mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2024-12-29 17:22:07 +00:00
41d7ea3049
This is new API which caters to the following requirements: - Pack or unpack a large number of fields to/from a buffer with a small code footprint. The current alternative is to open-code a large number of calls to pack() and unpack(), or to use packing() to reduce that number to half. But packing() is not const-correct. - Use unpacked numbers stored in variables smaller than u64. This reduces the rodata footprint of the stored field arrays. - Perform error checking at compile time, rather than runtime, and return void from the API functions. Because the C preprocessor can't generate variable length code (loops), this is a bit tricky to do with macros. To handle this, implement macros which sanity check the packed field definitions based on their size. Finally, a single macro with a chain of __builtin_choose_expr() is used to select the appropriate macros. We enforce the use of ascending or descending order to avoid O(N^2) scaling when checking for overlap. Note that the macros are written with care to ensure that the compilers can correctly evaluate the resulting code at compile time. In particular, care was taken with avoiding too many nested statement expressions. Nested statement expressions trip up some compilers, especially when passing down variables created in previous statement expressions. There are two key design choices intended to keep the overall macro code size small. First, the definition of each CHECK_PACKED_FIELDS_N macro is implemented recursively, by calling the N-1 macro. This avoids needing the code to repeat multiple times. Second, the CHECK_PACKED_FIELD macro enforces that the fields in the array are sorted in order. This allows checking for overlap only with neighboring fields, rather than the general overlap case where each field would need to be checked against other fields. The overlap checks use the first two fields to determine the order of the remaining fields, thus allowing either ascending or descending order. This enables drivers the flexibility to keep the fields ordered in which ever order most naturally fits their hardware design and its associated documentation. The CHECK_PACKED_FIELDS macro is directly called from within pack_fields and unpack_fields, ensuring that all drivers using the API receive the benefits of the compile-time checks. Users do not need to directly call any of the macros directly. The CHECK_PACKED_FIELDS and its helper macros CHECK_PACKED_FIELDS_(0..50) are generated using a simple C program in scripts/gen_packed_field_checks.c This program can be compiled on demand and executed to generate the macro code in include/linux/packing.h. This will aid in the event that a driver needs more than 50 fields. The generator can be updated with a new size, and used to update the packing.h header file. In practice, the ice driver will need to support 27 fields, and the sja1105 driver will need to support 0 fields. This on-demand generation avoids the need to modify Kbuild. We do not anticipate the maximum number of fields to grow very often. - Reduced rodata footprint for the storage of the packed field arrays. To that end, we have struct packed_field_u8 and packed_field_u16, which define the fields with the associated type. More can be added as needed (unlikely for now). On these types, the same generic pack_fields() and unpack_fields() API can be used, thanks to the new C11 _Generic() selection feature, which can call pack_fields_u8() or pack_fields_16(), depending on the type of the "fields" array - a simplistic form of polymorphism. It is evaluated at compile time which function will actually be called. Over time, packing() is expected to be completely replaced either with pack() or with pack_fields(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Co-developed-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://patch.msgid.link/20241210-packing-pack-fields-and-ice-implementation-v10-3-ee56a47479ac@intel.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
38 lines
1.2 KiB
C
38 lines
1.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (c) 2024, Intel Corporation
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
|
|
#define MAX_PACKED_FIELD_SIZE 50
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
/* The first macro doesn't need a 'do {} while(0)' loop */
|
|
printf("#define CHECK_PACKED_FIELDS_1(fields) \\\n");
|
|
printf("\tCHECK_PACKED_FIELD(fields, 0)\n\n");
|
|
|
|
/* Remaining macros require a do/while loop, and are implemented
|
|
* recursively by calling the previous iteration's macro.
|
|
*/
|
|
for (int i = 2; i <= MAX_PACKED_FIELD_SIZE; i++) {
|
|
printf("#define CHECK_PACKED_FIELDS_%d(fields) do { \\\n", i);
|
|
printf("\tCHECK_PACKED_FIELDS_%d(fields); \\\n", i - 1);
|
|
printf("\tCHECK_PACKED_FIELD(fields, %d); \\\n", i - 1);
|
|
printf("} while (0)\n\n");
|
|
}
|
|
|
|
printf("#define CHECK_PACKED_FIELDS(fields) \\\n");
|
|
|
|
for (int i = 1; i <= MAX_PACKED_FIELD_SIZE; i++)
|
|
printf("\t__builtin_choose_expr(ARRAY_SIZE(fields) == %d, ({ CHECK_PACKED_FIELDS_%d(fields); }), \\\n",
|
|
i, i);
|
|
|
|
printf("\t({ BUILD_BUG_ON_MSG(1, \"CHECK_PACKED_FIELDS() must be regenerated to support array sizes larger than %d.\"); }) \\\n",
|
|
MAX_PACKED_FIELD_SIZE);
|
|
|
|
for (int i = 1; i <= MAX_PACKED_FIELD_SIZE; i++)
|
|
printf(")");
|
|
|
|
printf("\n");
|
|
}
|