_htons(ETH_P_IP);
}
iph = (struct iphdr *)skb_put(skb, sizeof(struct iphdr));
udph = (struct udphdr *)skb_put(skb, sizeof(struct udphdr));
memcpy(eth, pkt_dev->hh, 12);
*(__be16 *) & eth[12] = protocol;
/* Eth + IPh + UDPh + mpls */
datalen = pkt_dev->cur_pkt_size - 14 - 20 - 8 -
pkt_dev->nr_labels*sizeof(u32) - VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev);
if (datalen < sizeof(struct pktgen_hdr))
datalen = sizeof(struct pktgen_hdr);
udph->source = htons(pkt_dev->cur_udp_src);
udph->dest = htons(pkt_dev->cur_udp_dst);
udph->len = htons(datalen + 8); /* DATA + udphdr */
udph->check = 0; /* No checksum */
iph->ihl = 5;
iph->version = 4;
iph->ttl = 32;
iph->tos = pkt_dev->tos;
iph->protocol = IPPROTO_UDP; /* UDP */
iph->saddr = pkt_dev->cur_saddr;
iph->daddr = pkt_dev->cur_daddr;
iph->frag_off = 0;
iplen = 20 + 8 + datalen;
iph->tot_len = htons(iplen);
iph->check = 0;
iph->check = ip_fast_csum((void *)iph, iph->ihl);
skb->protocol = protocol;
skb->mac.raw = ((u8 *) iph) - 14 - pkt_dev->nr_labels*sizeof(u32) -
VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev);
skb->dev = odev;
skb->pkt_type = PACKET_HOST;
skb->nh.iph = iph;
skb->h.uh = udph;
if (pkt_dev->nfrags <= 0)
pgh = (struct pktgen_hdr *)skb_put(skb, datalen);
else {
int frags = pkt_dev->nfrags;
int i;
pgh = (struct pktgen_hdr *)(((char *)(udph)) + 8);
if (frags > MAX_SKB_FRAGS)
frags = MAX_SKB_FRAGS;
if (datalen > frags * PAGE_SIZE) {
skb_put(skb, datalen - frags * PAGE_SIZE);
datalen = frags * PAGE_SIZE;
}
i = 0;
while (datalen > 0) {
struct page *page = alloc_pages(GFP_KERNEL, 0);
skb_shinfo(skb)->frags[i].page = page;
skb_shinfo(skb)->frags[i].page_offset = 0;
skb_shinfo(skb)->frags[i].size =
(datalen < PAGE_SIZE ? datalen : PAGE_SIZE);
datalen -= skb_shinfo(skb)->frags[i].size;
skb->len += skb_shinfo(skb)->frags[i].size;
skb->data_len += skb_shinfo(skb)->frags[i].size;
i++;
skb_shinfo(skb)->nr_frags = i;
}
while (i < frags) {
int rem;
if (i == 0)
break;
rem = skb_shinfo(skb)->frags[i - 1].size / 2;
if (rem == 0)
break;
skb_shinfo(skb)->frags[i - 1].size -= rem;
skb_shinfo(skb)->frags[i] =
skb_shinfo(skb)->frags[i - 1];
get_page(skb_shinfo(skb)->frags[i].page);
skb_shinfo(skb)->frags[i].page =
skb_shinfo(skb)->frags[i - 1].page;
skb_shinfo(skb)->frags[i].page_offset +=
skb_shinfo(skb)->frags[i - 1].size;
skb_shinfo(skb)->frags[i].size = rem;
i++;
skb_shinfo(skb)->nr_frags = i;
}
}
/* Stamp the time, and sequence number, convert them to network byte order */
if (pgh) {
struct timeval timestamp;
pgh->pgh_magic = htonl(PKTGEN_MAGIC);
pgh->seq_num = htonl(pkt_dev->seq_num);
do_gettimeofday(&timestamp);
pgh->tv_sec = htonl(timestamp.tv_sec);
pgh->tv_usec = htonl(timestamp.tv_usec);
}
return skb;
}
/*
* scan_ip6, fmt_ip taken from dietlibc-0.21
* Author Felix von Leitner <felix-dietlibc@fefe.de>
*
* Slightly modified for kernel.
* Should be candidate for net/ipv4/utils.c
* --ro
*/
static unsigned int scan_ip6(const char *s, char ip[16])
{
unsigned int i;
unsigned int len = 0;
unsigned long u;
char suffix[16];
unsigned int prefixlen = 0;
unsigned int suffixlen = 0;
__be32 tmp;
for (i = 0; i < 16; i++)
ip[i] = 0;
for (;;) {
if (*s == ':') {
len++;
if (s[1] == ':') { /* Found "::", skip to part 2 */
s += 2;
len++;
break;
}
s++;
}
{
char *tmp;
u = simple_strtoul(s, &tmp, 16);
i = tmp - s;
}
if (!i)
return 0;
if (prefixlen == 12 && s[i] == '.') {
/* the last 4 bytes may be written as IPv4 address */
tmp = in_aton(s);
memcpy((struct in_addr *)(ip + 12), &tmp, sizeof(tmp));
return i + len;
}
ip[prefixlen++] = (u >> 8);
ip[prefixlen++] = (u & 255);
s += i;
len += i;
if (prefixlen == 16)
return len;
}
/* part 2, after "::" */
for (;;) {
if (*s == ':') {
if (suffixlen == 0)
break;
s++;
len++;
} else if (suffixlen != 0)
break;
{
char *tmp;
u = simple_strtol(s, &tmp, 16);
i = tmp - s;
}
if (!i) {
if (*s)
len--;
break;
}
if (suffixlen + prefixlen <= 12 && s[i] == '.') {
tmp = in_aton(s);
memcpy((struct in_addr *)(suffix + suffixlen), &tmp,
sizeof(tmp));
suffixlen += 4;
len += strlen(s);
break;
}
suffix[suffixlen++] = (u >> 8);
suffix[suffixlen++] = (u & 255);
s += i;
len += i;
if (prefixlen + suffixlen == 16)
break;
}
for (i = 0; i < suffixlen; i++)
ip[16 - suffixlen + i] = suffix[i];
return len;
}
static char tohex(char hexdigit)
{
return hexdigit > 9 ? hexdigit + 'a' - 10 : hexdigit + '0';
}
static int fmt_xlong(char *s, unsigned int i)
{
char *bak = s;
*s = tohex((i >> 12) & 0xf);
if (s != bak || *s != '0')
++s;
*s = tohex((i >> 8) & 0xf);
if (s != bak || *s != '0')
++s;
*s = tohex((i >> 4) & 0xf);
if (s != bak || *s != '0')
++s;
*s = tohex(i & 0xf);
return s - bak + 1;
}
static unsigned int fmt_ip6(char *s, const char ip[16])
{
unsigned int len;
unsigned int i;
unsigned int temp;
unsigned int compressing;
int j;
len = 0;
compressing = 0;
for (j = 0; j < 16; j += 2) {
#ifdef V4MAPPEDPREFIX
if (j == 12 && !memcmp(ip, V4mappedprefix, 12)) {
inet_ntoa_r(*(struct in_addr *)(ip + 12), s);
temp = strlen(s);
return len + temp;
}
#endif
temp = ((unsigned long)(unsigned char)ip[j] << 8) +
(unsigned long)(unsigned char)ip[j + 1];
if (temp == 0) {
if (!compressing) {
compressing = 1;
if (j == 0) {
*s++ = ':';
++len;
}
}
} else {
if (compressing) {
compressing = 0;
*s++ = ':';
++len;
}
i = fmt_xlong(s, temp);
len += i;
s += i;
if (j < 14) {
*s++ = ':';
++len;
}
}
}
if (compressing) {
*s++ = ':';
++len;
}
*s = 0;
return len;
}
static struct sk_buff *fill_packet_ipv6(struct net_device *odev,
struct pktgen_dev *pkt_dev)
{
struct sk_buff *skb = NULL;
__u8 *eth;
struct udphdr *udph;
int datalen;
struct ipv6hdr *iph;
struct pktgen_hdr *pgh = NULL;
__be16 protocol = __constant_htons(ETH_P_IPV6);
__be32 *mpls;
__be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */
__be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */
__be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */
__be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */
if (pkt_dev->nr_labels)
protocol = __constant_htons(ETH_P_MPLS_UC);
if (pkt_dev->vlan_id != 0xffff)
protocol = __constant_htons(ETH_P_8021Q);
/* Update any of the values, used when we're incrementing various
* fields.
*/
mod_cur_headers(pkt_dev);
skb = alloc_skb(pkt_dev->cur_pkt_size + 64 + 16 +
pkt_dev->nr_labels*sizeof(u32) +
VLAN_TAG_SIZE(pkt_dev) + SVLAN_TAG_SIZE(pkt_dev),
GFP_ATOMIC);
if (!skb) {
sprintf(pkt_dev->result, "No memory");
return NULL;
}
skb_reserve(skb, 16);
/* Reserve for ethernet and IP header */
eth = (__u8 *) skb_push(skb, 14);
mpls = (__be32 *)skb_put(skb, pkt_dev->nr_labels*sizeof(__u32));
if (pkt_dev->nr_labels)
mpls_push(mpls, pkt_dev);
if (pkt_dev->vlan_id != 0xffff) {
if(pkt_dev->svlan_id != 0xffff) {
svlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_tci = build_tci(pkt_dev->svlan_id,
pkt_dev->svlan_cfi,
pkt_dev->svlan_p);
svlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_encapsulated_proto = __constant_htons(ETH_P_8021Q);
}
vlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_tci = build_tci(pkt_dev->vlan_id,
pkt_dev->vlan_cfi,
pkt_dev->vlan_p);
vlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_encapsulated_proto = __constant_htons(ETH_P_IPV6);
}
iph = (struct ipv6hdr *)skb_put(skb, sizeof(struct ipv6hdr));
udph = (struct udphdr *)skb_put(skb, sizeof(struct udphdr));
memcpy(eth, pkt_dev->hh, 12);
*(__be16 *) & eth[12] = protocol;
/* Eth + IPh + UDPh + mpls */
datalen = pkt_dev->cur_pkt_size - 14 -
sizeof(struct ipv6hdr) - sizeof(struct udphdr) -
pkt_dev->nr_labels*sizeof(u32) - VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev);
if (datalen < sizeof(struct pktgen_hdr)) {
datalen = sizeof(struct pktgen_hdr);
if (net_ratelimit())
printk(KERN_INFO "pktgen: increased datalen to %d\n",
datalen);
}
udph->source = htons(pkt_dev->cur_udp_src);
udph->dest = htons(pkt_dev->cur_udp_dst);
udph->len = htons(datalen + sizeof(struct udphdr));
udph->check = 0; /* No checksum */
*(__be32 *) iph = __constant_htonl(0x60000000); /* Version + flow */
if (pkt_dev->traffic_class) {
/* Version + traffic class + flow (0) */
*(__be32 *)iph |= htonl(0x60000000 | (pkt_dev->traffic_class << 20));
}
iph->hop_limit = 32;
iph->payload_len = htons(sizeof(struct udphdr) + datalen);
iph->nexthdr = IPPROTO_UDP;
ipv6_addr_copy(&iph->daddr, &pkt_dev->cur_in6_daddr);
ipv6_addr_copy(&iph->saddr, &pkt_dev->cur_in6_saddr);
skb->mac.raw = ((u8 *) iph) - 14 - pkt_dev->nr_labels*sizeof(u32) -
VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev);
skb->protocol = protocol;
skb->dev = odev;
skb->pkt_type = PACKET_HOST;
skb->nh.ipv6h = iph;
skb->h.uh = udph;
if (pkt_dev->nfrags <= 0)
pgh = (struct pktgen_hdr *)skb_put(skb, datalen);
else {
int frags = pkt_dev->nfrags;
int i;
pgh = (struct pktgen_hdr *)(((char *)(udph)) + 8);
if (frags > MAX_SKB_FRAGS)
frags = MAX_SKB_FRAGS;
if (datalen > frags * PAGE_SIZE) {
skb_put(skb, datalen - frags * PAGE_SIZE);
datalen = frags * PAGE_SIZE;
}
i = 0;
while (datalen > 0) {
struct page *page = alloc_pages(GFP_KERNEL, 0);
skb_shinfo(skb)->frags[i].page = page;
skb_shinfo(skb)->frags[i].page_offset = 0;
skb_shinfo(skb)->frags[i].size =
(datalen < PAGE_SIZE ? datalen : PAGE_SIZE);
datalen -= skb_shinfo(skb)->frags[i].size;
skb->len += skb_shinfo(skb)->frags[i].size;
skb->data_len += skb_shinfo(skb)->frags[i].size;
i++;
skb_shinfo(skb)->nr_frags = i;
}
while (i < frags) {
int rem;
if (i == 0)
break;
rem = skb_shinfo(skb)->frags[i - 1].size / 2;
if (rem == 0)
break;
skb_shinfo(skb)->frags[i - 1].size -= rem;
skb_shinfo(skb)->frags[i] =
skb_shinfo(skb)->frags[i - 1];
get_page(skb_shinfo(skb)->frags[i].page);
skb_shinfo(skb)->frags[i].page =
skb_shinfo(skb)->frags[i - 1].page;
skb_shinfo(skb)->frags[i].page_offset +=
skb_shinfo(skb)->frags[i - 1].size;
skb_shinfo(skb)->frags[i].size = rem;
i++;
skb_shinfo(skb)->nr_frags = i;
}
}
/* Stamp the time, and sequence number, convert them to network byte order */
/* should we update cloned packets too ? */
if (pgh) {
struct timeval timestamp;
pgh->pgh_magic = htonl(PKTGEN_MAGIC);
pgh->seq_num = htonl(pkt_dev->seq_num);
do_gettimeofday(&timestamp);
pgh->tv_sec = htonl(timestamp.tv_sec);
pgh->tv_usec = htonl(timestamp.tv_usec);
}
/* pkt_dev->seq_num++; FF: you really mean this? */
return skb;
}
static inline struct sk_buff *fill_packet(struct net_device *odev,
struct pktgen_dev *pkt_dev)
{
if (pkt_dev->flags & F_IPV6)
return fill_packet_ipv6(odev, pkt_dev);
else
return fill_packet_ipv4(odev, pkt_dev);
}
static void pktgen_clear_counters(struct pktgen_dev *pkt_dev)
{
pkt_dev->seq_num = 1;
pkt_dev->idle_acc = 0;
pkt_dev->sofar = 0;
pkt_dev->tx_bytes = 0;
pkt_dev->errors = 0;
}
/* Set up structure for sending pkts, clear counters */
static void pktgen_run(struct pktgen_thread *t)
{
struct pktgen_dev *pkt_dev;
int started = 0;
PG_DEBUG(printk("pktgen: entering pktgen_run. %p\n", t));
if_lock(t);
list_for_each_entry(pkt_dev, &t->if_list, list) {
/*
* setup odev and create initial packet.
*/
pktgen_setup_inject(pkt_dev);
if (pkt_dev->odev) {
pktgen_clear_counters(pkt_dev);
pkt_dev->running = 1; /* Cranke yeself! */
pkt_dev->skb = NULL;
pkt_dev->started_at = getCurUs();
pkt_dev->next_tx_us = getCurUs(); /* Transmit immediately */
pkt_dev->next_tx_ns = 0;
strcpy(pkt_dev->result, "Starting");
started++;
} else
strcpy(pkt_dev->result, "Error starting");
}
if_unlock(t);
if (started)
t->control &= ~(T_STOP);
}
static void pktgen_stop_all_threads_ifs(void)
{
struct pktgen_thread *t;
PG_DEBUG(printk("pktgen: entering pktgen_stop_all_threads_ifs.\n"));
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pktgen_threads, th_list)
t->control |= T_STOP;
mutex_unlock(&pktgen_thread_lock);
}
static int thread_is_running(struct pktgen_thread *t)
{
struct pktgen_dev *pkt_dev;
int res = 0;
list_for_each_entry(pkt_dev, &t->if_list, list)
if (pkt_dev->running) {
res = 1;
break;
}
return res;
}
static int pktgen_wait_thread_run(struct pktgen_thread *t)
{
if_lock(t);
while (thread_is_running(t)) {
if_unlock(t);
msleep_interruptible(100);
if (signal_pending(current))
goto signal;
if_lock(t);
}
if_unlock(t);
return 1;
signal:
return 0;
}
static int pktgen_wait_all_threads_run(void)
{
struct pktgen_thread *t;
int sig = 1;
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pktgen_threads, th_list) {
sig = pktgen_wait_thread_run(t);
if (sig == 0)
break;
}
if (sig == 0)
list_for_each_entry(t, &pktgen_threads, th_list)
t->control |= (T_STOP);
mutex_unlock(&pktgen_thread_lock);
return sig;
}
static void pktgen_run_all_threads(void)
{
struct pktgen_thread *t;
PG_DEBUG(printk("pktgen: entering pktgen_run_all_threads.\n"));
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pktgen_threads, th_list)
t->control |= (T_RUN);
mutex_unlock(&pktgen_thread_lock);
schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */
pktgen_wait_all_threads_run();
}
static void show_results(struct pktgen_dev *pkt_dev, int nr_frags)
{
__u64 total_us, bps, mbps, pps, idle;
char *p = pkt_dev->result;
total_us = pkt_dev->stopped_at - pkt_dev->started_at;
idle = pkt_dev->idle_acc;
p += sprintf(p, "OK: %llu(c%llu+d%llu) usec, %llu (%dbyte,%dfrags)\n",
(unsigned long long)total_us,
(unsigned long long)(total_us - idle),
(unsigned long long)idle,
(unsigned long long)pkt_dev->sofar,
pkt_dev->cur_pkt_size, nr_frags);
pps = pkt_dev->sofar * USEC_PER_SEC;
while ((total_us >> 32) != 0) {
pps >>= 1;
total_us >>= 1;
}
do_div(pps, total_us);
bps = pps * 8 * pkt_dev->cur_pkt_size;
mbps = bps;
do_div(mbps, 1000000);
p += sprintf(p, " %llupps %lluMb/sec (%llubps) errors: %llu",
(unsigned long long)pps,
(unsigned long long)mbps,
(unsigned long long)bps,
(unsigned long long)pkt_dev->errors);
}
/* Set stopped-at timer, remove from running list, do counters & statistics */
static int pktgen_stop_device(struct pktgen_dev *pkt_dev)
{
int nr_frags = pkt_dev->skb ? skb_shinfo(pkt_dev->skb)->nr_frags : -1;
if (!pkt_dev->running) {
printk("pktgen: interface: %s is already stopped\n",
pkt_dev->ifname);
return -EINVAL;
}
pkt_dev->stopped_at = getCurUs();
pkt_dev->running = 0;
show_results(pkt_dev, nr_frags);
return 0;
}
static struct pktgen_dev *next_to_run(struct pktgen_thread *t)
{
struct pktgen_dev *pkt_dev, *best = NULL;
if_lock(t);
list_for_each_entry(pkt_dev, &t->if_list, list) {
if (!pkt_dev->running)
continue;
if (best == NULL)
best = pkt_dev;
else if (pkt_dev->next_tx_us < best->next_tx_us)
best = pkt_dev;
}
if_unlock(t);
return best;
}
static void pktgen_stop(struct pktgen_thread *t)
{
struct pktgen_dev *pkt_dev;
PG_DEBUG(printk("pktgen: entering pktgen_stop\n"));
if_lock(t);
list_for_each_entry(pkt_dev, &t->if_list, list) {
pktgen_stop_device(pkt_dev);
if (pkt_dev->skb)
kfree_skb(pkt_dev->skb);
pkt_dev->skb = NULL;
}
if_unlock(t);
}
/*
* one of our devices needs to be removed - find it
* and remove it
*/
static void pktgen_rem_one_if(struct pktgen_thread *t)
{
struct list_head *q, *n;
struct pktgen_dev *cur;
PG_DEBUG(printk("pktgen: entering pktgen_rem_one_if\n"));
if_lock(t);
list_for_each_safe(q, n, &t->if_list) {
cur = list_entry(q, struct pktgen_dev, list);
if (!cur->removal_mark)
continue;
if (cur->skb)
kfree_skb(cur->skb);
cur->skb = NULL;
pktgen_remove_device(t, cur);
break;
}
if_unlock(t);
}
static void pktgen_rem_all_ifs(struct pktgen_thread *t)
{
struct list_head *q, *n;
struct pktgen_dev *cur;
/* Remove all devices, free mem */
PG_DEBUG(printk("pktgen: entering pktgen_rem_all_ifs\n"));
if_lock(t);
list_for_each_safe(q, n, &t->if_list) {
cur = list_entry(q, struct pktgen_dev, list);
if (cur->skb)
kfree_skb(cur->skb);
cur->skb = NULL;
pktgen_remove_device(t, cur);
}
if_unlock(t);
}
static void pktgen_rem_thread(struct pktgen_thread *t)
{
/* Remove from the thread list */
remove_proc_entry(t->tsk->comm, pg_proc_dir);
mutex_lock(&pktgen_thread_lock);
list_del(&t->th_list);
mutex_unlock(&pktgen_thread_lock);
}
static __inline__ void pktgen_xmit(struct pktgen_dev *pkt_dev)
{
struct net_device *odev = NULL;
__u64 idle_start = 0;
int ret;
odev = pkt_dev->odev;
if (pkt_dev->delay_us || pkt_dev->delay_ns) {
u64 now;
now = getCurUs();
if (now < pkt_dev->next_tx_us)
spin(pkt_dev, pkt_dev->next_tx_us);
/* This is max DELAY, this has special meaning of
* "never transmit"
*/
if (pkt_dev->delay_us == 0x7FFFFFFF) {
pkt_dev->next_tx_us = getCurUs() + pkt_dev->delay_us;
pkt_dev->next_tx_ns = pkt_dev->delay_ns;
goto out;
}
}
if (netif_queue_stopped(odev) || need_resched()) {
idle_start = getCurUs();
if (!netif_running(odev)) {
pktgen_stop_device(pkt_dev);
if (pkt_dev->skb)
kfree_skb(pkt_dev->skb);
pkt_dev->skb = NULL;
goto out;
}
if (need_resched())
schedule();
pkt_dev->idle_acc += getCurUs() - idle_start;
if (netif_queue_stopped(odev)) {
pkt_dev->next_tx_us = getCurUs(); /* TODO */
pkt_dev->next_tx_ns = 0;
goto out; /* Try the next interface */
}
}
if (pkt_dev->last_ok || !pkt_dev->skb) {
if ((++pkt_dev->clone_count >= pkt_dev->clone_skb)
|| (!pkt_dev->skb)) {
/* build a new pkt */
if (pkt_dev->skb)
kfree_skb(pkt_dev->skb);
pkt_dev->skb = fill_packet(odev, pkt_dev);
if (pkt_dev->skb == NULL) {
printk("pktgen: ERROR: couldn't allocate skb in fill_packet.\n");
schedule();
pkt_dev->clone_count--; /* back out increment, OOM */
goto out;
}
pkt_dev->allocated_skbs++;
pkt_dev->clone_count = 0; /* reset counter */
}
}
netif_tx_lock_bh(odev);
if (!netif_queue_stopped(odev)) {
atomic_inc(&(pkt_dev->skb->users));
retry_now:
ret = odev->hard_start_xmit(pkt_dev->skb, odev);
if (likely(ret == NETDEV_TX_OK)) {
pkt_dev->last_ok = 1;
pkt_dev->sofar++;
pkt_dev->seq_num++;
pkt_dev->tx_bytes += pkt_dev->cur_pkt_size;
} else if (ret == NETDEV_TX_LOCKED
&& (odev->features & NETIF_F_LLTX)) {
cpu_relax();
goto retry_now;
} else { /* Retry it next time */
atomic_dec(&(pkt_dev->skb->users));
if (debug && net_ratelimit())
printk(KERN_INFO "pktgen: Hard xmit error\n");
pkt_dev->errors++;
pkt_dev->last_ok = 0;
}
pkt_dev->next_tx_us = getCurUs();
pkt_dev->next_tx_ns = 0;
pkt_dev->next_tx_us += pkt_dev->delay_us;
pkt_dev->next_tx_ns += pkt_dev->delay_ns;
if (pkt_dev->next_tx_ns > 1000) {
pkt_dev->next_tx_us++;
pkt_dev->next_tx_ns -= 1000;
}
}
else { /* Retry it next time */
pkt_dev->last_ok = 0;
pkt_dev->next_tx_us = getCurUs(); /* TODO */
pkt_dev->next_tx_ns = 0;
}
netif_tx_unlock_bh(odev);
/* If pkt_dev->count is zero, then run forever */
if ((pkt_dev->count != 0) && (pkt_dev->sofar >= pkt_dev->count)) {
if (atomic_read(&(pkt_dev->skb->users)) != 1) {
idle_start = getCurUs();
while (atomic_read(&(pkt_dev->skb->users)) != 1) {
if (signal_pending(current)) {
break;
}
schedule();
}
pkt_dev->idle_acc += getCurUs() - idle_start;
}
/* Done with this */
pktgen_stop_device(pkt_dev);
if (pkt_dev->skb)
kfree_skb(pkt_dev->skb);
pkt_dev->skb = NULL;
}
out:;
}
/*
* Main loop of the thread goes here
*/
static int pktgen_thread_worker(void *arg)
{
DEFINE_WAIT(wait);
struct pktgen_thread *t = arg;
struct pktgen_dev *pkt_dev = NULL;
int cpu = t->cpu;
u32 max_before_softirq;
u32 tx_since_softirq = 0;
BUG_ON(smp_processor_id() != cpu);
init_waitqueue_head(&t->queue);
t->pid = current->pid;
PG_DEBUG(printk("pktgen: starting pktgen/%d: pid=%d\n", cpu, current->pid));
max_before_softirq = t->max_before_softirq;
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
pkt_dev = next_to_run(t);
if (!pkt_dev &&
(t->control & (T_STOP | T_RUN | T_REMDEVALL | T_REMDEV))
== 0) {
prepare_to_wait(&(t->queue), &wait,
TASK_INTERRUPTIBLE);
schedule_timeout(HZ / 10);
finish_wait(&(t->queue), &wait);
}
__set_current_state(TASK_RUNNING);
if (pkt_dev) {
pktgen_xmit(pkt_dev);
/*
* We like to stay RUNNING but must also give
* others fair share.
*/
tx_since_softirq += pkt_dev->last_ok;
if (tx_since_softirq > max_before_softirq) {
if (local_softirq_pending())
do_softirq();
tx_since_softirq = 0;
}
}
if (t->control & T_STOP) {
pktgen_stop(t);
t->control &= ~(T_STOP);
}
if (t->control & T_RUN) {
pktgen_run(t);
t->control &= ~(T_RUN);
}
if (t->control & T_REMDEVALL) {
pktgen_rem_all_ifs(t);
t->control &= ~(T_REMDEVALL);
}
if (t->control & T_REMDEV) {
pktgen_rem_one_if(t);
t->control &= ~(T_REMDEV);
}
set_current_state(TASK_INTERRUPTIBLE);
}
PG_DEBUG(printk("pktgen: %s stopping all device\n", t->tsk->comm));
pktgen_stop(t);
PG_DEBUG(printk("pktgen: %s removing all device\n", t->tsk->comm));
pktgen_rem_all_ifs(t);
PG_DEBUG(printk("pktgen: %s removing thread.\n", t->tsk->comm));
pktgen_rem_thread(t);
return 0;
}
static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t,
const char *ifname)
{
struct pktgen_dev *p, *pkt_dev = NULL;
if_lock(t);
list_for_each_entry(p, &t->if_list, list)
if (strncmp(p->ifname, ifname, IFNAMSIZ) == 0) {
pkt_dev = p;
break;
}
if_unlock(t);
PG_DEBUG(printk("pktgen: find_dev(%s) returning %p\n", ifname, pkt_dev));
return pkt_dev;
}
/*
* Adds a dev at front of if_list.
*/
static int add_dev_to_thread(struct pktgen_thread *t,
struct pktgen_dev *pkt_dev)
{
int rv = 0;
if_lock(t);
if (pkt_dev->pg_thread) {
printk("pktgen: ERROR: already assigned to a thread.\n");
rv = -EBUSY;
goto out;
}
list_add(&pkt_dev->list, &t->if_list);
pkt_dev->pg_thread = t;
pkt_dev->running = 0;
out:
if_unlock(t);
return rv;
}
/* Called under thread lock */
static int pktgen_add_device(struct pktgen_thread *t, const char *ifname)
{
struct pktgen_dev *pkt_dev;
struct proc_dir_entry *pe;
/* We don't allow a device to be on several threads */
pkt_dev = __pktgen_NN_threads(ifname, FIND);
if (pkt_dev) {
printk("pktgen: ERROR: interface already used.\n");
return -EBUSY;
}
pkt_dev = kzalloc(sizeof(struct pktgen_dev), GFP_KERNEL);
if (!pkt_dev)
return -ENOMEM;
pkt_dev->flows = vmalloc(MAX_CFLOWS * sizeof(struct flow_state));
if (pkt_dev->flows == NULL) {
kfree(pkt_dev);
return -ENOMEM;
}
memset(pkt_dev->flows, 0, MAX_CFLOWS * sizeof(struct flow_state));
pkt_dev->removal_mark = 0;
pkt_dev->min_pkt_size = ETH_ZLEN;
pkt_dev->max_pkt_size = ETH_ZLEN;
pkt_dev->nfrags = 0;
pkt_dev->clone_skb = pg_clone_skb_d;
pkt_dev->delay_us = pg_delay_d / 1000;
pkt_dev->delay_ns = pg_delay_d % 1000;
pkt_dev->count = pg_count_d;
pkt_dev->sofar = 0;
pkt_dev->udp_src_min = 9; /* sink port */
pkt_dev->udp_src_max = 9;
pkt_dev->udp_dst_min = 9;
pkt_dev->udp_dst_max = 9;
pkt_dev->vlan_p = 0;
pkt_dev->vlan_cfi = 0;
pkt_dev->vlan_id = 0xffff;
pkt_dev->svlan_p = 0;
pkt_dev->svlan_cfi = 0;
pkt_dev->svlan_id = 0xffff;
strncpy(pkt_dev->ifname, ifname, IFNAMSIZ);
if (!pktgen_setup_dev(pkt_dev)) {
printk("pktgen: ERROR: pktgen_setup_dev failed.\n");
if (pkt_dev->flows)
vfree(pkt_dev->flows);
kfree(pkt_dev);
return -ENODEV;
}
pe = create_proc_entry(ifname, 0600, pg_proc_dir);
if (!pe) {
printk("pktgen: cannot create %s/%s procfs entry.\n",
PG_PROC_DIR, ifname);
if (pkt_dev->flows)
vfree(pkt_dev->flows);
kfree(pkt_dev);
return -EINVAL;
}
pe->proc_fops = &pktgen_if_fops;
pe->data = pkt_dev;
return add_dev_to_thread(t, pkt_dev);
}
static int __init pktgen_create_thread(int cpu)
{
struct pktgen_thread *t;
struct proc_dir_entry *pe;
struct task_struct *p;
t = kzalloc(sizeof(struct pktgen_thread), GFP_KERNEL);
if (!t) {
printk("pktgen: ERROR: out of memory, can't create new thread.\n");
return -ENOMEM;
}
spin_lock_init(&t->if_lock);
t->cpu = cpu;
INIT_LIST_HEAD(&t->if_list);
list_add_tail(&t->th_list, &pktgen_threads);
p = kthread_create(pktgen_thread_worker, t, "kpktgend_%d", cpu);
if (IS_ERR(p)) {
printk("pktgen: kernel_thread() failed for cpu %d\n", t->cpu);
list_del(&t->th_list);
kfree(t);
return PTR_ERR(p);
}
kthread_bind(p, cpu);
t->tsk = p;
pe = create_proc_entry(t->tsk->comm, 0600, pg_proc_dir);
if (!pe) {
printk("pktgen: cannot create %s/%s procfs entry.\n",
PG_PROC_DIR, t->tsk->comm);
kthread_stop(p);
list_del(&t->th_list);
kfree(t);
return -EINVAL;
}
pe->proc_fops = &pktgen_thread_fops;
pe->data = t;
wake_up_process(p);
return 0;
}
/*
* Removes a device from the thread if_list.
*/
static void _rem_dev_from_if_list(struct pktgen_thread *t,
struct pktgen_dev *pkt_dev)
{
struct list_head *q, *n;
struct pktgen_dev *p;
list_for_each_safe(q, n, &t->if_list) {
p = list_entry(q, struct pktgen_dev, list);
if (p == pkt_dev)
list_del(&p->list);
}
}
static int pktgen_remove_device(struct pktgen_thread *t,
struct pktgen_dev *pkt_dev)
{
PG_DEBUG(printk("pktgen: remove_device pkt_dev=%p\n", pkt_dev));
if (pkt_dev->running) {
printk("pktgen:WARNING: trying to remove a running interface, stopping it now.\n");
pktgen_stop_device(pkt_dev);
}
/* Dis-associate from the interface */
if (pkt_dev->odev) {
dev_put(pkt_dev->odev);
pkt_dev->odev = NULL;
}
/* And update the thread if_list */
_rem_dev_from_if_list(t, pkt_dev);
/* Clean up proc file system */
remove_proc_entry(pkt_dev->ifname, pg_proc_dir);
if (pkt_dev->flows)
vfree(pkt_dev->flows);
kfree(pkt_dev);
return 0;
}
static int __init pg_init(void)
{
int cpu;
struct proc_dir_entry *pe;
printk(version);
pg_proc_dir = proc_mkdir(PG_PROC_DIR, proc_net);
if (!pg_proc_dir)
return -ENODEV;
pg_proc_dir->owner = THIS_MODULE;
pe = create_proc_entry(PGCTRL, 0600, pg_proc_dir);
if (pe == NULL) {
printk("pktgen: ERROR: cannot create %s procfs entry.\n",
PGCTRL);
proc_net_remove(PG_PROC_DIR);
return -EINVAL;
}
pe->proc_fops = &pktgen_fops;
pe->data = NULL;
/* Register us to receive netdevice events */
register_netdevice_notifier(&pktgen_notifier_block);
for_each_online_cpu(cpu) {
int err;
err = pktgen_create_thread(cpu);
if (err)
printk("pktgen: WARNING: Cannot create thread for cpu %d (%d)\n",
cpu, err);
}
if (list_empty(&pktgen_threads)) {
printk("pktgen: ERROR: Initialization failed for all threads\n");
unregister_netdevice_notifier(&pktgen_notifier_block);
remove_proc_entry(PGCTRL, pg_proc_dir);
proc_net_remove(PG_PROC_DIR);
return -ENODEV;
}
return 0;
}
static void __exit pg_cleanup(void)
{
struct pktgen_thread *t;
struct list_head *q, *n;
wait_queue_head_t queue;
init_waitqueue_head(&queue);
/* Stop all interfaces & threads */
list_for_each_safe(q, n, &pktgen_threads) {
t = list_entry(q, struct pktgen_thread, th_list);
kthread_stop(t->tsk);
kfree(t);
}
/* Un-register us from receiving netdevice events */
unregister_netdevice_notifier(&pktgen_notifier_block);
/* Clean up proc file system */
remove_proc_entry(PGCTRL, pg_proc_dir);
proc_net_remove(PG_PROC_DIR);
}
module_init(pg_init);
module_exit(pg_cleanup);
MODULE_AUTHOR("Robert Olsson <robert.olsson@its.uu.se");
MODULE_DESCRIPTION("Packet Generator tool");
MODULE_LICENSE("GPL");
module_param(pg_count_d, int, 0);
module_param(pg_delay_d, int, 0);
module_param(pg_clone_skb_d, int, 0);
module_param(debug, int, 0);