linux-next/include/linux/min_heap.h
Kuan-Wei Chiu 03ec56d084 lib min_heap: avoid indirect function call by providing default swap
The non-inline min heap API can result in an indirect function call to the
custom swap function.  This becomes particularly costly when
CONFIG_MITIGATION_RETPOLINE is enabled, as indirect function calls are
expensive in this case.

To address this, copy the code from lib/sort.c and provide a default
builtin swap implementation that performs element swaps based on the
element size.  This change allows most users to avoid the overhead of
indirect function calls, improving efficiency.

Link: https://lkml.kernel.org/r/20241020040200.939973-4-visitorckw@gmail.com
Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw>
Cc: Coly Li <colyli@suse.de>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Sakai <msakai@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-05 17:12:35 -08:00

458 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MIN_HEAP_H
#define _LINUX_MIN_HEAP_H
#include <linux/bug.h>
#include <linux/string.h>
#include <linux/types.h>
/**
* Data structure to hold a min-heap.
* @nr: Number of elements currently in the heap.
* @size: Maximum number of elements that can be held in current storage.
* @data: Pointer to the start of array holding the heap elements.
* @preallocated: Start of the static preallocated array holding the heap elements.
*/
#define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \
struct _name { \
int nr; \
int size; \
_type *data; \
_type preallocated[_nr]; \
}
#define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
#define __minheap_cast(_heap) (typeof((_heap)->data[0]) *)
#define __minheap_obj_size(_heap) sizeof((_heap)->data[0])
/**
* struct min_heap_callbacks - Data/functions to customise the min_heap.
* @less: Partial order function for this heap.
* @swp: Swap elements function.
*/
struct min_heap_callbacks {
bool (*less)(const void *lhs, const void *rhs, void *args);
void (*swp)(void *lhs, void *rhs, void *args);
};
/**
* is_aligned - is this pointer & size okay for word-wide copying?
* @base: pointer to data
* @size: size of each element
* @align: required alignment (typically 4 or 8)
*
* Returns true if elements can be copied using word loads and stores.
* The size must be a multiple of the alignment, and the base address must
* be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
*
* For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
* to "if ((a | b) & mask)", so we do that by hand.
*/
__attribute_const__ __always_inline
static bool is_aligned(const void *base, size_t size, unsigned char align)
{
unsigned char lsbits = (unsigned char)size;
(void)base;
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
lsbits |= (unsigned char)(uintptr_t)base;
#endif
return (lsbits & (align - 1)) == 0;
}
/**
* swap_words_32 - swap two elements in 32-bit chunks
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size (must be a multiple of 4)
*
* Exchange the two objects in memory. This exploits base+index addressing,
* which basically all CPUs have, to minimize loop overhead computations.
*
* For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
* bottom of the loop, even though the zero flag is still valid from the
* subtract (since the intervening mov instructions don't alter the flags).
* Gcc 8.1.0 doesn't have that problem.
*/
static __always_inline
void swap_words_32(void *a, void *b, size_t n)
{
do {
u32 t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
} while (n);
}
/**
* swap_words_64 - swap two elements in 64-bit chunks
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size (must be a multiple of 8)
*
* Exchange the two objects in memory. This exploits base+index
* addressing, which basically all CPUs have, to minimize loop overhead
* computations.
*
* We'd like to use 64-bit loads if possible. If they're not, emulating
* one requires base+index+4 addressing which x86 has but most other
* processors do not. If CONFIG_64BIT, we definitely have 64-bit loads,
* but it's possible to have 64-bit loads without 64-bit pointers (e.g.
* x32 ABI). Are there any cases the kernel needs to worry about?
*/
static __always_inline
void swap_words_64(void *a, void *b, size_t n)
{
do {
#ifdef CONFIG_64BIT
u64 t = *(u64 *)(a + (n -= 8));
*(u64 *)(a + n) = *(u64 *)(b + n);
*(u64 *)(b + n) = t;
#else
/* Use two 32-bit transfers to avoid base+index+4 addressing */
u32 t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
#endif
} while (n);
}
/**
* swap_bytes - swap two elements a byte at a time
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size
*
* This is the fallback if alignment doesn't allow using larger chunks.
*/
static __always_inline
void swap_bytes(void *a, void *b, size_t n)
{
do {
char t = ((char *)a)[--n];
((char *)a)[n] = ((char *)b)[n];
((char *)b)[n] = t;
} while (n);
}
/*
* The values are arbitrary as long as they can't be confused with
* a pointer, but small integers make for the smallest compare
* instructions.
*/
#define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0)
#define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1)
#define SWAP_BYTES ((void (*)(void *, void *, void *))2)
/*
* Selects the appropriate swap function based on the element size.
*/
static __always_inline
void *select_swap_func(const void *base, size_t size)
{
if (is_aligned(base, size, 8))
return SWAP_WORDS_64;
else if (is_aligned(base, size, 4))
return SWAP_WORDS_32;
else
return SWAP_BYTES;
}
static __always_inline
void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args),
void *priv)
{
if (swap_func == SWAP_WORDS_64)
swap_words_64(a, b, size);
else if (swap_func == SWAP_WORDS_32)
swap_words_32(a, b, size);
else if (swap_func == SWAP_BYTES)
swap_bytes(a, b, size);
else
swap_func(a, b, priv);
}
/**
* parent - given the offset of the child, find the offset of the parent.
* @i: the offset of the heap element whose parent is sought. Non-zero.
* @lsbit: a precomputed 1-bit mask, equal to "size & -size"
* @size: size of each element
*
* In terms of array indexes, the parent of element j = @i/@size is simply
* (j-1)/2. But when working in byte offsets, we can't use implicit
* truncation of integer divides.
*
* Fortunately, we only need one bit of the quotient, not the full divide.
* @size has a least significant bit. That bit will be clear if @i is
* an even multiple of @size, and set if it's an odd multiple.
*
* Logically, we're doing "if (i & lsbit) i -= size;", but since the
* branch is unpredictable, it's done with a bit of clever branch-free
* code instead.
*/
__attribute_const__ __always_inline
static size_t parent(size_t i, unsigned int lsbit, size_t size)
{
i -= size;
i -= size & -(i & lsbit);
return i / 2;
}
/* Initialize a min-heap. */
static __always_inline
void __min_heap_init_inline(min_heap_char *heap, void *data, int size)
{
heap->nr = 0;
heap->size = size;
if (data)
heap->data = data;
else
heap->data = heap->preallocated;
}
#define min_heap_init_inline(_heap, _data, _size) \
__min_heap_init_inline((min_heap_char *)_heap, _data, _size)
/* Get the minimum element from the heap. */
static __always_inline
void *__min_heap_peek_inline(struct min_heap_char *heap)
{
return heap->nr ? heap->data : NULL;
}
#define min_heap_peek_inline(_heap) \
(__minheap_cast(_heap) __min_heap_peek_inline((min_heap_char *)_heap))
/* Check if the heap is full. */
static __always_inline
bool __min_heap_full_inline(min_heap_char *heap)
{
return heap->nr == heap->size;
}
#define min_heap_full_inline(_heap) \
__min_heap_full_inline((min_heap_char *)_heap)
/* Sift the element at pos down the heap. */
static __always_inline
void __min_heap_sift_down_inline(min_heap_char *heap, int pos, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
const unsigned long lsbit = elem_size & -elem_size;
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
/* pre-scale counters for performance */
size_t a = pos * elem_size;
size_t b, c, d;
size_t n = heap->nr * elem_size;
if (!swp)
swp = select_swap_func(data, elem_size);
/* Find the sift-down path all the way to the leaves. */
for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;)
b = func->less(data + c, data + d, args) ? c : d;
/* Special case for the last leaf with no sibling. */
if (d == n)
b = c;
/* Backtrack to the correct location. */
while (b != a && func->less(data + a, data + b, args))
b = parent(b, lsbit, elem_size);
/* Shift the element into its correct place. */
c = b;
while (b != a) {
b = parent(b, lsbit, elem_size);
do_swap(data + b, data + c, elem_size, swp, args);
}
}
#define min_heap_sift_down_inline(_heap, _pos, _func, _args) \
__min_heap_sift_down_inline((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), \
_func, _args)
/* Sift up ith element from the heap, O(log2(nr)). */
static __always_inline
void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
const unsigned long lsbit = elem_size & -elem_size;
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
/* pre-scale counters for performance */
size_t a = idx * elem_size, b;
if (!swp)
swp = select_swap_func(data, elem_size);
while (a) {
b = parent(a, lsbit, elem_size);
if (func->less(data + b, data + a, args))
break;
do_swap(data + a, data + b, elem_size, swp, args);
a = b;
}
}
#define min_heap_sift_up_inline(_heap, _idx, _func, _args) \
__min_heap_sift_up_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
_func, _args)
/* Floyd's approach to heapification that is O(nr). */
static __always_inline
void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
int i;
for (i = heap->nr / 2 - 1; i >= 0; i--)
__min_heap_sift_down_inline(heap, i, elem_size, func, args);
}
#define min_heapify_all_inline(_heap, _func, _args) \
__min_heapify_all_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
/* Remove minimum element from the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return false;
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
memcpy(data, data + (heap->nr * elem_size), elem_size);
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
return true;
}
#define min_heap_pop_inline(_heap, _func, _args) \
__min_heap_pop_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
/*
* Remove the minimum element and then push the given element. The
* implementation performs 1 sift (O(log2(nr))) and is therefore more
* efficient than a pop followed by a push that does 2.
*/
static __always_inline
void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
memcpy(heap->data, element, elem_size);
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
}
#define min_heap_pop_push_inline(_heap, _element, _func, _args) \
__min_heap_pop_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
_func, _args)
/* Push an element on to the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
int pos;
if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
return false;
/* Place at the end of data. */
pos = heap->nr;
memcpy(data + (pos * elem_size), element, elem_size);
heap->nr++;
/* Sift child at pos up. */
__min_heap_sift_up_inline(heap, elem_size, pos, func, args);
return true;
}
#define min_heap_push_inline(_heap, _element, _func, _args) \
__min_heap_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
_func, _args)
/* Remove ith element from the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return false;
if (!swp)
swp = select_swap_func(data, elem_size);
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
if (idx == heap->nr)
return true;
do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args);
__min_heap_sift_up_inline(heap, elem_size, idx, func, args);
__min_heap_sift_down_inline(heap, idx, elem_size, func, args);
return true;
}
#define min_heap_del_inline(_heap, _idx, _func, _args) \
__min_heap_del_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
_func, _args)
void __min_heap_init(min_heap_char *heap, void *data, int size);
void *__min_heap_peek(struct min_heap_char *heap);
bool __min_heap_full(min_heap_char *heap);
void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args);
void __min_heapify_all(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __min_heap_pop(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args);
#define min_heap_init(_heap, _data, _size) \
__min_heap_init((min_heap_char *)_heap, _data, _size)
#define min_heap_peek(_heap) \
(__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap))
#define min_heap_full(_heap) \
__min_heap_full((min_heap_char *)_heap)
#define min_heap_sift_down(_heap, _pos, _func, _args) \
__min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args)
#define min_heap_sift_up(_heap, _idx, _func, _args) \
__min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
#define min_heapify_all(_heap, _func, _args) \
__min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
#define min_heap_pop(_heap, _func, _args) \
__min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
#define min_heap_pop_push(_heap, _element, _func, _args) \
__min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
_func, _args)
#define min_heap_push(_heap, _element, _func, _args) \
__min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
#define min_heap_del(_heap, _idx, _func, _args) \
__min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
#endif /* _LINUX_MIN_HEAP_H */