mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 16:58:53 +00:00
f281b5d50c
We convert them static inline function here as we did with pte_val in the previous patch Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
344 lines
10 KiB
C
344 lines
10 KiB
C
#ifndef _ASM_POWERPC_PGTABLE_PPC32_H
|
|
#define _ASM_POWERPC_PGTABLE_PPC32_H
|
|
|
|
#include <asm-generic/pgtable-nopmd.h>
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <linux/sched.h>
|
|
#include <linux/threads.h>
|
|
#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
|
|
|
|
extern unsigned long ioremap_bot;
|
|
|
|
#ifdef CONFIG_44x
|
|
extern int icache_44x_need_flush;
|
|
#endif
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
/*
|
|
* The normal case is that PTEs are 32-bits and we have a 1-page
|
|
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
|
|
*
|
|
* For any >32-bit physical address platform, we can use the following
|
|
* two level page table layout where the pgdir is 8KB and the MS 13 bits
|
|
* are an index to the second level table. The combined pgdir/pmd first
|
|
* level has 2048 entries and the second level has 512 64-bit PTE entries.
|
|
* -Matt
|
|
*/
|
|
/* PGDIR_SHIFT determines what a top-level page table entry can map */
|
|
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
/*
|
|
* entries per page directory level: our page-table tree is two-level, so
|
|
* we don't really have any PMD directory.
|
|
*/
|
|
#ifndef __ASSEMBLY__
|
|
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
|
|
#define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#define PTRS_PER_PTE (1 << PTE_SHIFT)
|
|
#define PTRS_PER_PMD 1
|
|
#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
|
|
|
|
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
|
|
#define FIRST_USER_ADDRESS 0UL
|
|
|
|
#define pte_ERROR(e) \
|
|
pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
|
|
(unsigned long long)pte_val(e))
|
|
#define pgd_ERROR(e) \
|
|
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
/*
|
|
* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
|
|
* value (for now) on others, from where we can start layout kernel
|
|
* virtual space that goes below PKMAP and FIXMAP
|
|
*/
|
|
#ifdef CONFIG_HIGHMEM
|
|
#define KVIRT_TOP PKMAP_BASE
|
|
#else
|
|
#define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
|
|
#endif
|
|
|
|
/*
|
|
* ioremap_bot starts at that address. Early ioremaps move down from there,
|
|
* until mem_init() at which point this becomes the top of the vmalloc
|
|
* and ioremap space
|
|
*/
|
|
#ifdef CONFIG_NOT_COHERENT_CACHE
|
|
#define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
|
|
#else
|
|
#define IOREMAP_TOP KVIRT_TOP
|
|
#endif
|
|
|
|
/*
|
|
* Just any arbitrary offset to the start of the vmalloc VM area: the
|
|
* current 16MB value just means that there will be a 64MB "hole" after the
|
|
* physical memory until the kernel virtual memory starts. That means that
|
|
* any out-of-bounds memory accesses will hopefully be caught.
|
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
|
* area for the same reason. ;)
|
|
*
|
|
* We no longer map larger than phys RAM with the BATs so we don't have
|
|
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
|
|
* about clashes between our early calls to ioremap() that start growing down
|
|
* from ioremap_base being run into the VM area allocations (growing upwards
|
|
* from VMALLOC_START). For this reason we have ioremap_bot to check when
|
|
* we actually run into our mappings setup in the early boot with the VM
|
|
* system. This really does become a problem for machines with good amounts
|
|
* of RAM. -- Cort
|
|
*/
|
|
#define VMALLOC_OFFSET (0x1000000) /* 16M */
|
|
#ifdef PPC_PIN_SIZE
|
|
#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
|
|
#else
|
|
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
|
|
#endif
|
|
#define VMALLOC_END ioremap_bot
|
|
|
|
/*
|
|
* Bits in a linux-style PTE. These match the bits in the
|
|
* (hardware-defined) PowerPC PTE as closely as possible.
|
|
*/
|
|
|
|
#if defined(CONFIG_40x)
|
|
#include <asm/pte-40x.h>
|
|
#elif defined(CONFIG_44x)
|
|
#include <asm/pte-44x.h>
|
|
#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
|
|
#include <asm/pte-book3e.h>
|
|
#elif defined(CONFIG_FSL_BOOKE)
|
|
#include <asm/pte-fsl-booke.h>
|
|
#elif defined(CONFIG_8xx)
|
|
#include <asm/pte-8xx.h>
|
|
#endif
|
|
|
|
/* And here we include common definitions */
|
|
#include <asm/pte-common.h>
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#define pte_clear(mm, addr, ptep) \
|
|
do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
|
|
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
|
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
|
|
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
|
|
static inline void pmd_clear(pmd_t *pmdp)
|
|
{
|
|
*pmdp = __pmd(0);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* When flushing the tlb entry for a page, we also need to flush the hash
|
|
* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
|
|
*/
|
|
extern int flush_hash_pages(unsigned context, unsigned long va,
|
|
unsigned long pmdval, int count);
|
|
|
|
/* Add an HPTE to the hash table */
|
|
extern void add_hash_page(unsigned context, unsigned long va,
|
|
unsigned long pmdval);
|
|
|
|
/* Flush an entry from the TLB/hash table */
|
|
extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
|
|
unsigned long address);
|
|
|
|
/*
|
|
* PTE updates. This function is called whenever an existing
|
|
* valid PTE is updated. This does -not- include set_pte_at()
|
|
* which nowadays only sets a new PTE.
|
|
*
|
|
* Depending on the type of MMU, we may need to use atomic updates
|
|
* and the PTE may be either 32 or 64 bit wide. In the later case,
|
|
* when using atomic updates, only the low part of the PTE is
|
|
* accessed atomically.
|
|
*
|
|
* In addition, on 44x, we also maintain a global flag indicating
|
|
* that an executable user mapping was modified, which is needed
|
|
* to properly flush the virtually tagged instruction cache of
|
|
* those implementations.
|
|
*/
|
|
#ifndef CONFIG_PTE_64BIT
|
|
static inline unsigned long pte_update(pte_t *p,
|
|
unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
#ifdef PTE_ATOMIC_UPDATES
|
|
unsigned long old, tmp;
|
|
|
|
__asm__ __volatile__("\
|
|
1: lwarx %0,0,%3\n\
|
|
andc %1,%0,%4\n\
|
|
or %1,%1,%5\n"
|
|
PPC405_ERR77(0,%3)
|
|
" stwcx. %1,0,%3\n\
|
|
bne- 1b"
|
|
: "=&r" (old), "=&r" (tmp), "=m" (*p)
|
|
: "r" (p), "r" (clr), "r" (set), "m" (*p)
|
|
: "cc" );
|
|
#else /* PTE_ATOMIC_UPDATES */
|
|
unsigned long old = pte_val(*p);
|
|
*p = __pte((old & ~clr) | set);
|
|
#endif /* !PTE_ATOMIC_UPDATES */
|
|
|
|
#ifdef CONFIG_44x
|
|
if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
|
|
icache_44x_need_flush = 1;
|
|
#endif
|
|
return old;
|
|
}
|
|
#else /* CONFIG_PTE_64BIT */
|
|
static inline unsigned long long pte_update(pte_t *p,
|
|
unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
#ifdef PTE_ATOMIC_UPDATES
|
|
unsigned long long old;
|
|
unsigned long tmp;
|
|
|
|
__asm__ __volatile__("\
|
|
1: lwarx %L0,0,%4\n\
|
|
lwzx %0,0,%3\n\
|
|
andc %1,%L0,%5\n\
|
|
or %1,%1,%6\n"
|
|
PPC405_ERR77(0,%3)
|
|
" stwcx. %1,0,%4\n\
|
|
bne- 1b"
|
|
: "=&r" (old), "=&r" (tmp), "=m" (*p)
|
|
: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
|
|
: "cc" );
|
|
#else /* PTE_ATOMIC_UPDATES */
|
|
unsigned long long old = pte_val(*p);
|
|
*p = __pte((old & ~(unsigned long long)clr) | set);
|
|
#endif /* !PTE_ATOMIC_UPDATES */
|
|
|
|
#ifdef CONFIG_44x
|
|
if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
|
|
icache_44x_need_flush = 1;
|
|
#endif
|
|
return old;
|
|
}
|
|
#endif /* CONFIG_PTE_64BIT */
|
|
|
|
/*
|
|
* 2.6 calls this without flushing the TLB entry; this is wrong
|
|
* for our hash-based implementation, we fix that up here.
|
|
*/
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
|
|
{
|
|
unsigned long old;
|
|
old = pte_update(ptep, _PAGE_ACCESSED, 0);
|
|
#if _PAGE_HASHPTE != 0
|
|
if (old & _PAGE_HASHPTE) {
|
|
unsigned long ptephys = __pa(ptep) & PAGE_MASK;
|
|
flush_hash_pages(context, addr, ptephys, 1);
|
|
}
|
|
#endif
|
|
return (old & _PAGE_ACCESSED) != 0;
|
|
}
|
|
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
|
|
__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
|
|
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
|
|
}
|
|
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
ptep_set_wrprotect(mm, addr, ptep);
|
|
}
|
|
|
|
|
|
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
|
|
{
|
|
unsigned long set = pte_val(entry) &
|
|
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
|
|
unsigned long clr = ~pte_val(entry) & _PAGE_RO;
|
|
|
|
pte_update(ptep, clr, set);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTE_SAME
|
|
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
|
|
|
|
/*
|
|
* Note that on Book E processors, the pmd contains the kernel virtual
|
|
* (lowmem) address of the pte page. The physical address is less useful
|
|
* because everything runs with translation enabled (even the TLB miss
|
|
* handler). On everything else the pmd contains the physical address
|
|
* of the pte page. -- paulus
|
|
*/
|
|
#ifndef CONFIG_BOOKE
|
|
#define pmd_page_vaddr(pmd) \
|
|
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
|
|
#define pmd_page(pmd) \
|
|
pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
|
|
#else
|
|
#define pmd_page_vaddr(pmd) \
|
|
((unsigned long) (pmd_val(pmd) & PAGE_MASK))
|
|
#define pmd_page(pmd) \
|
|
pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
|
|
#endif
|
|
|
|
/* to find an entry in a kernel page-table-directory */
|
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
|
|
|
/* to find an entry in a page-table-directory */
|
|
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
|
|
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
|
|
|
|
/* Find an entry in the third-level page table.. */
|
|
#define pte_index(address) \
|
|
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
|
#define pte_offset_kernel(dir, addr) \
|
|
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
|
|
#define pte_offset_map(dir, addr) \
|
|
((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
|
|
#define pte_unmap(pte) kunmap_atomic(pte)
|
|
|
|
/*
|
|
* Encode and decode a swap entry.
|
|
* Note that the bits we use in a PTE for representing a swap entry
|
|
* must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
|
|
* -- paulus
|
|
*/
|
|
#define __swp_type(entry) ((entry).val & 0x1f)
|
|
#define __swp_offset(entry) ((entry).val >> 5)
|
|
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
|
|
|
|
#ifndef CONFIG_PPC_4K_PAGES
|
|
void pgtable_cache_init(void);
|
|
#else
|
|
/*
|
|
* No page table caches to initialise
|
|
*/
|
|
#define pgtable_cache_init() do { } while (0)
|
|
#endif
|
|
|
|
extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
|
|
pmd_t **pmdp);
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
|