mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2024-12-29 17:22:07 +00:00
d36cebe03c
Currently the CRC32 library functions are defined as weak symbols, and the arm64 and riscv architectures override them. This method of arch-specific overrides has the limitation that it only works when both the base and arch code is built-in. Also, it makes the arch-specific code be silently not used if it is accidentally built with lib-y instead of obj-y; unfortunately the RISC-V code does this. This commit reorganizes the code to have explicit *_arch() functions that are called when they are enabled, similar to how some of the crypto library code works (e.g. chacha_crypt() calls chacha_crypt_arch()). Make the existing kconfig choice for the CRC32 implementation also control whether the arch-optimized implementation (if one is available) is enabled or not. Make it enabled by default if CRC32 is also enabled. The result is that arch-optimized CRC32 library functions will be included automatically when appropriate, but it is now possible to disable them. They can also now be built as a loadable module if the CRC32 library functions happen to be used only by loadable modules, in which case the arch and base CRC32 modules will be automatically loaded via direct symbol dependency when appropriate. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20241202010844.144356-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
341 lines
9.0 KiB
C
341 lines
9.0 KiB
C
/*
|
|
* Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
|
|
* cleaned up code to current version of sparse and added the slicing-by-8
|
|
* algorithm to the closely similar existing slicing-by-4 algorithm.
|
|
*
|
|
* Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
|
|
* Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
|
|
* Code was from the public domain, copyright abandoned. Code was
|
|
* subsequently included in the kernel, thus was re-licensed under the
|
|
* GNU GPL v2.
|
|
*
|
|
* Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
|
|
* Same crc32 function was used in 5 other places in the kernel.
|
|
* I made one version, and deleted the others.
|
|
* There are various incantations of crc32(). Some use a seed of 0 or ~0.
|
|
* Some xor at the end with ~0. The generic crc32() function takes
|
|
* seed as an argument, and doesn't xor at the end. Then individual
|
|
* users can do whatever they need.
|
|
* drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
|
|
* fs/jffs2 uses seed 0, doesn't xor with ~0.
|
|
* fs/partitions/efi.c uses seed ~0, xor's with ~0.
|
|
*
|
|
* This source code is licensed under the GNU General Public License,
|
|
* Version 2. See the file COPYING for more details.
|
|
*/
|
|
|
|
/* see: Documentation/staging/crc32.rst for a description of algorithms */
|
|
|
|
#include <linux/crc32.h>
|
|
#include <linux/crc32poly.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/sched.h>
|
|
#include "crc32defs.h"
|
|
|
|
#if CRC_LE_BITS > 8
|
|
# define tole(x) ((__force u32) cpu_to_le32(x))
|
|
#else
|
|
# define tole(x) (x)
|
|
#endif
|
|
|
|
#if CRC_BE_BITS > 8
|
|
# define tobe(x) ((__force u32) cpu_to_be32(x))
|
|
#else
|
|
# define tobe(x) (x)
|
|
#endif
|
|
|
|
#include "crc32table.h"
|
|
|
|
MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
|
|
MODULE_DESCRIPTION("Various CRC32 calculations");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
|
|
|
|
/* implements slicing-by-4 or slicing-by-8 algorithm */
|
|
static inline u32 __pure
|
|
crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
|
|
{
|
|
# ifdef __LITTLE_ENDIAN
|
|
# define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
|
|
# define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
|
|
t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
|
|
# define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
|
|
t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
|
|
# else
|
|
# define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
|
|
# define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
|
|
t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
|
|
# define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
|
|
t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
|
|
# endif
|
|
const u32 *b;
|
|
size_t rem_len;
|
|
# ifdef CONFIG_X86
|
|
size_t i;
|
|
# endif
|
|
const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
|
|
# if CRC_LE_BITS != 32
|
|
const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
|
|
# endif
|
|
u32 q;
|
|
|
|
/* Align it */
|
|
if (unlikely((long)buf & 3 && len)) {
|
|
do {
|
|
DO_CRC(*buf++);
|
|
} while ((--len) && ((long)buf)&3);
|
|
}
|
|
|
|
# if CRC_LE_BITS == 32
|
|
rem_len = len & 3;
|
|
len = len >> 2;
|
|
# else
|
|
rem_len = len & 7;
|
|
len = len >> 3;
|
|
# endif
|
|
|
|
b = (const u32 *)buf;
|
|
# ifdef CONFIG_X86
|
|
--b;
|
|
for (i = 0; i < len; i++) {
|
|
# else
|
|
for (--b; len; --len) {
|
|
# endif
|
|
q = crc ^ *++b; /* use pre increment for speed */
|
|
# if CRC_LE_BITS == 32
|
|
crc = DO_CRC4;
|
|
# else
|
|
crc = DO_CRC8;
|
|
q = *++b;
|
|
crc ^= DO_CRC4;
|
|
# endif
|
|
}
|
|
len = rem_len;
|
|
/* And the last few bytes */
|
|
if (len) {
|
|
u8 *p = (u8 *)(b + 1) - 1;
|
|
# ifdef CONFIG_X86
|
|
for (i = 0; i < len; i++)
|
|
DO_CRC(*++p); /* use pre increment for speed */
|
|
# else
|
|
do {
|
|
DO_CRC(*++p); /* use pre increment for speed */
|
|
} while (--len);
|
|
# endif
|
|
}
|
|
return crc;
|
|
#undef DO_CRC
|
|
#undef DO_CRC4
|
|
#undef DO_CRC8
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
|
|
* CRC32/CRC32C
|
|
* @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
|
|
* uses, or the previous crc32/crc32c value if computing incrementally.
|
|
* @p: pointer to buffer over which CRC32/CRC32C is run
|
|
* @len: length of buffer @p
|
|
* @tab: little-endian Ethernet table
|
|
* @polynomial: CRC32/CRC32c LE polynomial
|
|
*/
|
|
static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
|
|
size_t len, const u32 (*tab)[256],
|
|
u32 polynomial)
|
|
{
|
|
#if CRC_LE_BITS == 1
|
|
int i;
|
|
while (len--) {
|
|
crc ^= *p++;
|
|
for (i = 0; i < 8; i++)
|
|
crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
|
|
}
|
|
# elif CRC_LE_BITS == 2
|
|
while (len--) {
|
|
crc ^= *p++;
|
|
crc = (crc >> 2) ^ tab[0][crc & 3];
|
|
crc = (crc >> 2) ^ tab[0][crc & 3];
|
|
crc = (crc >> 2) ^ tab[0][crc & 3];
|
|
crc = (crc >> 2) ^ tab[0][crc & 3];
|
|
}
|
|
# elif CRC_LE_BITS == 4
|
|
while (len--) {
|
|
crc ^= *p++;
|
|
crc = (crc >> 4) ^ tab[0][crc & 15];
|
|
crc = (crc >> 4) ^ tab[0][crc & 15];
|
|
}
|
|
# elif CRC_LE_BITS == 8
|
|
/* aka Sarwate algorithm */
|
|
while (len--) {
|
|
crc ^= *p++;
|
|
crc = (crc >> 8) ^ tab[0][crc & 255];
|
|
}
|
|
# else
|
|
crc = (__force u32) __cpu_to_le32(crc);
|
|
crc = crc32_body(crc, p, len, tab);
|
|
crc = __le32_to_cpu((__force __le32)crc);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
#if CRC_LE_BITS == 1
|
|
u32 __pure crc32_le_base(u32 crc, const u8 *p, size_t len)
|
|
{
|
|
return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
|
|
}
|
|
u32 __pure crc32c_le_base(u32 crc, const u8 *p, size_t len)
|
|
{
|
|
return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
|
|
}
|
|
#else
|
|
u32 __pure crc32_le_base(u32 crc, const u8 *p, size_t len)
|
|
{
|
|
return crc32_le_generic(crc, p, len, crc32table_le, CRC32_POLY_LE);
|
|
}
|
|
u32 __pure crc32c_le_base(u32 crc, const u8 *p, size_t len)
|
|
{
|
|
return crc32_le_generic(crc, p, len, crc32ctable_le, CRC32C_POLY_LE);
|
|
}
|
|
#endif
|
|
EXPORT_SYMBOL(crc32_le_base);
|
|
EXPORT_SYMBOL(crc32c_le_base);
|
|
|
|
/*
|
|
* This multiplies the polynomials x and y modulo the given modulus.
|
|
* This follows the "little-endian" CRC convention that the lsbit
|
|
* represents the highest power of x, and the msbit represents x^0.
|
|
*/
|
|
static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
|
|
{
|
|
u32 product = x & 1 ? y : 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
product = (product >> 1) ^ (product & 1 ? modulus : 0);
|
|
x >>= 1;
|
|
product ^= x & 1 ? y : 0;
|
|
}
|
|
|
|
return product;
|
|
}
|
|
|
|
/**
|
|
* crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
|
|
* @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
|
|
* @len: The number of bytes. @crc is multiplied by x^(8*@len)
|
|
* @polynomial: The modulus used to reduce the result to 32 bits.
|
|
*
|
|
* It's possible to parallelize CRC computations by computing a CRC
|
|
* over separate ranges of a buffer, then summing them.
|
|
* This shifts the given CRC by 8*len bits (i.e. produces the same effect
|
|
* as appending len bytes of zero to the data), in time proportional
|
|
* to log(len).
|
|
*/
|
|
static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
|
|
u32 polynomial)
|
|
{
|
|
u32 power = polynomial; /* CRC of x^32 */
|
|
int i;
|
|
|
|
/* Shift up to 32 bits in the simple linear way */
|
|
for (i = 0; i < 8 * (int)(len & 3); i++)
|
|
crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
|
|
|
|
len >>= 2;
|
|
if (!len)
|
|
return crc;
|
|
|
|
for (;;) {
|
|
/* "power" is x^(2^i), modulo the polynomial */
|
|
if (len & 1)
|
|
crc = gf2_multiply(crc, power, polynomial);
|
|
|
|
len >>= 1;
|
|
if (!len)
|
|
break;
|
|
|
|
/* Square power, advancing to x^(2^(i+1)) */
|
|
power = gf2_multiply(power, power, polynomial);
|
|
}
|
|
|
|
return crc;
|
|
}
|
|
|
|
u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
|
|
{
|
|
return crc32_generic_shift(crc, len, CRC32_POLY_LE);
|
|
}
|
|
|
|
u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
|
|
{
|
|
return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
|
|
}
|
|
EXPORT_SYMBOL(crc32_le_shift);
|
|
EXPORT_SYMBOL(__crc32c_le_shift);
|
|
|
|
/**
|
|
* crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
|
|
* @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
|
|
* other uses, or the previous crc32 value if computing incrementally.
|
|
* @p: pointer to buffer over which CRC32 is run
|
|
* @len: length of buffer @p
|
|
* @tab: big-endian Ethernet table
|
|
* @polynomial: CRC32 BE polynomial
|
|
*/
|
|
static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
|
|
size_t len, const u32 (*tab)[256],
|
|
u32 polynomial)
|
|
{
|
|
#if CRC_BE_BITS == 1
|
|
int i;
|
|
while (len--) {
|
|
crc ^= *p++ << 24;
|
|
for (i = 0; i < 8; i++)
|
|
crc =
|
|
(crc << 1) ^ ((crc & 0x80000000) ? polynomial :
|
|
0);
|
|
}
|
|
# elif CRC_BE_BITS == 2
|
|
while (len--) {
|
|
crc ^= *p++ << 24;
|
|
crc = (crc << 2) ^ tab[0][crc >> 30];
|
|
crc = (crc << 2) ^ tab[0][crc >> 30];
|
|
crc = (crc << 2) ^ tab[0][crc >> 30];
|
|
crc = (crc << 2) ^ tab[0][crc >> 30];
|
|
}
|
|
# elif CRC_BE_BITS == 4
|
|
while (len--) {
|
|
crc ^= *p++ << 24;
|
|
crc = (crc << 4) ^ tab[0][crc >> 28];
|
|
crc = (crc << 4) ^ tab[0][crc >> 28];
|
|
}
|
|
# elif CRC_BE_BITS == 8
|
|
while (len--) {
|
|
crc ^= *p++ << 24;
|
|
crc = (crc << 8) ^ tab[0][crc >> 24];
|
|
}
|
|
# else
|
|
crc = (__force u32) __cpu_to_be32(crc);
|
|
crc = crc32_body(crc, p, len, tab);
|
|
crc = __be32_to_cpu((__force __be32)crc);
|
|
# endif
|
|
return crc;
|
|
}
|
|
|
|
#if CRC_BE_BITS == 1
|
|
u32 __pure crc32_be_base(u32 crc, const u8 *p, size_t len)
|
|
{
|
|
return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
|
|
}
|
|
#else
|
|
u32 __pure crc32_be_base(u32 crc, const u8 *p, size_t len)
|
|
{
|
|
return crc32_be_generic(crc, p, len, crc32table_be, CRC32_POLY_BE);
|
|
}
|
|
#endif
|
|
EXPORT_SYMBOL(crc32_be_base);
|