mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 00:38:55 +00:00
f54de068dd
Now that init_ipath is called either from a safe context or with memalloc_nofs protection, we can switch to GFP_KERNEL allocations in init_path and init_data_container. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2362 lines
60 KiB
C
2362 lines
60 KiB
C
/*
|
|
* Copyright (C) 2011 STRATO. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/rbtree.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "backref.h"
|
|
#include "ulist.h"
|
|
#include "transaction.h"
|
|
#include "delayed-ref.h"
|
|
#include "locking.h"
|
|
|
|
enum merge_mode {
|
|
MERGE_IDENTICAL_KEYS = 1,
|
|
MERGE_IDENTICAL_PARENTS,
|
|
};
|
|
|
|
/* Just an arbitrary number so we can be sure this happened */
|
|
#define BACKREF_FOUND_SHARED 6
|
|
|
|
struct extent_inode_elem {
|
|
u64 inum;
|
|
u64 offset;
|
|
struct extent_inode_elem *next;
|
|
};
|
|
|
|
/*
|
|
* ref_root is used as the root of the ref tree that hold a collection
|
|
* of unique references.
|
|
*/
|
|
struct ref_root {
|
|
struct rb_root rb_root;
|
|
|
|
/*
|
|
* The unique_refs represents the number of ref_nodes with a positive
|
|
* count stored in the tree. Even if a ref_node (the count is greater
|
|
* than one) is added, the unique_refs will only increase by one.
|
|
*/
|
|
unsigned int unique_refs;
|
|
};
|
|
|
|
/* ref_node is used to store a unique reference to the ref tree. */
|
|
struct ref_node {
|
|
struct rb_node rb_node;
|
|
|
|
/* For NORMAL_REF, otherwise all these fields should be set to 0 */
|
|
u64 root_id;
|
|
u64 object_id;
|
|
u64 offset;
|
|
|
|
/* For SHARED_REF, otherwise parent field should be set to 0 */
|
|
u64 parent;
|
|
|
|
/* Ref to the ref_mod of btrfs_delayed_ref_node */
|
|
int ref_mod;
|
|
};
|
|
|
|
/* Dynamically allocate and initialize a ref_root */
|
|
static struct ref_root *ref_root_alloc(void)
|
|
{
|
|
struct ref_root *ref_tree;
|
|
|
|
ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
|
|
if (!ref_tree)
|
|
return NULL;
|
|
|
|
ref_tree->rb_root = RB_ROOT;
|
|
ref_tree->unique_refs = 0;
|
|
|
|
return ref_tree;
|
|
}
|
|
|
|
/* Free all nodes in the ref tree, and reinit ref_root */
|
|
static void ref_root_fini(struct ref_root *ref_tree)
|
|
{
|
|
struct ref_node *node;
|
|
struct rb_node *next;
|
|
|
|
while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
|
|
node = rb_entry(next, struct ref_node, rb_node);
|
|
rb_erase(next, &ref_tree->rb_root);
|
|
kfree(node);
|
|
}
|
|
|
|
ref_tree->rb_root = RB_ROOT;
|
|
ref_tree->unique_refs = 0;
|
|
}
|
|
|
|
static void ref_root_free(struct ref_root *ref_tree)
|
|
{
|
|
if (!ref_tree)
|
|
return;
|
|
|
|
ref_root_fini(ref_tree);
|
|
kfree(ref_tree);
|
|
}
|
|
|
|
/*
|
|
* Compare ref_node with (root_id, object_id, offset, parent)
|
|
*
|
|
* The function compares two ref_node a and b. It returns an integer less
|
|
* than, equal to, or greater than zero , respectively, to be less than, to
|
|
* equal, or be greater than b.
|
|
*/
|
|
static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
|
|
{
|
|
if (a->root_id < b->root_id)
|
|
return -1;
|
|
else if (a->root_id > b->root_id)
|
|
return 1;
|
|
|
|
if (a->object_id < b->object_id)
|
|
return -1;
|
|
else if (a->object_id > b->object_id)
|
|
return 1;
|
|
|
|
if (a->offset < b->offset)
|
|
return -1;
|
|
else if (a->offset > b->offset)
|
|
return 1;
|
|
|
|
if (a->parent < b->parent)
|
|
return -1;
|
|
else if (a->parent > b->parent)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Search ref_node with (root_id, object_id, offset, parent) in the tree
|
|
*
|
|
* if found, the pointer of the ref_node will be returned;
|
|
* if not found, NULL will be returned and pos will point to the rb_node for
|
|
* insert, pos_parent will point to pos'parent for insert;
|
|
*/
|
|
static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
|
|
struct rb_node ***pos,
|
|
struct rb_node **pos_parent,
|
|
u64 root_id, u64 object_id,
|
|
u64 offset, u64 parent)
|
|
{
|
|
struct ref_node *cur = NULL;
|
|
struct ref_node entry;
|
|
int ret;
|
|
|
|
entry.root_id = root_id;
|
|
entry.object_id = object_id;
|
|
entry.offset = offset;
|
|
entry.parent = parent;
|
|
|
|
*pos = &ref_tree->rb_root.rb_node;
|
|
|
|
while (**pos) {
|
|
*pos_parent = **pos;
|
|
cur = rb_entry(*pos_parent, struct ref_node, rb_node);
|
|
|
|
ret = ref_node_cmp(cur, &entry);
|
|
if (ret > 0)
|
|
*pos = &(**pos)->rb_left;
|
|
else if (ret < 0)
|
|
*pos = &(**pos)->rb_right;
|
|
else
|
|
return cur;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Insert a ref_node to the ref tree
|
|
* @pos used for specifiy the position to insert
|
|
* @pos_parent for specifiy pos's parent
|
|
*
|
|
* success, return 0;
|
|
* ref_node already exists, return -EEXIST;
|
|
*/
|
|
static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
|
|
struct rb_node *pos_parent, struct ref_node *ins)
|
|
{
|
|
struct rb_node **p = NULL;
|
|
struct rb_node *parent = NULL;
|
|
struct ref_node *cur = NULL;
|
|
|
|
if (!pos) {
|
|
cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
|
|
ins->object_id, ins->offset,
|
|
ins->parent);
|
|
if (cur)
|
|
return -EEXIST;
|
|
} else {
|
|
p = pos;
|
|
parent = pos_parent;
|
|
}
|
|
|
|
rb_link_node(&ins->rb_node, parent, p);
|
|
rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Erase and free ref_node, caller should update ref_root->unique_refs */
|
|
static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
|
|
{
|
|
rb_erase(&node->rb_node, &ref_tree->rb_root);
|
|
kfree(node);
|
|
}
|
|
|
|
/*
|
|
* Update ref_root->unique_refs
|
|
*
|
|
* Call __ref_tree_search
|
|
* 1. if ref_node doesn't exist, ref_tree_insert this node, and update
|
|
* ref_root->unique_refs:
|
|
* if ref_node->ref_mod > 0, ref_root->unique_refs++;
|
|
* if ref_node->ref_mod < 0, do noting;
|
|
*
|
|
* 2. if ref_node is found, then get origin ref_node->ref_mod, and update
|
|
* ref_node->ref_mod.
|
|
* if ref_node->ref_mod is equal to 0,then call ref_tree_remove
|
|
*
|
|
* according to origin_mod and new_mod, update ref_root->items
|
|
* +----------------+--------------+-------------+
|
|
* | |new_count <= 0|new_count > 0|
|
|
* +----------------+--------------+-------------+
|
|
* |origin_count < 0| 0 | 1 |
|
|
* +----------------+--------------+-------------+
|
|
* |origin_count > 0| -1 | 0 |
|
|
* +----------------+--------------+-------------+
|
|
*
|
|
* In case of allocation failure, -ENOMEM is returned and the ref_tree stays
|
|
* unaltered.
|
|
* Success, return 0
|
|
*/
|
|
static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
|
|
u64 offset, u64 parent, int count)
|
|
{
|
|
struct ref_node *node = NULL;
|
|
struct rb_node **pos = NULL;
|
|
struct rb_node *pos_parent = NULL;
|
|
int origin_count;
|
|
int ret;
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
|
|
object_id, offset, parent);
|
|
if (node == NULL) {
|
|
node = kmalloc(sizeof(*node), GFP_NOFS);
|
|
if (!node)
|
|
return -ENOMEM;
|
|
|
|
node->root_id = root_id;
|
|
node->object_id = object_id;
|
|
node->offset = offset;
|
|
node->parent = parent;
|
|
node->ref_mod = count;
|
|
|
|
ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
|
|
ASSERT(!ret);
|
|
if (ret) {
|
|
kfree(node);
|
|
return ret;
|
|
}
|
|
|
|
ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
origin_count = node->ref_mod;
|
|
node->ref_mod += count;
|
|
|
|
if (node->ref_mod > 0)
|
|
ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
|
|
else if (node->ref_mod <= 0)
|
|
ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
|
|
|
|
if (!node->ref_mod)
|
|
ref_tree_remove(ref_tree, node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
|
|
struct btrfs_file_extent_item *fi,
|
|
u64 extent_item_pos,
|
|
struct extent_inode_elem **eie)
|
|
{
|
|
u64 offset = 0;
|
|
struct extent_inode_elem *e;
|
|
|
|
if (!btrfs_file_extent_compression(eb, fi) &&
|
|
!btrfs_file_extent_encryption(eb, fi) &&
|
|
!btrfs_file_extent_other_encoding(eb, fi)) {
|
|
u64 data_offset;
|
|
u64 data_len;
|
|
|
|
data_offset = btrfs_file_extent_offset(eb, fi);
|
|
data_len = btrfs_file_extent_num_bytes(eb, fi);
|
|
|
|
if (extent_item_pos < data_offset ||
|
|
extent_item_pos >= data_offset + data_len)
|
|
return 1;
|
|
offset = extent_item_pos - data_offset;
|
|
}
|
|
|
|
e = kmalloc(sizeof(*e), GFP_NOFS);
|
|
if (!e)
|
|
return -ENOMEM;
|
|
|
|
e->next = *eie;
|
|
e->inum = key->objectid;
|
|
e->offset = key->offset + offset;
|
|
*eie = e;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_inode_elem_list(struct extent_inode_elem *eie)
|
|
{
|
|
struct extent_inode_elem *eie_next;
|
|
|
|
for (; eie; eie = eie_next) {
|
|
eie_next = eie->next;
|
|
kfree(eie);
|
|
}
|
|
}
|
|
|
|
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
|
|
u64 extent_item_pos,
|
|
struct extent_inode_elem **eie)
|
|
{
|
|
u64 disk_byte;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int slot;
|
|
int nritems;
|
|
int extent_type;
|
|
int ret;
|
|
|
|
/*
|
|
* from the shared data ref, we only have the leaf but we need
|
|
* the key. thus, we must look into all items and see that we
|
|
* find one (some) with a reference to our extent item.
|
|
*/
|
|
nritems = btrfs_header_nritems(eb);
|
|
for (slot = 0; slot < nritems; ++slot) {
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(eb, fi);
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
|
|
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
if (disk_byte != wanted_disk_byte)
|
|
continue;
|
|
|
|
ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this structure records all encountered refs on the way up to the root
|
|
*/
|
|
struct __prelim_ref {
|
|
struct list_head list;
|
|
u64 root_id;
|
|
struct btrfs_key key_for_search;
|
|
int level;
|
|
int count;
|
|
struct extent_inode_elem *inode_list;
|
|
u64 parent;
|
|
u64 wanted_disk_byte;
|
|
};
|
|
|
|
static struct kmem_cache *btrfs_prelim_ref_cache;
|
|
|
|
int __init btrfs_prelim_ref_init(void)
|
|
{
|
|
btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
|
|
sizeof(struct __prelim_ref),
|
|
0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_prelim_ref_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_prelim_ref_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_prelim_ref_cache);
|
|
}
|
|
|
|
/*
|
|
* the rules for all callers of this function are:
|
|
* - obtaining the parent is the goal
|
|
* - if you add a key, you must know that it is a correct key
|
|
* - if you cannot add the parent or a correct key, then we will look into the
|
|
* block later to set a correct key
|
|
*
|
|
* delayed refs
|
|
* ============
|
|
* backref type | shared | indirect | shared | indirect
|
|
* information | tree | tree | data | data
|
|
* --------------------+--------+----------+--------+----------
|
|
* parent logical | y | - | - | -
|
|
* key to resolve | - | y | y | y
|
|
* tree block logical | - | - | - | -
|
|
* root for resolving | y | y | y | y
|
|
*
|
|
* - column 1: we've the parent -> done
|
|
* - column 2, 3, 4: we use the key to find the parent
|
|
*
|
|
* on disk refs (inline or keyed)
|
|
* ==============================
|
|
* backref type | shared | indirect | shared | indirect
|
|
* information | tree | tree | data | data
|
|
* --------------------+--------+----------+--------+----------
|
|
* parent logical | y | - | y | -
|
|
* key to resolve | - | - | - | y
|
|
* tree block logical | y | y | y | y
|
|
* root for resolving | - | y | y | y
|
|
*
|
|
* - column 1, 3: we've the parent -> done
|
|
* - column 2: we take the first key from the block to find the parent
|
|
* (see __add_missing_keys)
|
|
* - column 4: we use the key to find the parent
|
|
*
|
|
* additional information that's available but not required to find the parent
|
|
* block might help in merging entries to gain some speed.
|
|
*/
|
|
|
|
static int __add_prelim_ref(struct list_head *head, u64 root_id,
|
|
struct btrfs_key *key, int level,
|
|
u64 parent, u64 wanted_disk_byte, int count,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct __prelim_ref *ref;
|
|
|
|
if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
|
|
return 0;
|
|
|
|
ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
|
|
if (!ref)
|
|
return -ENOMEM;
|
|
|
|
ref->root_id = root_id;
|
|
if (key) {
|
|
ref->key_for_search = *key;
|
|
/*
|
|
* We can often find data backrefs with an offset that is too
|
|
* large (>= LLONG_MAX, maximum allowed file offset) due to
|
|
* underflows when subtracting a file's offset with the data
|
|
* offset of its corresponding extent data item. This can
|
|
* happen for example in the clone ioctl.
|
|
* So if we detect such case we set the search key's offset to
|
|
* zero to make sure we will find the matching file extent item
|
|
* at add_all_parents(), otherwise we will miss it because the
|
|
* offset taken form the backref is much larger then the offset
|
|
* of the file extent item. This can make us scan a very large
|
|
* number of file extent items, but at least it will not make
|
|
* us miss any.
|
|
* This is an ugly workaround for a behaviour that should have
|
|
* never existed, but it does and a fix for the clone ioctl
|
|
* would touch a lot of places, cause backwards incompatibility
|
|
* and would not fix the problem for extents cloned with older
|
|
* kernels.
|
|
*/
|
|
if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
|
|
ref->key_for_search.offset >= LLONG_MAX)
|
|
ref->key_for_search.offset = 0;
|
|
} else {
|
|
memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
|
|
}
|
|
|
|
ref->inode_list = NULL;
|
|
ref->level = level;
|
|
ref->count = count;
|
|
ref->parent = parent;
|
|
ref->wanted_disk_byte = wanted_disk_byte;
|
|
list_add_tail(&ref->list, head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
|
|
struct ulist *parents, struct __prelim_ref *ref,
|
|
int level, u64 time_seq, const u64 *extent_item_pos,
|
|
u64 total_refs)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_key key;
|
|
struct btrfs_key *key_for_search = &ref->key_for_search;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct extent_inode_elem *eie = NULL, *old = NULL;
|
|
u64 disk_byte;
|
|
u64 wanted_disk_byte = ref->wanted_disk_byte;
|
|
u64 count = 0;
|
|
|
|
if (level != 0) {
|
|
eb = path->nodes[level];
|
|
ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
|
|
if (ret < 0)
|
|
return ret;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We normally enter this function with the path already pointing to
|
|
* the first item to check. But sometimes, we may enter it with
|
|
* slot==nritems. In that case, go to the next leaf before we continue.
|
|
*/
|
|
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
|
|
if (time_seq == SEQ_LAST)
|
|
ret = btrfs_next_leaf(root, path);
|
|
else
|
|
ret = btrfs_next_old_leaf(root, path, time_seq);
|
|
}
|
|
|
|
while (!ret && count < total_refs) {
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
|
|
if (key.objectid != key_for_search->objectid ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY)
|
|
break;
|
|
|
|
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
|
|
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
|
|
if (disk_byte == wanted_disk_byte) {
|
|
eie = NULL;
|
|
old = NULL;
|
|
count++;
|
|
if (extent_item_pos) {
|
|
ret = check_extent_in_eb(&key, eb, fi,
|
|
*extent_item_pos,
|
|
&eie);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
if (ret > 0)
|
|
goto next;
|
|
ret = ulist_add_merge_ptr(parents, eb->start,
|
|
eie, (void **)&old, GFP_NOFS);
|
|
if (ret < 0)
|
|
break;
|
|
if (!ret && extent_item_pos) {
|
|
while (old->next)
|
|
old = old->next;
|
|
old->next = eie;
|
|
}
|
|
eie = NULL;
|
|
}
|
|
next:
|
|
if (time_seq == SEQ_LAST)
|
|
ret = btrfs_next_item(root, path);
|
|
else
|
|
ret = btrfs_next_old_item(root, path, time_seq);
|
|
}
|
|
|
|
if (ret > 0)
|
|
ret = 0;
|
|
else if (ret < 0)
|
|
free_inode_elem_list(eie);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* resolve an indirect backref in the form (root_id, key, level)
|
|
* to a logical address
|
|
*/
|
|
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 time_seq,
|
|
struct __prelim_ref *ref,
|
|
struct ulist *parents,
|
|
const u64 *extent_item_pos, u64 total_refs)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_key root_key;
|
|
struct extent_buffer *eb;
|
|
int ret = 0;
|
|
int root_level;
|
|
int level = ref->level;
|
|
int index;
|
|
|
|
root_key.objectid = ref->root_id;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root_key.offset = (u64)-1;
|
|
|
|
index = srcu_read_lock(&fs_info->subvol_srcu);
|
|
|
|
root = btrfs_get_fs_root(fs_info, &root_key, false);
|
|
if (IS_ERR(root)) {
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_is_testing(fs_info)) {
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
if (path->search_commit_root)
|
|
root_level = btrfs_header_level(root->commit_root);
|
|
else if (time_seq == SEQ_LAST)
|
|
root_level = btrfs_header_level(root->node);
|
|
else
|
|
root_level = btrfs_old_root_level(root, time_seq);
|
|
|
|
if (root_level + 1 == level) {
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
goto out;
|
|
}
|
|
|
|
path->lowest_level = level;
|
|
if (time_seq == SEQ_LAST)
|
|
ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
|
|
0, 0);
|
|
else
|
|
ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
|
|
time_seq);
|
|
|
|
/* root node has been locked, we can release @subvol_srcu safely here */
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
|
|
btrfs_debug(fs_info,
|
|
"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
|
|
ref->root_id, level, ref->count, ret,
|
|
ref->key_for_search.objectid, ref->key_for_search.type,
|
|
ref->key_for_search.offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
eb = path->nodes[level];
|
|
while (!eb) {
|
|
if (WARN_ON(!level)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
level--;
|
|
eb = path->nodes[level];
|
|
}
|
|
|
|
ret = add_all_parents(root, path, parents, ref, level, time_seq,
|
|
extent_item_pos, total_refs);
|
|
out:
|
|
path->lowest_level = 0;
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* resolve all indirect backrefs from the list
|
|
*/
|
|
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 time_seq,
|
|
struct list_head *head,
|
|
const u64 *extent_item_pos, u64 total_refs,
|
|
u64 root_objectid)
|
|
{
|
|
int err;
|
|
int ret = 0;
|
|
struct __prelim_ref *ref;
|
|
struct __prelim_ref *ref_safe;
|
|
struct __prelim_ref *new_ref;
|
|
struct ulist *parents;
|
|
struct ulist_node *node;
|
|
struct ulist_iterator uiter;
|
|
|
|
parents = ulist_alloc(GFP_NOFS);
|
|
if (!parents)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* _safe allows us to insert directly after the current item without
|
|
* iterating over the newly inserted items.
|
|
* we're also allowed to re-assign ref during iteration.
|
|
*/
|
|
list_for_each_entry_safe(ref, ref_safe, head, list) {
|
|
if (ref->parent) /* already direct */
|
|
continue;
|
|
if (ref->count == 0)
|
|
continue;
|
|
if (root_objectid && ref->root_id != root_objectid) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
goto out;
|
|
}
|
|
err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
|
|
parents, extent_item_pos,
|
|
total_refs);
|
|
/*
|
|
* we can only tolerate ENOENT,otherwise,we should catch error
|
|
* and return directly.
|
|
*/
|
|
if (err == -ENOENT) {
|
|
continue;
|
|
} else if (err) {
|
|
ret = err;
|
|
goto out;
|
|
}
|
|
|
|
/* we put the first parent into the ref at hand */
|
|
ULIST_ITER_INIT(&uiter);
|
|
node = ulist_next(parents, &uiter);
|
|
ref->parent = node ? node->val : 0;
|
|
ref->inode_list = node ?
|
|
(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
|
|
|
|
/* additional parents require new refs being added here */
|
|
while ((node = ulist_next(parents, &uiter))) {
|
|
new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
|
|
GFP_NOFS);
|
|
if (!new_ref) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
memcpy(new_ref, ref, sizeof(*ref));
|
|
new_ref->parent = node->val;
|
|
new_ref->inode_list = (struct extent_inode_elem *)
|
|
(uintptr_t)node->aux;
|
|
list_add(&new_ref->list, &ref->list);
|
|
}
|
|
ulist_reinit(parents);
|
|
}
|
|
out:
|
|
ulist_free(parents);
|
|
return ret;
|
|
}
|
|
|
|
static inline int ref_for_same_block(struct __prelim_ref *ref1,
|
|
struct __prelim_ref *ref2)
|
|
{
|
|
if (ref1->level != ref2->level)
|
|
return 0;
|
|
if (ref1->root_id != ref2->root_id)
|
|
return 0;
|
|
if (ref1->key_for_search.type != ref2->key_for_search.type)
|
|
return 0;
|
|
if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
|
|
return 0;
|
|
if (ref1->key_for_search.offset != ref2->key_for_search.offset)
|
|
return 0;
|
|
if (ref1->parent != ref2->parent)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* read tree blocks and add keys where required.
|
|
*/
|
|
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
|
|
struct list_head *head)
|
|
{
|
|
struct __prelim_ref *ref;
|
|
struct extent_buffer *eb;
|
|
|
|
list_for_each_entry(ref, head, list) {
|
|
if (ref->parent)
|
|
continue;
|
|
if (ref->key_for_search.type)
|
|
continue;
|
|
BUG_ON(!ref->wanted_disk_byte);
|
|
eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
|
|
if (IS_ERR(eb)) {
|
|
return PTR_ERR(eb);
|
|
} else if (!extent_buffer_uptodate(eb)) {
|
|
free_extent_buffer(eb);
|
|
return -EIO;
|
|
}
|
|
btrfs_tree_read_lock(eb);
|
|
if (btrfs_header_level(eb) == 0)
|
|
btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
|
|
else
|
|
btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* merge backrefs and adjust counts accordingly
|
|
*
|
|
* FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in __add_prelim_ref
|
|
* then we can merge more here. Additionally, we could even add a key
|
|
* range for the blocks we looked into to merge even more (-> replace
|
|
* unresolved refs by those having a parent).
|
|
*/
|
|
static void __merge_refs(struct list_head *head, enum merge_mode mode)
|
|
{
|
|
struct __prelim_ref *pos1;
|
|
|
|
list_for_each_entry(pos1, head, list) {
|
|
struct __prelim_ref *pos2 = pos1, *tmp;
|
|
|
|
list_for_each_entry_safe_continue(pos2, tmp, head, list) {
|
|
struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
|
|
struct extent_inode_elem *eie;
|
|
|
|
if (!ref_for_same_block(ref1, ref2))
|
|
continue;
|
|
if (mode == MERGE_IDENTICAL_KEYS) {
|
|
if (!ref1->parent && ref2->parent)
|
|
swap(ref1, ref2);
|
|
} else {
|
|
if (ref1->parent != ref2->parent)
|
|
continue;
|
|
}
|
|
|
|
eie = ref1->inode_list;
|
|
while (eie && eie->next)
|
|
eie = eie->next;
|
|
if (eie)
|
|
eie->next = ref2->inode_list;
|
|
else
|
|
ref1->inode_list = ref2->inode_list;
|
|
ref1->count += ref2->count;
|
|
|
|
list_del(&ref2->list);
|
|
kmem_cache_free(btrfs_prelim_ref_cache, ref2);
|
|
cond_resched();
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add all currently queued delayed refs from this head whose seq nr is
|
|
* smaller or equal that seq to the list
|
|
*/
|
|
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
|
|
struct list_head *prefs, u64 *total_refs,
|
|
u64 inum)
|
|
{
|
|
struct btrfs_delayed_ref_node *node;
|
|
struct btrfs_delayed_extent_op *extent_op = head->extent_op;
|
|
struct btrfs_key key;
|
|
struct btrfs_key op_key = {0};
|
|
int sgn;
|
|
int ret = 0;
|
|
|
|
if (extent_op && extent_op->update_key)
|
|
btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
|
|
|
|
spin_lock(&head->lock);
|
|
list_for_each_entry(node, &head->ref_list, list) {
|
|
if (node->seq > seq)
|
|
continue;
|
|
|
|
switch (node->action) {
|
|
case BTRFS_ADD_DELAYED_EXTENT:
|
|
case BTRFS_UPDATE_DELAYED_HEAD:
|
|
WARN_ON(1);
|
|
continue;
|
|
case BTRFS_ADD_DELAYED_REF:
|
|
sgn = 1;
|
|
break;
|
|
case BTRFS_DROP_DELAYED_REF:
|
|
sgn = -1;
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
}
|
|
*total_refs += (node->ref_mod * sgn);
|
|
switch (node->type) {
|
|
case BTRFS_TREE_BLOCK_REF_KEY: {
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
ret = __add_prelim_ref(prefs, ref->root, &op_key,
|
|
ref->level + 1, 0, node->bytenr,
|
|
node->ref_mod * sgn, GFP_ATOMIC);
|
|
break;
|
|
}
|
|
case BTRFS_SHARED_BLOCK_REF_KEY: {
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
ret = __add_prelim_ref(prefs, 0, NULL,
|
|
ref->level + 1, ref->parent,
|
|
node->bytenr,
|
|
node->ref_mod * sgn, GFP_ATOMIC);
|
|
break;
|
|
}
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
struct btrfs_delayed_data_ref *ref;
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
|
|
key.objectid = ref->objectid;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = ref->offset;
|
|
|
|
/*
|
|
* Found a inum that doesn't match our known inum, we
|
|
* know it's shared.
|
|
*/
|
|
if (inum && ref->objectid != inum) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
break;
|
|
}
|
|
|
|
ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
|
|
node->bytenr,
|
|
node->ref_mod * sgn, GFP_ATOMIC);
|
|
break;
|
|
}
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
struct btrfs_delayed_data_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
ret = __add_prelim_ref(prefs, 0, NULL, 0,
|
|
ref->parent, node->bytenr,
|
|
node->ref_mod * sgn, GFP_ATOMIC);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
if (ret)
|
|
break;
|
|
}
|
|
spin_unlock(&head->lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* add all inline backrefs for bytenr to the list
|
|
*/
|
|
static int __add_inline_refs(struct btrfs_path *path, u64 bytenr,
|
|
int *info_level, struct list_head *prefs,
|
|
struct ref_root *ref_tree,
|
|
u64 *total_refs, u64 inum)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
struct btrfs_extent_item *ei;
|
|
u64 flags;
|
|
u64 item_size;
|
|
|
|
/*
|
|
* enumerate all inline refs
|
|
*/
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
item_size = btrfs_item_size_nr(leaf, slot);
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(leaf, ei);
|
|
*total_refs += btrfs_extent_refs(leaf, ei);
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
ptr = (unsigned long)(ei + 1);
|
|
end = (unsigned long)ei + item_size;
|
|
|
|
if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
info = (struct btrfs_tree_block_info *)ptr;
|
|
*info_level = btrfs_tree_block_level(leaf, info);
|
|
ptr += sizeof(struct btrfs_tree_block_info);
|
|
BUG_ON(ptr > end);
|
|
} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
*info_level = found_key.offset;
|
|
} else {
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
|
|
}
|
|
|
|
while (ptr < end) {
|
|
struct btrfs_extent_inline_ref *iref;
|
|
u64 offset;
|
|
int type;
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
type = btrfs_extent_inline_ref_type(leaf, iref);
|
|
offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
|
|
|
switch (type) {
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, 0, NULL,
|
|
*info_level + 1, offset,
|
|
bytenr, 1, GFP_NOFS);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
struct btrfs_shared_data_ref *sdref;
|
|
int count;
|
|
|
|
sdref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
count = btrfs_shared_data_ref_count(leaf, sdref);
|
|
ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
|
|
bytenr, count, GFP_NOFS);
|
|
if (ref_tree) {
|
|
if (!ret)
|
|
ret = ref_tree_add(ref_tree, 0, 0, 0,
|
|
bytenr, count);
|
|
if (!ret && ref_tree->unique_refs > 1)
|
|
ret = BACKREF_FOUND_SHARED;
|
|
}
|
|
break;
|
|
}
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, offset, NULL,
|
|
*info_level + 1, 0,
|
|
bytenr, 1, GFP_NOFS);
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
struct btrfs_extent_data_ref *dref;
|
|
int count;
|
|
u64 root;
|
|
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
count = btrfs_extent_data_ref_count(leaf, dref);
|
|
key.objectid = btrfs_extent_data_ref_objectid(leaf,
|
|
dref);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
|
|
if (inum && key.objectid != inum) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
break;
|
|
}
|
|
|
|
root = btrfs_extent_data_ref_root(leaf, dref);
|
|
ret = __add_prelim_ref(prefs, root, &key, 0, 0,
|
|
bytenr, count, GFP_NOFS);
|
|
if (ref_tree) {
|
|
if (!ret)
|
|
ret = ref_tree_add(ref_tree, root,
|
|
key.objectid,
|
|
key.offset, 0,
|
|
count);
|
|
if (!ret && ref_tree->unique_refs > 1)
|
|
ret = BACKREF_FOUND_SHARED;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add all non-inline backrefs for bytenr to the list
|
|
*/
|
|
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 bytenr,
|
|
int info_level, struct list_head *prefs,
|
|
struct ref_root *ref_tree, u64 inum)
|
|
{
|
|
struct btrfs_root *extent_root = fs_info->extent_root;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
while (1) {
|
|
ret = btrfs_next_item(extent_root, path);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
if (key.objectid != bytenr)
|
|
break;
|
|
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
|
|
continue;
|
|
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
|
|
break;
|
|
|
|
switch (key.type) {
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, 0, NULL,
|
|
info_level + 1, key.offset,
|
|
bytenr, 1, GFP_NOFS);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
struct btrfs_shared_data_ref *sdref;
|
|
int count;
|
|
|
|
sdref = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_shared_data_ref);
|
|
count = btrfs_shared_data_ref_count(leaf, sdref);
|
|
ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
|
|
bytenr, count, GFP_NOFS);
|
|
if (ref_tree) {
|
|
if (!ret)
|
|
ret = ref_tree_add(ref_tree, 0, 0, 0,
|
|
bytenr, count);
|
|
if (!ret && ref_tree->unique_refs > 1)
|
|
ret = BACKREF_FOUND_SHARED;
|
|
}
|
|
break;
|
|
}
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, key.offset, NULL,
|
|
info_level + 1, 0,
|
|
bytenr, 1, GFP_NOFS);
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
struct btrfs_extent_data_ref *dref;
|
|
int count;
|
|
u64 root;
|
|
|
|
dref = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_extent_data_ref);
|
|
count = btrfs_extent_data_ref_count(leaf, dref);
|
|
key.objectid = btrfs_extent_data_ref_objectid(leaf,
|
|
dref);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
|
|
if (inum && key.objectid != inum) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
break;
|
|
}
|
|
|
|
root = btrfs_extent_data_ref_root(leaf, dref);
|
|
ret = __add_prelim_ref(prefs, root, &key, 0, 0,
|
|
bytenr, count, GFP_NOFS);
|
|
if (ref_tree) {
|
|
if (!ret)
|
|
ret = ref_tree_add(ref_tree, root,
|
|
key.objectid,
|
|
key.offset, 0,
|
|
count);
|
|
if (!ret && ref_tree->unique_refs > 1)
|
|
ret = BACKREF_FOUND_SHARED;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this adds all existing backrefs (inline backrefs, backrefs and delayed
|
|
* refs) for the given bytenr to the refs list, merges duplicates and resolves
|
|
* indirect refs to their parent bytenr.
|
|
* When roots are found, they're added to the roots list
|
|
*
|
|
* NOTE: This can return values > 0
|
|
*
|
|
* If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
|
|
* much like trans == NULL case, the difference only lies in it will not
|
|
* commit root.
|
|
* The special case is for qgroup to search roots in commit_transaction().
|
|
*
|
|
* If check_shared is set to 1, any extent has more than one ref item, will
|
|
* be returned BACKREF_FOUND_SHARED immediately.
|
|
*
|
|
* FIXME some caching might speed things up
|
|
*/
|
|
static int find_parent_nodes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist *refs,
|
|
struct ulist *roots, const u64 *extent_item_pos,
|
|
u64 root_objectid, u64 inum, int check_shared)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_delayed_ref_root *delayed_refs = NULL;
|
|
struct btrfs_delayed_ref_head *head;
|
|
int info_level = 0;
|
|
int ret;
|
|
struct list_head prefs_delayed;
|
|
struct list_head prefs;
|
|
struct __prelim_ref *ref;
|
|
struct extent_inode_elem *eie = NULL;
|
|
struct ref_root *ref_tree = NULL;
|
|
u64 total_refs = 0;
|
|
|
|
INIT_LIST_HEAD(&prefs);
|
|
INIT_LIST_HEAD(&prefs_delayed);
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = (u64)-1;
|
|
if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
else
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
if (!trans) {
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
}
|
|
|
|
if (time_seq == SEQ_LAST)
|
|
path->skip_locking = 1;
|
|
|
|
/*
|
|
* grab both a lock on the path and a lock on the delayed ref head.
|
|
* We need both to get a consistent picture of how the refs look
|
|
* at a specified point in time
|
|
*/
|
|
again:
|
|
head = NULL;
|
|
|
|
if (check_shared) {
|
|
if (!ref_tree) {
|
|
ref_tree = ref_root_alloc();
|
|
if (!ref_tree) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
} else {
|
|
ref_root_fini(ref_tree);
|
|
}
|
|
}
|
|
|
|
ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
if (trans && likely(trans->type != __TRANS_DUMMY) &&
|
|
time_seq != SEQ_LAST) {
|
|
#else
|
|
if (trans && time_seq != SEQ_LAST) {
|
|
#endif
|
|
/*
|
|
* look if there are updates for this ref queued and lock the
|
|
* head
|
|
*/
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
|
|
if (head) {
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
refcount_inc(&head->node.refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Mutex was contended, block until it's
|
|
* released and try again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
goto again;
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
ret = __add_delayed_refs(head, time_seq,
|
|
&prefs_delayed, &total_refs,
|
|
inum);
|
|
mutex_unlock(&head->mutex);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
spin_unlock(&delayed_refs->lock);
|
|
}
|
|
|
|
if (check_shared && !list_empty(&prefs_delayed)) {
|
|
/*
|
|
* Add all delay_ref to the ref_tree and check if there
|
|
* are multiple ref items added.
|
|
*/
|
|
list_for_each_entry(ref, &prefs_delayed, list) {
|
|
if (ref->key_for_search.type) {
|
|
ret = ref_tree_add(ref_tree,
|
|
ref->root_id,
|
|
ref->key_for_search.objectid,
|
|
ref->key_for_search.offset,
|
|
0, ref->count);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
ret = ref_tree_add(ref_tree, 0, 0, 0,
|
|
ref->parent, ref->count);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
}
|
|
|
|
if (ref_tree->unique_refs > 1) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
goto out;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if (path->slots[0]) {
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
|
|
path->slots[0]--;
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid == bytenr &&
|
|
(key.type == BTRFS_EXTENT_ITEM_KEY ||
|
|
key.type == BTRFS_METADATA_ITEM_KEY)) {
|
|
ret = __add_inline_refs(path, bytenr,
|
|
&info_level, &prefs,
|
|
ref_tree, &total_refs,
|
|
inum);
|
|
if (ret)
|
|
goto out;
|
|
ret = __add_keyed_refs(fs_info, path, bytenr,
|
|
info_level, &prefs,
|
|
ref_tree, inum);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
list_splice_init(&prefs_delayed, &prefs);
|
|
|
|
ret = __add_missing_keys(fs_info, &prefs);
|
|
if (ret)
|
|
goto out;
|
|
|
|
__merge_refs(&prefs, MERGE_IDENTICAL_KEYS);
|
|
|
|
ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
|
|
extent_item_pos, total_refs,
|
|
root_objectid);
|
|
if (ret)
|
|
goto out;
|
|
|
|
__merge_refs(&prefs, MERGE_IDENTICAL_PARENTS);
|
|
|
|
while (!list_empty(&prefs)) {
|
|
ref = list_first_entry(&prefs, struct __prelim_ref, list);
|
|
WARN_ON(ref->count < 0);
|
|
if (roots && ref->count && ref->root_id && ref->parent == 0) {
|
|
if (root_objectid && ref->root_id != root_objectid) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
goto out;
|
|
}
|
|
|
|
/* no parent == root of tree */
|
|
ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
if (ref->count && ref->parent) {
|
|
if (extent_item_pos && !ref->inode_list &&
|
|
ref->level == 0) {
|
|
struct extent_buffer *eb;
|
|
|
|
eb = read_tree_block(fs_info, ref->parent, 0);
|
|
if (IS_ERR(eb)) {
|
|
ret = PTR_ERR(eb);
|
|
goto out;
|
|
} else if (!extent_buffer_uptodate(eb)) {
|
|
free_extent_buffer(eb);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
|
ret = find_extent_in_eb(eb, bytenr,
|
|
*extent_item_pos, &eie);
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
if (ret < 0)
|
|
goto out;
|
|
ref->inode_list = eie;
|
|
}
|
|
ret = ulist_add_merge_ptr(refs, ref->parent,
|
|
ref->inode_list,
|
|
(void **)&eie, GFP_NOFS);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (!ret && extent_item_pos) {
|
|
/*
|
|
* we've recorded that parent, so we must extend
|
|
* its inode list here
|
|
*/
|
|
BUG_ON(!eie);
|
|
while (eie->next)
|
|
eie = eie->next;
|
|
eie->next = ref->inode_list;
|
|
}
|
|
eie = NULL;
|
|
}
|
|
list_del(&ref->list);
|
|
kmem_cache_free(btrfs_prelim_ref_cache, ref);
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
ref_root_free(ref_tree);
|
|
while (!list_empty(&prefs)) {
|
|
ref = list_first_entry(&prefs, struct __prelim_ref, list);
|
|
list_del(&ref->list);
|
|
kmem_cache_free(btrfs_prelim_ref_cache, ref);
|
|
}
|
|
while (!list_empty(&prefs_delayed)) {
|
|
ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
|
|
list);
|
|
list_del(&ref->list);
|
|
kmem_cache_free(btrfs_prelim_ref_cache, ref);
|
|
}
|
|
if (ret < 0)
|
|
free_inode_elem_list(eie);
|
|
return ret;
|
|
}
|
|
|
|
static void free_leaf_list(struct ulist *blocks)
|
|
{
|
|
struct ulist_node *node = NULL;
|
|
struct extent_inode_elem *eie;
|
|
struct ulist_iterator uiter;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((node = ulist_next(blocks, &uiter))) {
|
|
if (!node->aux)
|
|
continue;
|
|
eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
|
|
free_inode_elem_list(eie);
|
|
node->aux = 0;
|
|
}
|
|
|
|
ulist_free(blocks);
|
|
}
|
|
|
|
/*
|
|
* Finds all leafs with a reference to the specified combination of bytenr and
|
|
* offset. key_list_head will point to a list of corresponding keys (caller must
|
|
* free each list element). The leafs will be stored in the leafs ulist, which
|
|
* must be freed with ulist_free.
|
|
*
|
|
* returns 0 on success, <0 on error
|
|
*/
|
|
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist **leafs,
|
|
const u64 *extent_item_pos)
|
|
{
|
|
int ret;
|
|
|
|
*leafs = ulist_alloc(GFP_NOFS);
|
|
if (!*leafs)
|
|
return -ENOMEM;
|
|
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
|
|
*leafs, NULL, extent_item_pos, 0, 0, 0);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
free_leaf_list(*leafs);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* walk all backrefs for a given extent to find all roots that reference this
|
|
* extent. Walking a backref means finding all extents that reference this
|
|
* extent and in turn walk the backrefs of those, too. Naturally this is a
|
|
* recursive process, but here it is implemented in an iterative fashion: We
|
|
* find all referencing extents for the extent in question and put them on a
|
|
* list. In turn, we find all referencing extents for those, further appending
|
|
* to the list. The way we iterate the list allows adding more elements after
|
|
* the current while iterating. The process stops when we reach the end of the
|
|
* list. Found roots are added to the roots list.
|
|
*
|
|
* returns 0 on success, < 0 on error.
|
|
*/
|
|
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist **roots)
|
|
{
|
|
struct ulist *tmp;
|
|
struct ulist_node *node = NULL;
|
|
struct ulist_iterator uiter;
|
|
int ret;
|
|
|
|
tmp = ulist_alloc(GFP_NOFS);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
*roots = ulist_alloc(GFP_NOFS);
|
|
if (!*roots) {
|
|
ulist_free(tmp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while (1) {
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
|
|
tmp, *roots, NULL, 0, 0, 0);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
ulist_free(tmp);
|
|
ulist_free(*roots);
|
|
return ret;
|
|
}
|
|
node = ulist_next(tmp, &uiter);
|
|
if (!node)
|
|
break;
|
|
bytenr = node->val;
|
|
cond_resched();
|
|
}
|
|
|
|
ulist_free(tmp);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist **roots)
|
|
{
|
|
int ret;
|
|
|
|
if (!trans)
|
|
down_read(&fs_info->commit_root_sem);
|
|
ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
|
|
if (!trans)
|
|
up_read(&fs_info->commit_root_sem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* btrfs_check_shared - tell us whether an extent is shared
|
|
*
|
|
* @trans: optional trans handle
|
|
*
|
|
* btrfs_check_shared uses the backref walking code but will short
|
|
* circuit as soon as it finds a root or inode that doesn't match the
|
|
* one passed in. This provides a significant performance benefit for
|
|
* callers (such as fiemap) which want to know whether the extent is
|
|
* shared but do not need a ref count.
|
|
*
|
|
* Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
|
|
*/
|
|
int btrfs_check_shared(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 root_objectid,
|
|
u64 inum, u64 bytenr)
|
|
{
|
|
struct ulist *tmp = NULL;
|
|
struct ulist *roots = NULL;
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *node;
|
|
struct seq_list elem = SEQ_LIST_INIT(elem);
|
|
int ret = 0;
|
|
|
|
tmp = ulist_alloc(GFP_NOFS);
|
|
roots = ulist_alloc(GFP_NOFS);
|
|
if (!tmp || !roots) {
|
|
ulist_free(tmp);
|
|
ulist_free(roots);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (trans)
|
|
btrfs_get_tree_mod_seq(fs_info, &elem);
|
|
else
|
|
down_read(&fs_info->commit_root_sem);
|
|
ULIST_ITER_INIT(&uiter);
|
|
while (1) {
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
|
|
roots, NULL, root_objectid, inum, 1);
|
|
if (ret == BACKREF_FOUND_SHARED) {
|
|
/* this is the only condition under which we return 1 */
|
|
ret = 1;
|
|
break;
|
|
}
|
|
if (ret < 0 && ret != -ENOENT)
|
|
break;
|
|
ret = 0;
|
|
node = ulist_next(tmp, &uiter);
|
|
if (!node)
|
|
break;
|
|
bytenr = node->val;
|
|
cond_resched();
|
|
}
|
|
if (trans)
|
|
btrfs_put_tree_mod_seq(fs_info, &elem);
|
|
else
|
|
up_read(&fs_info->commit_root_sem);
|
|
ulist_free(tmp);
|
|
ulist_free(roots);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
|
|
u64 start_off, struct btrfs_path *path,
|
|
struct btrfs_inode_extref **ret_extref,
|
|
u64 *found_off)
|
|
{
|
|
int ret, slot;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_inode_extref *extref;
|
|
struct extent_buffer *leaf;
|
|
unsigned long ptr;
|
|
|
|
key.objectid = inode_objectid;
|
|
key.type = BTRFS_INODE_EXTREF_KEY;
|
|
key.offset = start_off;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
/*
|
|
* If the item at offset is not found,
|
|
* btrfs_search_slot will point us to the slot
|
|
* where it should be inserted. In our case
|
|
* that will be the slot directly before the
|
|
* next INODE_REF_KEY_V2 item. In the case
|
|
* that we're pointing to the last slot in a
|
|
* leaf, we must move one leaf over.
|
|
*/
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret) {
|
|
if (ret >= 1)
|
|
ret = -ENOENT;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
/*
|
|
* Check that we're still looking at an extended ref key for
|
|
* this particular objectid. If we have different
|
|
* objectid or type then there are no more to be found
|
|
* in the tree and we can exit.
|
|
*/
|
|
ret = -ENOENT;
|
|
if (found_key.objectid != inode_objectid)
|
|
break;
|
|
if (found_key.type != BTRFS_INODE_EXTREF_KEY)
|
|
break;
|
|
|
|
ret = 0;
|
|
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
extref = (struct btrfs_inode_extref *)ptr;
|
|
*ret_extref = extref;
|
|
if (found_off)
|
|
*found_off = found_key.offset;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this iterates to turn a name (from iref/extref) into a full filesystem path.
|
|
* Elements of the path are separated by '/' and the path is guaranteed to be
|
|
* 0-terminated. the path is only given within the current file system.
|
|
* Therefore, it never starts with a '/'. the caller is responsible to provide
|
|
* "size" bytes in "dest". the dest buffer will be filled backwards. finally,
|
|
* the start point of the resulting string is returned. this pointer is within
|
|
* dest, normally.
|
|
* in case the path buffer would overflow, the pointer is decremented further
|
|
* as if output was written to the buffer, though no more output is actually
|
|
* generated. that way, the caller can determine how much space would be
|
|
* required for the path to fit into the buffer. in that case, the returned
|
|
* value will be smaller than dest. callers must check this!
|
|
*/
|
|
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
|
|
u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb_in, u64 parent,
|
|
char *dest, u32 size)
|
|
{
|
|
int slot;
|
|
u64 next_inum;
|
|
int ret;
|
|
s64 bytes_left = ((s64)size) - 1;
|
|
struct extent_buffer *eb = eb_in;
|
|
struct btrfs_key found_key;
|
|
int leave_spinning = path->leave_spinning;
|
|
struct btrfs_inode_ref *iref;
|
|
|
|
if (bytes_left >= 0)
|
|
dest[bytes_left] = '\0';
|
|
|
|
path->leave_spinning = 1;
|
|
while (1) {
|
|
bytes_left -= name_len;
|
|
if (bytes_left >= 0)
|
|
read_extent_buffer(eb, dest + bytes_left,
|
|
name_off, name_len);
|
|
if (eb != eb_in) {
|
|
if (!path->skip_locking)
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
ret = btrfs_find_item(fs_root, path, parent, 0,
|
|
BTRFS_INODE_REF_KEY, &found_key);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
if (ret)
|
|
break;
|
|
|
|
next_inum = found_key.offset;
|
|
|
|
/* regular exit ahead */
|
|
if (parent == next_inum)
|
|
break;
|
|
|
|
slot = path->slots[0];
|
|
eb = path->nodes[0];
|
|
/* make sure we can use eb after releasing the path */
|
|
if (eb != eb_in) {
|
|
if (!path->skip_locking)
|
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
|
path->nodes[0] = NULL;
|
|
path->locks[0] = 0;
|
|
}
|
|
btrfs_release_path(path);
|
|
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
|
|
|
|
name_len = btrfs_inode_ref_name_len(eb, iref);
|
|
name_off = (unsigned long)(iref + 1);
|
|
|
|
parent = next_inum;
|
|
--bytes_left;
|
|
if (bytes_left >= 0)
|
|
dest[bytes_left] = '/';
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
path->leave_spinning = leave_spinning;
|
|
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return dest + bytes_left;
|
|
}
|
|
|
|
/*
|
|
* this makes the path point to (logical EXTENT_ITEM *)
|
|
* returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
|
|
* tree blocks and <0 on error.
|
|
*/
|
|
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
|
|
struct btrfs_path *path, struct btrfs_key *found_key,
|
|
u64 *flags_ret)
|
|
{
|
|
int ret;
|
|
u64 flags;
|
|
u64 size = 0;
|
|
u32 item_size;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
|
|
if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
else
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.objectid = logical;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
return ret;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
|
|
if (found_key->type == BTRFS_METADATA_ITEM_KEY)
|
|
size = fs_info->nodesize;
|
|
else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
|
|
size = found_key->offset;
|
|
|
|
if (found_key->objectid > logical ||
|
|
found_key->objectid + size <= logical) {
|
|
btrfs_debug(fs_info,
|
|
"logical %llu is not within any extent", logical);
|
|
return -ENOENT;
|
|
}
|
|
|
|
eb = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(eb, path->slots[0]);
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(eb, ei);
|
|
|
|
btrfs_debug(fs_info,
|
|
"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
|
|
logical, logical - found_key->objectid, found_key->objectid,
|
|
found_key->offset, flags, item_size);
|
|
|
|
WARN_ON(!flags_ret);
|
|
if (flags_ret) {
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
|
|
*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
|
|
else if (flags & BTRFS_EXTENT_FLAG_DATA)
|
|
*flags_ret = BTRFS_EXTENT_FLAG_DATA;
|
|
else
|
|
BUG_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* helper function to iterate extent inline refs. ptr must point to a 0 value
|
|
* for the first call and may be modified. it is used to track state.
|
|
* if more refs exist, 0 is returned and the next call to
|
|
* __get_extent_inline_ref must pass the modified ptr parameter to get the
|
|
* next ref. after the last ref was processed, 1 is returned.
|
|
* returns <0 on error
|
|
*/
|
|
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
|
|
struct btrfs_key *key,
|
|
struct btrfs_extent_item *ei, u32 item_size,
|
|
struct btrfs_extent_inline_ref **out_eiref,
|
|
int *out_type)
|
|
{
|
|
unsigned long end;
|
|
u64 flags;
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
if (!*ptr) {
|
|
/* first call */
|
|
flags = btrfs_extent_flags(eb, ei);
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
if (key->type == BTRFS_METADATA_ITEM_KEY) {
|
|
/* a skinny metadata extent */
|
|
*out_eiref =
|
|
(struct btrfs_extent_inline_ref *)(ei + 1);
|
|
} else {
|
|
WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
|
|
info = (struct btrfs_tree_block_info *)(ei + 1);
|
|
*out_eiref =
|
|
(struct btrfs_extent_inline_ref *)(info + 1);
|
|
}
|
|
} else {
|
|
*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
}
|
|
*ptr = (unsigned long)*out_eiref;
|
|
if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
|
|
return -ENOENT;
|
|
}
|
|
|
|
end = (unsigned long)ei + item_size;
|
|
*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
|
|
*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
|
|
|
|
*ptr += btrfs_extent_inline_ref_size(*out_type);
|
|
WARN_ON(*ptr > end);
|
|
if (*ptr == end)
|
|
return 1; /* last */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* reads the tree block backref for an extent. tree level and root are returned
|
|
* through out_level and out_root. ptr must point to a 0 value for the first
|
|
* call and may be modified (see __get_extent_inline_ref comment).
|
|
* returns 0 if data was provided, 1 if there was no more data to provide or
|
|
* <0 on error.
|
|
*/
|
|
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
|
|
struct btrfs_key *key, struct btrfs_extent_item *ei,
|
|
u32 item_size, u64 *out_root, u8 *out_level)
|
|
{
|
|
int ret;
|
|
int type;
|
|
struct btrfs_extent_inline_ref *eiref;
|
|
|
|
if (*ptr == (unsigned long)-1)
|
|
return 1;
|
|
|
|
while (1) {
|
|
ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
|
|
&eiref, &type);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
break;
|
|
|
|
if (ret == 1)
|
|
return 1;
|
|
}
|
|
|
|
/* we can treat both ref types equally here */
|
|
*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
|
|
|
|
if (key->type == BTRFS_EXTENT_ITEM_KEY) {
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
info = (struct btrfs_tree_block_info *)(ei + 1);
|
|
*out_level = btrfs_tree_block_level(eb, info);
|
|
} else {
|
|
ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
|
|
*out_level = (u8)key->offset;
|
|
}
|
|
|
|
if (ret == 1)
|
|
*ptr = (unsigned long)-1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
|
|
struct extent_inode_elem *inode_list,
|
|
u64 root, u64 extent_item_objectid,
|
|
iterate_extent_inodes_t *iterate, void *ctx)
|
|
{
|
|
struct extent_inode_elem *eie;
|
|
int ret = 0;
|
|
|
|
for (eie = inode_list; eie; eie = eie->next) {
|
|
btrfs_debug(fs_info,
|
|
"ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
|
|
extent_item_objectid, eie->inum,
|
|
eie->offset, root);
|
|
ret = iterate(eie->inum, eie->offset, root, ctx);
|
|
if (ret) {
|
|
btrfs_debug(fs_info,
|
|
"stopping iteration for %llu due to ret=%d",
|
|
extent_item_objectid, ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* calls iterate() for every inode that references the extent identified by
|
|
* the given parameters.
|
|
* when the iterator function returns a non-zero value, iteration stops.
|
|
*/
|
|
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
|
|
u64 extent_item_objectid, u64 extent_item_pos,
|
|
int search_commit_root,
|
|
iterate_extent_inodes_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct ulist *refs = NULL;
|
|
struct ulist *roots = NULL;
|
|
struct ulist_node *ref_node = NULL;
|
|
struct ulist_node *root_node = NULL;
|
|
struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
|
|
struct ulist_iterator ref_uiter;
|
|
struct ulist_iterator root_uiter;
|
|
|
|
btrfs_debug(fs_info, "resolving all inodes for extent %llu",
|
|
extent_item_objectid);
|
|
|
|
if (!search_commit_root) {
|
|
trans = btrfs_join_transaction(fs_info->extent_root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
|
|
} else {
|
|
down_read(&fs_info->commit_root_sem);
|
|
}
|
|
|
|
ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
|
|
tree_mod_seq_elem.seq, &refs,
|
|
&extent_item_pos);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ULIST_ITER_INIT(&ref_uiter);
|
|
while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
|
|
ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
|
|
tree_mod_seq_elem.seq, &roots);
|
|
if (ret)
|
|
break;
|
|
ULIST_ITER_INIT(&root_uiter);
|
|
while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
|
|
btrfs_debug(fs_info,
|
|
"root %llu references leaf %llu, data list %#llx",
|
|
root_node->val, ref_node->val,
|
|
ref_node->aux);
|
|
ret = iterate_leaf_refs(fs_info,
|
|
(struct extent_inode_elem *)
|
|
(uintptr_t)ref_node->aux,
|
|
root_node->val,
|
|
extent_item_objectid,
|
|
iterate, ctx);
|
|
}
|
|
ulist_free(roots);
|
|
}
|
|
|
|
free_leaf_list(refs);
|
|
out:
|
|
if (!search_commit_root) {
|
|
btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
|
|
btrfs_end_transaction(trans);
|
|
} else {
|
|
up_read(&fs_info->commit_root_sem);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
iterate_extent_inodes_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
u64 extent_item_pos;
|
|
u64 flags = 0;
|
|
struct btrfs_key found_key;
|
|
int search_commit_root = path->search_commit_root;
|
|
|
|
ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
|
|
btrfs_release_path(path);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
|
|
return -EINVAL;
|
|
|
|
extent_item_pos = logical - found_key.objectid;
|
|
ret = iterate_extent_inodes(fs_info, found_key.objectid,
|
|
extent_item_pos, search_commit_root,
|
|
iterate, ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb, void *ctx);
|
|
|
|
static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
u32 cur;
|
|
u32 len;
|
|
u32 name_len;
|
|
u64 parent = 0;
|
|
int found = 0;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_item *item;
|
|
struct btrfs_inode_ref *iref;
|
|
struct btrfs_key found_key;
|
|
|
|
while (!ret) {
|
|
ret = btrfs_find_item(fs_root, path, inum,
|
|
parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
|
|
&found_key);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = found ? 0 : -ENOENT;
|
|
break;
|
|
}
|
|
++found;
|
|
|
|
parent = found_key.offset;
|
|
slot = path->slots[0];
|
|
eb = btrfs_clone_extent_buffer(path->nodes[0]);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
extent_buffer_get(eb);
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
|
btrfs_release_path(path);
|
|
|
|
item = btrfs_item_nr(slot);
|
|
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
|
|
|
|
for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
|
|
name_len = btrfs_inode_ref_name_len(eb, iref);
|
|
/* path must be released before calling iterate()! */
|
|
btrfs_debug(fs_root->fs_info,
|
|
"following ref at offset %u for inode %llu in tree %llu",
|
|
cur, found_key.objectid, fs_root->objectid);
|
|
ret = iterate(parent, name_len,
|
|
(unsigned long)(iref + 1), eb, ctx);
|
|
if (ret)
|
|
break;
|
|
len = sizeof(*iref) + name_len;
|
|
iref = (struct btrfs_inode_ref *)((char *)iref + len);
|
|
}
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
int slot;
|
|
u64 offset = 0;
|
|
u64 parent;
|
|
int found = 0;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_inode_extref *extref;
|
|
u32 item_size;
|
|
u32 cur_offset;
|
|
unsigned long ptr;
|
|
|
|
while (1) {
|
|
ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
|
|
&offset);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = found ? 0 : -ENOENT;
|
|
break;
|
|
}
|
|
++found;
|
|
|
|
slot = path->slots[0];
|
|
eb = btrfs_clone_extent_buffer(path->nodes[0]);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
extent_buffer_get(eb);
|
|
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
|
btrfs_release_path(path);
|
|
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
ptr = btrfs_item_ptr_offset(eb, slot);
|
|
cur_offset = 0;
|
|
|
|
while (cur_offset < item_size) {
|
|
u32 name_len;
|
|
|
|
extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
|
|
parent = btrfs_inode_extref_parent(eb, extref);
|
|
name_len = btrfs_inode_extref_name_len(eb, extref);
|
|
ret = iterate(parent, name_len,
|
|
(unsigned long)&extref->name, eb, ctx);
|
|
if (ret)
|
|
break;
|
|
|
|
cur_offset += btrfs_inode_extref_name_len(eb, extref);
|
|
cur_offset += sizeof(*extref);
|
|
}
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
offset++;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path, iterate_irefs_t *iterate,
|
|
void *ctx)
|
|
{
|
|
int ret;
|
|
int found_refs = 0;
|
|
|
|
ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
|
|
if (!ret)
|
|
++found_refs;
|
|
else if (ret != -ENOENT)
|
|
return ret;
|
|
|
|
ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
|
|
if (ret == -ENOENT && found_refs)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* returns 0 if the path could be dumped (probably truncated)
|
|
* returns <0 in case of an error
|
|
*/
|
|
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb, void *ctx)
|
|
{
|
|
struct inode_fs_paths *ipath = ctx;
|
|
char *fspath;
|
|
char *fspath_min;
|
|
int i = ipath->fspath->elem_cnt;
|
|
const int s_ptr = sizeof(char *);
|
|
u32 bytes_left;
|
|
|
|
bytes_left = ipath->fspath->bytes_left > s_ptr ?
|
|
ipath->fspath->bytes_left - s_ptr : 0;
|
|
|
|
fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
|
|
fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
|
|
name_off, eb, inum, fspath_min, bytes_left);
|
|
if (IS_ERR(fspath))
|
|
return PTR_ERR(fspath);
|
|
|
|
if (fspath > fspath_min) {
|
|
ipath->fspath->val[i] = (u64)(unsigned long)fspath;
|
|
++ipath->fspath->elem_cnt;
|
|
ipath->fspath->bytes_left = fspath - fspath_min;
|
|
} else {
|
|
++ipath->fspath->elem_missed;
|
|
ipath->fspath->bytes_missing += fspath_min - fspath;
|
|
ipath->fspath->bytes_left = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this dumps all file system paths to the inode into the ipath struct, provided
|
|
* is has been created large enough. each path is zero-terminated and accessed
|
|
* from ipath->fspath->val[i].
|
|
* when it returns, there are ipath->fspath->elem_cnt number of paths available
|
|
* in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
|
|
* number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
|
|
* it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
|
|
* have been needed to return all paths.
|
|
*/
|
|
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
|
|
{
|
|
return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
|
|
inode_to_path, ipath);
|
|
}
|
|
|
|
struct btrfs_data_container *init_data_container(u32 total_bytes)
|
|
{
|
|
struct btrfs_data_container *data;
|
|
size_t alloc_bytes;
|
|
|
|
alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
|
|
data = kvmalloc(alloc_bytes, GFP_KERNEL);
|
|
if (!data)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (total_bytes >= sizeof(*data)) {
|
|
data->bytes_left = total_bytes - sizeof(*data);
|
|
data->bytes_missing = 0;
|
|
} else {
|
|
data->bytes_missing = sizeof(*data) - total_bytes;
|
|
data->bytes_left = 0;
|
|
}
|
|
|
|
data->elem_cnt = 0;
|
|
data->elem_missed = 0;
|
|
|
|
return data;
|
|
}
|
|
|
|
/*
|
|
* allocates space to return multiple file system paths for an inode.
|
|
* total_bytes to allocate are passed, note that space usable for actual path
|
|
* information will be total_bytes - sizeof(struct inode_fs_paths).
|
|
* the returned pointer must be freed with free_ipath() in the end.
|
|
*/
|
|
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct inode_fs_paths *ifp;
|
|
struct btrfs_data_container *fspath;
|
|
|
|
fspath = init_data_container(total_bytes);
|
|
if (IS_ERR(fspath))
|
|
return (void *)fspath;
|
|
|
|
ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
|
|
if (!ifp) {
|
|
kvfree(fspath);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ifp->btrfs_path = path;
|
|
ifp->fspath = fspath;
|
|
ifp->fs_root = fs_root;
|
|
|
|
return ifp;
|
|
}
|
|
|
|
void free_ipath(struct inode_fs_paths *ipath)
|
|
{
|
|
if (!ipath)
|
|
return;
|
|
kvfree(ipath->fspath);
|
|
kfree(ipath);
|
|
}
|