mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 23:39:18 +00:00
f037776165
clang-format-15 was used to format code according kernel's .clang-format. Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
1170 lines
23 KiB
C
1170 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
*
|
|
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
|
|
*
|
|
* TODO: try to use extents tree (instead of array)
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/log2.h>
|
|
|
|
#include "debug.h"
|
|
#include "ntfs.h"
|
|
#include "ntfs_fs.h"
|
|
|
|
/* runs_tree is a continues memory. Try to avoid big size. */
|
|
#define NTFS3_RUN_MAX_BYTES 0x10000
|
|
|
|
struct ntfs_run {
|
|
CLST vcn; /* Virtual cluster number. */
|
|
CLST len; /* Length in clusters. */
|
|
CLST lcn; /* Logical cluster number. */
|
|
};
|
|
|
|
/*
|
|
* run_lookup - Lookup the index of a MCB entry that is first <= vcn.
|
|
*
|
|
* Case of success it will return non-zero value and set
|
|
* @index parameter to index of entry been found.
|
|
* Case of entry missing from list 'index' will be set to
|
|
* point to insertion position for the entry question.
|
|
*/
|
|
static bool run_lookup(const struct runs_tree *run, CLST vcn, size_t *index)
|
|
{
|
|
size_t min_idx, max_idx, mid_idx;
|
|
struct ntfs_run *r;
|
|
|
|
if (!run->count) {
|
|
*index = 0;
|
|
return false;
|
|
}
|
|
|
|
min_idx = 0;
|
|
max_idx = run->count - 1;
|
|
|
|
/* Check boundary cases specially, 'cause they cover the often requests. */
|
|
r = run->runs;
|
|
if (vcn < r->vcn) {
|
|
*index = 0;
|
|
return false;
|
|
}
|
|
|
|
if (vcn < r->vcn + r->len) {
|
|
*index = 0;
|
|
return true;
|
|
}
|
|
|
|
r += max_idx;
|
|
if (vcn >= r->vcn + r->len) {
|
|
*index = run->count;
|
|
return false;
|
|
}
|
|
|
|
if (vcn >= r->vcn) {
|
|
*index = max_idx;
|
|
return true;
|
|
}
|
|
|
|
do {
|
|
mid_idx = min_idx + ((max_idx - min_idx) >> 1);
|
|
r = run->runs + mid_idx;
|
|
|
|
if (vcn < r->vcn) {
|
|
max_idx = mid_idx - 1;
|
|
if (!mid_idx)
|
|
break;
|
|
} else if (vcn >= r->vcn + r->len) {
|
|
min_idx = mid_idx + 1;
|
|
} else {
|
|
*index = mid_idx;
|
|
return true;
|
|
}
|
|
} while (min_idx <= max_idx);
|
|
|
|
*index = max_idx + 1;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* run_consolidate - Consolidate runs starting from a given one.
|
|
*/
|
|
static void run_consolidate(struct runs_tree *run, size_t index)
|
|
{
|
|
size_t i;
|
|
struct ntfs_run *r = run->runs + index;
|
|
|
|
while (index + 1 < run->count) {
|
|
/*
|
|
* I should merge current run with next
|
|
* if start of the next run lies inside one being tested.
|
|
*/
|
|
struct ntfs_run *n = r + 1;
|
|
CLST end = r->vcn + r->len;
|
|
CLST dl;
|
|
|
|
/* Stop if runs are not aligned one to another. */
|
|
if (n->vcn > end)
|
|
break;
|
|
|
|
dl = end - n->vcn;
|
|
|
|
/*
|
|
* If range at index overlaps with next one
|
|
* then I will either adjust it's start position
|
|
* or (if completely matches) dust remove one from the list.
|
|
*/
|
|
if (dl > 0) {
|
|
if (n->len <= dl)
|
|
goto remove_next_range;
|
|
|
|
n->len -= dl;
|
|
n->vcn += dl;
|
|
if (n->lcn != SPARSE_LCN)
|
|
n->lcn += dl;
|
|
dl = 0;
|
|
}
|
|
|
|
/*
|
|
* Stop if sparse mode does not match
|
|
* both current and next runs.
|
|
*/
|
|
if ((n->lcn == SPARSE_LCN) != (r->lcn == SPARSE_LCN)) {
|
|
index += 1;
|
|
r = n;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Check if volume block
|
|
* of a next run lcn does not match
|
|
* last volume block of the current run.
|
|
*/
|
|
if (n->lcn != SPARSE_LCN && n->lcn != r->lcn + r->len)
|
|
break;
|
|
|
|
/*
|
|
* Next and current are siblings.
|
|
* Eat/join.
|
|
*/
|
|
r->len += n->len - dl;
|
|
|
|
remove_next_range:
|
|
i = run->count - (index + 1);
|
|
if (i > 1)
|
|
memmove(n, n + 1, sizeof(*n) * (i - 1));
|
|
|
|
run->count -= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* run_is_mapped_full
|
|
*
|
|
* Return: True if range [svcn - evcn] is mapped.
|
|
*/
|
|
bool run_is_mapped_full(const struct runs_tree *run, CLST svcn, CLST evcn)
|
|
{
|
|
size_t i;
|
|
const struct ntfs_run *r, *end;
|
|
CLST next_vcn;
|
|
|
|
if (!run_lookup(run, svcn, &i))
|
|
return false;
|
|
|
|
end = run->runs + run->count;
|
|
r = run->runs + i;
|
|
|
|
for (;;) {
|
|
next_vcn = r->vcn + r->len;
|
|
if (next_vcn > evcn)
|
|
return true;
|
|
|
|
if (++r >= end)
|
|
return false;
|
|
|
|
if (r->vcn != next_vcn)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool run_lookup_entry(const struct runs_tree *run, CLST vcn, CLST *lcn,
|
|
CLST *len, size_t *index)
|
|
{
|
|
size_t idx;
|
|
CLST gap;
|
|
struct ntfs_run *r;
|
|
|
|
/* Fail immediately if nrun was not touched yet. */
|
|
if (!run->runs)
|
|
return false;
|
|
|
|
if (!run_lookup(run, vcn, &idx))
|
|
return false;
|
|
|
|
r = run->runs + idx;
|
|
|
|
if (vcn >= r->vcn + r->len)
|
|
return false;
|
|
|
|
gap = vcn - r->vcn;
|
|
if (r->len <= gap)
|
|
return false;
|
|
|
|
*lcn = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + gap);
|
|
|
|
if (len)
|
|
*len = r->len - gap;
|
|
if (index)
|
|
*index = idx;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* run_truncate_head - Decommit the range before vcn.
|
|
*/
|
|
void run_truncate_head(struct runs_tree *run, CLST vcn)
|
|
{
|
|
size_t index;
|
|
struct ntfs_run *r;
|
|
|
|
if (run_lookup(run, vcn, &index)) {
|
|
r = run->runs + index;
|
|
|
|
if (vcn > r->vcn) {
|
|
CLST dlen = vcn - r->vcn;
|
|
|
|
r->vcn = vcn;
|
|
r->len -= dlen;
|
|
if (r->lcn != SPARSE_LCN)
|
|
r->lcn += dlen;
|
|
}
|
|
|
|
if (!index)
|
|
return;
|
|
}
|
|
r = run->runs;
|
|
memmove(r, r + index, sizeof(*r) * (run->count - index));
|
|
|
|
run->count -= index;
|
|
|
|
if (!run->count) {
|
|
kvfree(run->runs);
|
|
run->runs = NULL;
|
|
run->allocated = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* run_truncate - Decommit the range after vcn.
|
|
*/
|
|
void run_truncate(struct runs_tree *run, CLST vcn)
|
|
{
|
|
size_t index;
|
|
|
|
/*
|
|
* If I hit the range then
|
|
* I have to truncate one.
|
|
* If range to be truncated is becoming empty
|
|
* then it will entirely be removed.
|
|
*/
|
|
if (run_lookup(run, vcn, &index)) {
|
|
struct ntfs_run *r = run->runs + index;
|
|
|
|
r->len = vcn - r->vcn;
|
|
|
|
if (r->len > 0)
|
|
index += 1;
|
|
}
|
|
|
|
/*
|
|
* At this point 'index' is set to position that
|
|
* should be thrown away (including index itself)
|
|
* Simple one - just set the limit.
|
|
*/
|
|
run->count = index;
|
|
|
|
/* Do not reallocate array 'runs'. Only free if possible. */
|
|
if (!index) {
|
|
kvfree(run->runs);
|
|
run->runs = NULL;
|
|
run->allocated = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* run_truncate_around - Trim head and tail if necessary.
|
|
*/
|
|
void run_truncate_around(struct runs_tree *run, CLST vcn)
|
|
{
|
|
run_truncate_head(run, vcn);
|
|
|
|
if (run->count >= NTFS3_RUN_MAX_BYTES / sizeof(struct ntfs_run) / 2)
|
|
run_truncate(run, (run->runs + (run->count >> 1))->vcn);
|
|
}
|
|
|
|
/*
|
|
* run_add_entry
|
|
*
|
|
* Sets location to known state.
|
|
* Run to be added may overlap with existing location.
|
|
*
|
|
* Return: false if of memory.
|
|
*/
|
|
bool run_add_entry(struct runs_tree *run, CLST vcn, CLST lcn, CLST len,
|
|
bool is_mft)
|
|
{
|
|
size_t used, index;
|
|
struct ntfs_run *r;
|
|
bool inrange;
|
|
CLST tail_vcn = 0, tail_len = 0, tail_lcn = 0;
|
|
bool should_add_tail = false;
|
|
|
|
/*
|
|
* Lookup the insertion point.
|
|
*
|
|
* Execute bsearch for the entry containing
|
|
* start position question.
|
|
*/
|
|
inrange = run_lookup(run, vcn, &index);
|
|
|
|
/*
|
|
* Shortcut here would be case of
|
|
* range not been found but one been added
|
|
* continues previous run.
|
|
* This case I can directly make use of
|
|
* existing range as my start point.
|
|
*/
|
|
if (!inrange && index > 0) {
|
|
struct ntfs_run *t = run->runs + index - 1;
|
|
|
|
if (t->vcn + t->len == vcn &&
|
|
(t->lcn == SPARSE_LCN) == (lcn == SPARSE_LCN) &&
|
|
(lcn == SPARSE_LCN || lcn == t->lcn + t->len)) {
|
|
inrange = true;
|
|
index -= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point 'index' either points to the range
|
|
* containing start position or to the insertion position
|
|
* for a new range.
|
|
* So first let's check if range I'm probing is here already.
|
|
*/
|
|
if (!inrange) {
|
|
requires_new_range:
|
|
/*
|
|
* Range was not found.
|
|
* Insert at position 'index'
|
|
*/
|
|
used = run->count * sizeof(struct ntfs_run);
|
|
|
|
/*
|
|
* Check allocated space.
|
|
* If one is not enough to get one more entry
|
|
* then it will be reallocated.
|
|
*/
|
|
if (run->allocated < used + sizeof(struct ntfs_run)) {
|
|
size_t bytes;
|
|
struct ntfs_run *new_ptr;
|
|
|
|
/* Use power of 2 for 'bytes'. */
|
|
if (!used) {
|
|
bytes = 64;
|
|
} else if (used <= 16 * PAGE_SIZE) {
|
|
if (is_power_of_2(run->allocated))
|
|
bytes = run->allocated << 1;
|
|
else
|
|
bytes = (size_t)1
|
|
<< (2 + blksize_bits(used));
|
|
} else {
|
|
bytes = run->allocated + (16 * PAGE_SIZE);
|
|
}
|
|
|
|
WARN_ON(!is_mft && bytes > NTFS3_RUN_MAX_BYTES);
|
|
|
|
new_ptr = kvmalloc(bytes, GFP_KERNEL);
|
|
|
|
if (!new_ptr)
|
|
return false;
|
|
|
|
r = new_ptr + index;
|
|
memcpy(new_ptr, run->runs,
|
|
index * sizeof(struct ntfs_run));
|
|
memcpy(r + 1, run->runs + index,
|
|
sizeof(struct ntfs_run) * (run->count - index));
|
|
|
|
kvfree(run->runs);
|
|
run->runs = new_ptr;
|
|
run->allocated = bytes;
|
|
|
|
} else {
|
|
size_t i = run->count - index;
|
|
|
|
r = run->runs + index;
|
|
|
|
/* memmove appears to be a bottle neck here... */
|
|
if (i > 0)
|
|
memmove(r + 1, r, sizeof(struct ntfs_run) * i);
|
|
}
|
|
|
|
r->vcn = vcn;
|
|
r->lcn = lcn;
|
|
r->len = len;
|
|
run->count += 1;
|
|
} else {
|
|
r = run->runs + index;
|
|
|
|
/*
|
|
* If one of ranges was not allocated then we
|
|
* have to split location we just matched and
|
|
* insert current one.
|
|
* A common case this requires tail to be reinserted
|
|
* a recursive call.
|
|
*/
|
|
if (((lcn == SPARSE_LCN) != (r->lcn == SPARSE_LCN)) ||
|
|
(lcn != SPARSE_LCN && lcn != r->lcn + (vcn - r->vcn))) {
|
|
CLST to_eat = vcn - r->vcn;
|
|
CLST Tovcn = to_eat + len;
|
|
|
|
should_add_tail = Tovcn < r->len;
|
|
|
|
if (should_add_tail) {
|
|
tail_lcn = r->lcn == SPARSE_LCN ?
|
|
SPARSE_LCN :
|
|
(r->lcn + Tovcn);
|
|
tail_vcn = r->vcn + Tovcn;
|
|
tail_len = r->len - Tovcn;
|
|
}
|
|
|
|
if (to_eat > 0) {
|
|
r->len = to_eat;
|
|
inrange = false;
|
|
index += 1;
|
|
goto requires_new_range;
|
|
}
|
|
|
|
/* lcn should match one were going to add. */
|
|
r->lcn = lcn;
|
|
}
|
|
|
|
/*
|
|
* If existing range fits then were done.
|
|
* Otherwise extend found one and fall back to range jocode.
|
|
*/
|
|
if (r->vcn + r->len < vcn + len)
|
|
r->len += len - ((r->vcn + r->len) - vcn);
|
|
}
|
|
|
|
/*
|
|
* And normalize it starting from insertion point.
|
|
* It's possible that no insertion needed case if
|
|
* start point lies within the range of an entry
|
|
* that 'index' points to.
|
|
*/
|
|
if (inrange && index > 0)
|
|
index -= 1;
|
|
run_consolidate(run, index);
|
|
run_consolidate(run, index + 1);
|
|
|
|
/*
|
|
* A special case.
|
|
* We have to add extra range a tail.
|
|
*/
|
|
if (should_add_tail &&
|
|
!run_add_entry(run, tail_vcn, tail_lcn, tail_len, is_mft))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* run_collapse_range
|
|
*
|
|
* Helper for attr_collapse_range(),
|
|
* which is helper for fallocate(collapse_range).
|
|
*/
|
|
bool run_collapse_range(struct runs_tree *run, CLST vcn, CLST len)
|
|
{
|
|
size_t index, eat;
|
|
struct ntfs_run *r, *e, *eat_start, *eat_end;
|
|
CLST end;
|
|
|
|
if (WARN_ON(!run_lookup(run, vcn, &index)))
|
|
return true; /* Should never be here. */
|
|
|
|
e = run->runs + run->count;
|
|
r = run->runs + index;
|
|
end = vcn + len;
|
|
|
|
if (vcn > r->vcn) {
|
|
if (r->vcn + r->len <= end) {
|
|
/* Collapse tail of run .*/
|
|
r->len = vcn - r->vcn;
|
|
} else if (r->lcn == SPARSE_LCN) {
|
|
/* Collapse a middle part of sparsed run. */
|
|
r->len -= len;
|
|
} else {
|
|
/* Collapse a middle part of normal run, split. */
|
|
if (!run_add_entry(run, vcn, SPARSE_LCN, len, false))
|
|
return false;
|
|
return run_collapse_range(run, vcn, len);
|
|
}
|
|
|
|
r += 1;
|
|
}
|
|
|
|
eat_start = r;
|
|
eat_end = r;
|
|
|
|
for (; r < e; r++) {
|
|
CLST d;
|
|
|
|
if (r->vcn >= end) {
|
|
r->vcn -= len;
|
|
continue;
|
|
}
|
|
|
|
if (r->vcn + r->len <= end) {
|
|
/* Eat this run. */
|
|
eat_end = r + 1;
|
|
continue;
|
|
}
|
|
|
|
d = end - r->vcn;
|
|
if (r->lcn != SPARSE_LCN)
|
|
r->lcn += d;
|
|
r->len -= d;
|
|
r->vcn -= len - d;
|
|
}
|
|
|
|
eat = eat_end - eat_start;
|
|
memmove(eat_start, eat_end, (e - eat_end) * sizeof(*r));
|
|
run->count -= eat;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* run_insert_range
|
|
*
|
|
* Helper for attr_insert_range(),
|
|
* which is helper for fallocate(insert_range).
|
|
*/
|
|
bool run_insert_range(struct runs_tree *run, CLST vcn, CLST len)
|
|
{
|
|
size_t index;
|
|
struct ntfs_run *r, *e;
|
|
|
|
if (WARN_ON(!run_lookup(run, vcn, &index)))
|
|
return false; /* Should never be here. */
|
|
|
|
e = run->runs + run->count;
|
|
r = run->runs + index;
|
|
|
|
if (vcn > r->vcn)
|
|
r += 1;
|
|
|
|
for (; r < e; r++)
|
|
r->vcn += len;
|
|
|
|
r = run->runs + index;
|
|
|
|
if (vcn > r->vcn) {
|
|
/* split fragment. */
|
|
CLST len1 = vcn - r->vcn;
|
|
CLST len2 = r->len - len1;
|
|
CLST lcn2 = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + len1);
|
|
|
|
r->len = len1;
|
|
|
|
if (!run_add_entry(run, vcn + len, lcn2, len2, false))
|
|
return false;
|
|
}
|
|
|
|
if (!run_add_entry(run, vcn, SPARSE_LCN, len, false))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* run_get_entry - Return index-th mapped region.
|
|
*/
|
|
bool run_get_entry(const struct runs_tree *run, size_t index, CLST *vcn,
|
|
CLST *lcn, CLST *len)
|
|
{
|
|
const struct ntfs_run *r;
|
|
|
|
if (index >= run->count)
|
|
return false;
|
|
|
|
r = run->runs + index;
|
|
|
|
if (!r->len)
|
|
return false;
|
|
|
|
if (vcn)
|
|
*vcn = r->vcn;
|
|
if (lcn)
|
|
*lcn = r->lcn;
|
|
if (len)
|
|
*len = r->len;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* run_packed_size - Calculate the size of packed int64.
|
|
*/
|
|
#ifdef __BIG_ENDIAN
|
|
static inline int run_packed_size(const s64 n)
|
|
{
|
|
const u8 *p = (const u8 *)&n + sizeof(n) - 1;
|
|
|
|
if (n >= 0) {
|
|
if (p[-7] || p[-6] || p[-5] || p[-4])
|
|
p -= 4;
|
|
if (p[-3] || p[-2])
|
|
p -= 2;
|
|
if (p[-1])
|
|
p -= 1;
|
|
if (p[0] & 0x80)
|
|
p -= 1;
|
|
} else {
|
|
if (p[-7] != 0xff || p[-6] != 0xff || p[-5] != 0xff ||
|
|
p[-4] != 0xff)
|
|
p -= 4;
|
|
if (p[-3] != 0xff || p[-2] != 0xff)
|
|
p -= 2;
|
|
if (p[-1] != 0xff)
|
|
p -= 1;
|
|
if (!(p[0] & 0x80))
|
|
p -= 1;
|
|
}
|
|
return (const u8 *)&n + sizeof(n) - p;
|
|
}
|
|
|
|
/* Full trusted function. It does not check 'size' for errors. */
|
|
static inline void run_pack_s64(u8 *run_buf, u8 size, s64 v)
|
|
{
|
|
const u8 *p = (u8 *)&v;
|
|
|
|
switch (size) {
|
|
case 8:
|
|
run_buf[7] = p[0];
|
|
fallthrough;
|
|
case 7:
|
|
run_buf[6] = p[1];
|
|
fallthrough;
|
|
case 6:
|
|
run_buf[5] = p[2];
|
|
fallthrough;
|
|
case 5:
|
|
run_buf[4] = p[3];
|
|
fallthrough;
|
|
case 4:
|
|
run_buf[3] = p[4];
|
|
fallthrough;
|
|
case 3:
|
|
run_buf[2] = p[5];
|
|
fallthrough;
|
|
case 2:
|
|
run_buf[1] = p[6];
|
|
fallthrough;
|
|
case 1:
|
|
run_buf[0] = p[7];
|
|
}
|
|
}
|
|
|
|
/* Full trusted function. It does not check 'size' for errors. */
|
|
static inline s64 run_unpack_s64(const u8 *run_buf, u8 size, s64 v)
|
|
{
|
|
u8 *p = (u8 *)&v;
|
|
|
|
switch (size) {
|
|
case 8:
|
|
p[0] = run_buf[7];
|
|
fallthrough;
|
|
case 7:
|
|
p[1] = run_buf[6];
|
|
fallthrough;
|
|
case 6:
|
|
p[2] = run_buf[5];
|
|
fallthrough;
|
|
case 5:
|
|
p[3] = run_buf[4];
|
|
fallthrough;
|
|
case 4:
|
|
p[4] = run_buf[3];
|
|
fallthrough;
|
|
case 3:
|
|
p[5] = run_buf[2];
|
|
fallthrough;
|
|
case 2:
|
|
p[6] = run_buf[1];
|
|
fallthrough;
|
|
case 1:
|
|
p[7] = run_buf[0];
|
|
}
|
|
return v;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int run_packed_size(const s64 n)
|
|
{
|
|
const u8 *p = (const u8 *)&n;
|
|
|
|
if (n >= 0) {
|
|
if (p[7] || p[6] || p[5] || p[4])
|
|
p += 4;
|
|
if (p[3] || p[2])
|
|
p += 2;
|
|
if (p[1])
|
|
p += 1;
|
|
if (p[0] & 0x80)
|
|
p += 1;
|
|
} else {
|
|
if (p[7] != 0xff || p[6] != 0xff || p[5] != 0xff ||
|
|
p[4] != 0xff)
|
|
p += 4;
|
|
if (p[3] != 0xff || p[2] != 0xff)
|
|
p += 2;
|
|
if (p[1] != 0xff)
|
|
p += 1;
|
|
if (!(p[0] & 0x80))
|
|
p += 1;
|
|
}
|
|
|
|
return 1 + p - (const u8 *)&n;
|
|
}
|
|
|
|
/* Full trusted function. It does not check 'size' for errors. */
|
|
static inline void run_pack_s64(u8 *run_buf, u8 size, s64 v)
|
|
{
|
|
const u8 *p = (u8 *)&v;
|
|
|
|
/* memcpy( run_buf, &v, size); Is it faster? */
|
|
switch (size) {
|
|
case 8:
|
|
run_buf[7] = p[7];
|
|
fallthrough;
|
|
case 7:
|
|
run_buf[6] = p[6];
|
|
fallthrough;
|
|
case 6:
|
|
run_buf[5] = p[5];
|
|
fallthrough;
|
|
case 5:
|
|
run_buf[4] = p[4];
|
|
fallthrough;
|
|
case 4:
|
|
run_buf[3] = p[3];
|
|
fallthrough;
|
|
case 3:
|
|
run_buf[2] = p[2];
|
|
fallthrough;
|
|
case 2:
|
|
run_buf[1] = p[1];
|
|
fallthrough;
|
|
case 1:
|
|
run_buf[0] = p[0];
|
|
}
|
|
}
|
|
|
|
/* full trusted function. It does not check 'size' for errors */
|
|
static inline s64 run_unpack_s64(const u8 *run_buf, u8 size, s64 v)
|
|
{
|
|
u8 *p = (u8 *)&v;
|
|
|
|
/* memcpy( &v, run_buf, size); Is it faster? */
|
|
switch (size) {
|
|
case 8:
|
|
p[7] = run_buf[7];
|
|
fallthrough;
|
|
case 7:
|
|
p[6] = run_buf[6];
|
|
fallthrough;
|
|
case 6:
|
|
p[5] = run_buf[5];
|
|
fallthrough;
|
|
case 5:
|
|
p[4] = run_buf[4];
|
|
fallthrough;
|
|
case 4:
|
|
p[3] = run_buf[3];
|
|
fallthrough;
|
|
case 3:
|
|
p[2] = run_buf[2];
|
|
fallthrough;
|
|
case 2:
|
|
p[1] = run_buf[1];
|
|
fallthrough;
|
|
case 1:
|
|
p[0] = run_buf[0];
|
|
}
|
|
return v;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* run_pack - Pack runs into buffer.
|
|
*
|
|
* packed_vcns - How much runs we have packed.
|
|
* packed_size - How much bytes we have used run_buf.
|
|
*/
|
|
int run_pack(const struct runs_tree *run, CLST svcn, CLST len, u8 *run_buf,
|
|
u32 run_buf_size, CLST *packed_vcns)
|
|
{
|
|
CLST next_vcn, vcn, lcn;
|
|
CLST prev_lcn = 0;
|
|
CLST evcn1 = svcn + len;
|
|
const struct ntfs_run *r, *r_end;
|
|
int packed_size = 0;
|
|
size_t i;
|
|
s64 dlcn;
|
|
int offset_size, size_size, tmp;
|
|
|
|
*packed_vcns = 0;
|
|
|
|
if (!len)
|
|
goto out;
|
|
|
|
/* Check all required entries [svcn, encv1) available. */
|
|
if (!run_lookup(run, svcn, &i))
|
|
return -ENOENT;
|
|
|
|
r_end = run->runs + run->count;
|
|
r = run->runs + i;
|
|
|
|
for (next_vcn = r->vcn + r->len; next_vcn < evcn1;
|
|
next_vcn = r->vcn + r->len) {
|
|
if (++r >= r_end || r->vcn != next_vcn)
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Repeat cycle above and pack runs. Assume no errors. */
|
|
r = run->runs + i;
|
|
len = svcn - r->vcn;
|
|
vcn = svcn;
|
|
lcn = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + len);
|
|
len = r->len - len;
|
|
|
|
for (;;) {
|
|
next_vcn = vcn + len;
|
|
if (next_vcn > evcn1)
|
|
len = evcn1 - vcn;
|
|
|
|
/* How much bytes required to pack len. */
|
|
size_size = run_packed_size(len);
|
|
|
|
/* offset_size - How much bytes is packed dlcn. */
|
|
if (lcn == SPARSE_LCN) {
|
|
offset_size = 0;
|
|
dlcn = 0;
|
|
} else {
|
|
/* NOTE: lcn can be less than prev_lcn! */
|
|
dlcn = (s64)lcn - prev_lcn;
|
|
offset_size = run_packed_size(dlcn);
|
|
prev_lcn = lcn;
|
|
}
|
|
|
|
tmp = run_buf_size - packed_size - 2 - offset_size;
|
|
if (tmp <= 0)
|
|
goto out;
|
|
|
|
/* Can we store this entire run. */
|
|
if (tmp < size_size)
|
|
goto out;
|
|
|
|
if (run_buf) {
|
|
/* Pack run header. */
|
|
run_buf[0] = ((u8)(size_size | (offset_size << 4)));
|
|
run_buf += 1;
|
|
|
|
/* Pack the length of run. */
|
|
run_pack_s64(run_buf, size_size, len);
|
|
|
|
run_buf += size_size;
|
|
/* Pack the offset from previous LCN. */
|
|
run_pack_s64(run_buf, offset_size, dlcn);
|
|
run_buf += offset_size;
|
|
}
|
|
|
|
packed_size += 1 + offset_size + size_size;
|
|
*packed_vcns += len;
|
|
|
|
if (packed_size + 1 >= run_buf_size || next_vcn >= evcn1)
|
|
goto out;
|
|
|
|
r += 1;
|
|
vcn = r->vcn;
|
|
lcn = r->lcn;
|
|
len = r->len;
|
|
}
|
|
|
|
out:
|
|
/* Store last zero. */
|
|
if (run_buf)
|
|
run_buf[0] = 0;
|
|
|
|
return packed_size + 1;
|
|
}
|
|
|
|
/*
|
|
* run_unpack - Unpack packed runs from @run_buf.
|
|
*
|
|
* Return: Error if negative, or real used bytes.
|
|
*/
|
|
int run_unpack(struct runs_tree *run, struct ntfs_sb_info *sbi, CLST ino,
|
|
CLST svcn, CLST evcn, CLST vcn, const u8 *run_buf,
|
|
int run_buf_size)
|
|
{
|
|
u64 prev_lcn, vcn64, lcn, next_vcn;
|
|
const u8 *run_last, *run_0;
|
|
bool is_mft = ino == MFT_REC_MFT;
|
|
|
|
if (run_buf_size < 0)
|
|
return -EINVAL;
|
|
|
|
/* Check for empty. */
|
|
if (evcn + 1 == svcn)
|
|
return 0;
|
|
|
|
if (evcn < svcn)
|
|
return -EINVAL;
|
|
|
|
run_0 = run_buf;
|
|
run_last = run_buf + run_buf_size;
|
|
prev_lcn = 0;
|
|
vcn64 = svcn;
|
|
|
|
/* Read all runs the chain. */
|
|
/* size_size - How much bytes is packed len. */
|
|
while (run_buf < run_last) {
|
|
/* size_size - How much bytes is packed len. */
|
|
u8 size_size = *run_buf & 0xF;
|
|
/* offset_size - How much bytes is packed dlcn. */
|
|
u8 offset_size = *run_buf++ >> 4;
|
|
u64 len;
|
|
|
|
if (!size_size)
|
|
break;
|
|
|
|
/*
|
|
* Unpack runs.
|
|
* NOTE: Runs are stored little endian order
|
|
* "len" is unsigned value, "dlcn" is signed.
|
|
* Large positive number requires to store 5 bytes
|
|
* e.g.: 05 FF 7E FF FF 00 00 00
|
|
*/
|
|
if (size_size > 8)
|
|
return -EINVAL;
|
|
|
|
len = run_unpack_s64(run_buf, size_size, 0);
|
|
/* Skip size_size. */
|
|
run_buf += size_size;
|
|
|
|
if (!len)
|
|
return -EINVAL;
|
|
|
|
if (!offset_size)
|
|
lcn = SPARSE_LCN64;
|
|
else if (offset_size <= 8) {
|
|
s64 dlcn;
|
|
|
|
/* Initial value of dlcn is -1 or 0. */
|
|
dlcn = (run_buf[offset_size - 1] & 0x80) ? (s64)-1 : 0;
|
|
dlcn = run_unpack_s64(run_buf, offset_size, dlcn);
|
|
/* Skip offset_size. */
|
|
run_buf += offset_size;
|
|
|
|
if (!dlcn)
|
|
return -EINVAL;
|
|
lcn = prev_lcn + dlcn;
|
|
prev_lcn = lcn;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
next_vcn = vcn64 + len;
|
|
/* Check boundary. */
|
|
if (next_vcn > evcn + 1)
|
|
return -EINVAL;
|
|
|
|
#ifndef CONFIG_NTFS3_64BIT_CLUSTER
|
|
if (next_vcn > 0x100000000ull || (lcn + len) > 0x100000000ull) {
|
|
ntfs_err(
|
|
sbi->sb,
|
|
"This driver is compiled without CONFIG_NTFS3_64BIT_CLUSTER (like windows driver).\n"
|
|
"Volume contains 64 bits run: vcn %llx, lcn %llx, len %llx.\n"
|
|
"Activate CONFIG_NTFS3_64BIT_CLUSTER to process this case",
|
|
vcn64, lcn, len);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
#endif
|
|
if (lcn != SPARSE_LCN64 && lcn + len > sbi->used.bitmap.nbits) {
|
|
/* LCN range is out of volume. */
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!run)
|
|
; /* Called from check_attr(fslog.c) to check run. */
|
|
else if (run == RUN_DEALLOCATE) {
|
|
/*
|
|
* Called from ni_delete_all to free clusters
|
|
* without storing in run.
|
|
*/
|
|
if (lcn != SPARSE_LCN64)
|
|
mark_as_free_ex(sbi, lcn, len, true);
|
|
} else if (vcn64 >= vcn) {
|
|
if (!run_add_entry(run, vcn64, lcn, len, is_mft))
|
|
return -ENOMEM;
|
|
} else if (next_vcn > vcn) {
|
|
u64 dlen = vcn - vcn64;
|
|
|
|
if (!run_add_entry(run, vcn, lcn + dlen, len - dlen,
|
|
is_mft))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
vcn64 = next_vcn;
|
|
}
|
|
|
|
if (vcn64 != evcn + 1) {
|
|
/* Not expected length of unpacked runs. */
|
|
return -EINVAL;
|
|
}
|
|
|
|
return run_buf - run_0;
|
|
}
|
|
|
|
#ifdef NTFS3_CHECK_FREE_CLST
|
|
/*
|
|
* run_unpack_ex - Unpack packed runs from "run_buf".
|
|
*
|
|
* Checks unpacked runs to be used in bitmap.
|
|
*
|
|
* Return: Error if negative, or real used bytes.
|
|
*/
|
|
int run_unpack_ex(struct runs_tree *run, struct ntfs_sb_info *sbi, CLST ino,
|
|
CLST svcn, CLST evcn, CLST vcn, const u8 *run_buf,
|
|
int run_buf_size)
|
|
{
|
|
int ret, err;
|
|
CLST next_vcn, lcn, len;
|
|
size_t index;
|
|
bool ok;
|
|
struct wnd_bitmap *wnd;
|
|
|
|
ret = run_unpack(run, sbi, ino, svcn, evcn, vcn, run_buf, run_buf_size);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
if (!sbi->used.bitmap.sb || !run || run == RUN_DEALLOCATE)
|
|
return ret;
|
|
|
|
if (ino == MFT_REC_BADCLUST)
|
|
return ret;
|
|
|
|
next_vcn = vcn = svcn;
|
|
wnd = &sbi->used.bitmap;
|
|
|
|
for (ok = run_lookup_entry(run, vcn, &lcn, &len, &index);
|
|
next_vcn <= evcn;
|
|
ok = run_get_entry(run, ++index, &vcn, &lcn, &len)) {
|
|
if (!ok || next_vcn != vcn)
|
|
return -EINVAL;
|
|
|
|
next_vcn = vcn + len;
|
|
|
|
if (lcn == SPARSE_LCN)
|
|
continue;
|
|
|
|
if (sbi->flags & NTFS_FLAGS_NEED_REPLAY)
|
|
continue;
|
|
|
|
down_read_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS);
|
|
/* Check for free blocks. */
|
|
ok = wnd_is_used(wnd, lcn, len);
|
|
up_read(&wnd->rw_lock);
|
|
if (ok)
|
|
continue;
|
|
|
|
/* Looks like volume is corrupted. */
|
|
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
|
|
|
|
if (down_write_trylock(&wnd->rw_lock)) {
|
|
/* Mark all zero bits as used in range [lcn, lcn+len). */
|
|
size_t done;
|
|
err = wnd_set_used_safe(wnd, lcn, len, &done);
|
|
up_write(&wnd->rw_lock);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* run_get_highest_vcn
|
|
*
|
|
* Return the highest vcn from a mapping pairs array
|
|
* it used while replaying log file.
|
|
*/
|
|
int run_get_highest_vcn(CLST vcn, const u8 *run_buf, u64 *highest_vcn)
|
|
{
|
|
u64 vcn64 = vcn;
|
|
u8 size_size;
|
|
|
|
while ((size_size = *run_buf & 0xF)) {
|
|
u8 offset_size = *run_buf++ >> 4;
|
|
u64 len;
|
|
|
|
if (size_size > 8 || offset_size > 8)
|
|
return -EINVAL;
|
|
|
|
len = run_unpack_s64(run_buf, size_size, 0);
|
|
if (!len)
|
|
return -EINVAL;
|
|
|
|
run_buf += size_size + offset_size;
|
|
vcn64 += len;
|
|
|
|
#ifndef CONFIG_NTFS3_64BIT_CLUSTER
|
|
if (vcn64 > 0x100000000ull)
|
|
return -EINVAL;
|
|
#endif
|
|
}
|
|
|
|
*highest_vcn = vcn64 - 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* run_clone
|
|
*
|
|
* Make a copy of run
|
|
*/
|
|
int run_clone(const struct runs_tree *run, struct runs_tree *new_run)
|
|
{
|
|
size_t bytes = run->count * sizeof(struct ntfs_run);
|
|
|
|
if (bytes > new_run->allocated) {
|
|
struct ntfs_run *new_ptr = kvmalloc(bytes, GFP_KERNEL);
|
|
|
|
if (!new_ptr)
|
|
return -ENOMEM;
|
|
|
|
kvfree(new_run->runs);
|
|
new_run->runs = new_ptr;
|
|
new_run->allocated = bytes;
|
|
}
|
|
|
|
memcpy(new_run->runs, run->runs, bytes);
|
|
new_run->count = run->count;
|
|
return 0;
|
|
}
|