mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-04 04:02:26 +00:00
03ec56d084
The non-inline min heap API can result in an indirect function call to the custom swap function. This becomes particularly costly when CONFIG_MITIGATION_RETPOLINE is enabled, as indirect function calls are expensive in this case. To address this, copy the code from lib/sort.c and provide a default builtin swap implementation that performs element swaps based on the element size. This change allows most users to avoid the overhead of indirect function calls, improving efficiency. Link: https://lkml.kernel.org/r/20241020040200.939973-4-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: "Liang, Kan" <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
458 lines
15 KiB
C
458 lines
15 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_MIN_HEAP_H
|
|
#define _LINUX_MIN_HEAP_H
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
|
|
/**
|
|
* Data structure to hold a min-heap.
|
|
* @nr: Number of elements currently in the heap.
|
|
* @size: Maximum number of elements that can be held in current storage.
|
|
* @data: Pointer to the start of array holding the heap elements.
|
|
* @preallocated: Start of the static preallocated array holding the heap elements.
|
|
*/
|
|
#define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \
|
|
struct _name { \
|
|
int nr; \
|
|
int size; \
|
|
_type *data; \
|
|
_type preallocated[_nr]; \
|
|
}
|
|
|
|
#define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
|
|
|
|
typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
|
|
|
|
#define __minheap_cast(_heap) (typeof((_heap)->data[0]) *)
|
|
#define __minheap_obj_size(_heap) sizeof((_heap)->data[0])
|
|
|
|
/**
|
|
* struct min_heap_callbacks - Data/functions to customise the min_heap.
|
|
* @less: Partial order function for this heap.
|
|
* @swp: Swap elements function.
|
|
*/
|
|
struct min_heap_callbacks {
|
|
bool (*less)(const void *lhs, const void *rhs, void *args);
|
|
void (*swp)(void *lhs, void *rhs, void *args);
|
|
};
|
|
|
|
/**
|
|
* is_aligned - is this pointer & size okay for word-wide copying?
|
|
* @base: pointer to data
|
|
* @size: size of each element
|
|
* @align: required alignment (typically 4 or 8)
|
|
*
|
|
* Returns true if elements can be copied using word loads and stores.
|
|
* The size must be a multiple of the alignment, and the base address must
|
|
* be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
|
|
*
|
|
* For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
|
|
* to "if ((a | b) & mask)", so we do that by hand.
|
|
*/
|
|
__attribute_const__ __always_inline
|
|
static bool is_aligned(const void *base, size_t size, unsigned char align)
|
|
{
|
|
unsigned char lsbits = (unsigned char)size;
|
|
|
|
(void)base;
|
|
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
|
|
lsbits |= (unsigned char)(uintptr_t)base;
|
|
#endif
|
|
return (lsbits & (align - 1)) == 0;
|
|
}
|
|
|
|
/**
|
|
* swap_words_32 - swap two elements in 32-bit chunks
|
|
* @a: pointer to the first element to swap
|
|
* @b: pointer to the second element to swap
|
|
* @n: element size (must be a multiple of 4)
|
|
*
|
|
* Exchange the two objects in memory. This exploits base+index addressing,
|
|
* which basically all CPUs have, to minimize loop overhead computations.
|
|
*
|
|
* For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
|
|
* bottom of the loop, even though the zero flag is still valid from the
|
|
* subtract (since the intervening mov instructions don't alter the flags).
|
|
* Gcc 8.1.0 doesn't have that problem.
|
|
*/
|
|
static __always_inline
|
|
void swap_words_32(void *a, void *b, size_t n)
|
|
{
|
|
do {
|
|
u32 t = *(u32 *)(a + (n -= 4));
|
|
*(u32 *)(a + n) = *(u32 *)(b + n);
|
|
*(u32 *)(b + n) = t;
|
|
} while (n);
|
|
}
|
|
|
|
/**
|
|
* swap_words_64 - swap two elements in 64-bit chunks
|
|
* @a: pointer to the first element to swap
|
|
* @b: pointer to the second element to swap
|
|
* @n: element size (must be a multiple of 8)
|
|
*
|
|
* Exchange the two objects in memory. This exploits base+index
|
|
* addressing, which basically all CPUs have, to minimize loop overhead
|
|
* computations.
|
|
*
|
|
* We'd like to use 64-bit loads if possible. If they're not, emulating
|
|
* one requires base+index+4 addressing which x86 has but most other
|
|
* processors do not. If CONFIG_64BIT, we definitely have 64-bit loads,
|
|
* but it's possible to have 64-bit loads without 64-bit pointers (e.g.
|
|
* x32 ABI). Are there any cases the kernel needs to worry about?
|
|
*/
|
|
static __always_inline
|
|
void swap_words_64(void *a, void *b, size_t n)
|
|
{
|
|
do {
|
|
#ifdef CONFIG_64BIT
|
|
u64 t = *(u64 *)(a + (n -= 8));
|
|
*(u64 *)(a + n) = *(u64 *)(b + n);
|
|
*(u64 *)(b + n) = t;
|
|
#else
|
|
/* Use two 32-bit transfers to avoid base+index+4 addressing */
|
|
u32 t = *(u32 *)(a + (n -= 4));
|
|
*(u32 *)(a + n) = *(u32 *)(b + n);
|
|
*(u32 *)(b + n) = t;
|
|
|
|
t = *(u32 *)(a + (n -= 4));
|
|
*(u32 *)(a + n) = *(u32 *)(b + n);
|
|
*(u32 *)(b + n) = t;
|
|
#endif
|
|
} while (n);
|
|
}
|
|
|
|
/**
|
|
* swap_bytes - swap two elements a byte at a time
|
|
* @a: pointer to the first element to swap
|
|
* @b: pointer to the second element to swap
|
|
* @n: element size
|
|
*
|
|
* This is the fallback if alignment doesn't allow using larger chunks.
|
|
*/
|
|
static __always_inline
|
|
void swap_bytes(void *a, void *b, size_t n)
|
|
{
|
|
do {
|
|
char t = ((char *)a)[--n];
|
|
((char *)a)[n] = ((char *)b)[n];
|
|
((char *)b)[n] = t;
|
|
} while (n);
|
|
}
|
|
|
|
/*
|
|
* The values are arbitrary as long as they can't be confused with
|
|
* a pointer, but small integers make for the smallest compare
|
|
* instructions.
|
|
*/
|
|
#define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0)
|
|
#define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1)
|
|
#define SWAP_BYTES ((void (*)(void *, void *, void *))2)
|
|
|
|
/*
|
|
* Selects the appropriate swap function based on the element size.
|
|
*/
|
|
static __always_inline
|
|
void *select_swap_func(const void *base, size_t size)
|
|
{
|
|
if (is_aligned(base, size, 8))
|
|
return SWAP_WORDS_64;
|
|
else if (is_aligned(base, size, 4))
|
|
return SWAP_WORDS_32;
|
|
else
|
|
return SWAP_BYTES;
|
|
}
|
|
|
|
static __always_inline
|
|
void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args),
|
|
void *priv)
|
|
{
|
|
if (swap_func == SWAP_WORDS_64)
|
|
swap_words_64(a, b, size);
|
|
else if (swap_func == SWAP_WORDS_32)
|
|
swap_words_32(a, b, size);
|
|
else if (swap_func == SWAP_BYTES)
|
|
swap_bytes(a, b, size);
|
|
else
|
|
swap_func(a, b, priv);
|
|
}
|
|
|
|
/**
|
|
* parent - given the offset of the child, find the offset of the parent.
|
|
* @i: the offset of the heap element whose parent is sought. Non-zero.
|
|
* @lsbit: a precomputed 1-bit mask, equal to "size & -size"
|
|
* @size: size of each element
|
|
*
|
|
* In terms of array indexes, the parent of element j = @i/@size is simply
|
|
* (j-1)/2. But when working in byte offsets, we can't use implicit
|
|
* truncation of integer divides.
|
|
*
|
|
* Fortunately, we only need one bit of the quotient, not the full divide.
|
|
* @size has a least significant bit. That bit will be clear if @i is
|
|
* an even multiple of @size, and set if it's an odd multiple.
|
|
*
|
|
* Logically, we're doing "if (i & lsbit) i -= size;", but since the
|
|
* branch is unpredictable, it's done with a bit of clever branch-free
|
|
* code instead.
|
|
*/
|
|
__attribute_const__ __always_inline
|
|
static size_t parent(size_t i, unsigned int lsbit, size_t size)
|
|
{
|
|
i -= size;
|
|
i -= size & -(i & lsbit);
|
|
return i / 2;
|
|
}
|
|
|
|
/* Initialize a min-heap. */
|
|
static __always_inline
|
|
void __min_heap_init_inline(min_heap_char *heap, void *data, int size)
|
|
{
|
|
heap->nr = 0;
|
|
heap->size = size;
|
|
if (data)
|
|
heap->data = data;
|
|
else
|
|
heap->data = heap->preallocated;
|
|
}
|
|
|
|
#define min_heap_init_inline(_heap, _data, _size) \
|
|
__min_heap_init_inline((min_heap_char *)_heap, _data, _size)
|
|
|
|
/* Get the minimum element from the heap. */
|
|
static __always_inline
|
|
void *__min_heap_peek_inline(struct min_heap_char *heap)
|
|
{
|
|
return heap->nr ? heap->data : NULL;
|
|
}
|
|
|
|
#define min_heap_peek_inline(_heap) \
|
|
(__minheap_cast(_heap) __min_heap_peek_inline((min_heap_char *)_heap))
|
|
|
|
/* Check if the heap is full. */
|
|
static __always_inline
|
|
bool __min_heap_full_inline(min_heap_char *heap)
|
|
{
|
|
return heap->nr == heap->size;
|
|
}
|
|
|
|
#define min_heap_full_inline(_heap) \
|
|
__min_heap_full_inline((min_heap_char *)_heap)
|
|
|
|
/* Sift the element at pos down the heap. */
|
|
static __always_inline
|
|
void __min_heap_sift_down_inline(min_heap_char *heap, int pos, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args)
|
|
{
|
|
const unsigned long lsbit = elem_size & -elem_size;
|
|
void *data = heap->data;
|
|
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
|
|
/* pre-scale counters for performance */
|
|
size_t a = pos * elem_size;
|
|
size_t b, c, d;
|
|
size_t n = heap->nr * elem_size;
|
|
|
|
if (!swp)
|
|
swp = select_swap_func(data, elem_size);
|
|
|
|
/* Find the sift-down path all the way to the leaves. */
|
|
for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;)
|
|
b = func->less(data + c, data + d, args) ? c : d;
|
|
|
|
/* Special case for the last leaf with no sibling. */
|
|
if (d == n)
|
|
b = c;
|
|
|
|
/* Backtrack to the correct location. */
|
|
while (b != a && func->less(data + a, data + b, args))
|
|
b = parent(b, lsbit, elem_size);
|
|
|
|
/* Shift the element into its correct place. */
|
|
c = b;
|
|
while (b != a) {
|
|
b = parent(b, lsbit, elem_size);
|
|
do_swap(data + b, data + c, elem_size, swp, args);
|
|
}
|
|
}
|
|
|
|
#define min_heap_sift_down_inline(_heap, _pos, _func, _args) \
|
|
__min_heap_sift_down_inline((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), \
|
|
_func, _args)
|
|
|
|
/* Sift up ith element from the heap, O(log2(nr)). */
|
|
static __always_inline
|
|
void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx,
|
|
const struct min_heap_callbacks *func, void *args)
|
|
{
|
|
const unsigned long lsbit = elem_size & -elem_size;
|
|
void *data = heap->data;
|
|
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
|
|
/* pre-scale counters for performance */
|
|
size_t a = idx * elem_size, b;
|
|
|
|
if (!swp)
|
|
swp = select_swap_func(data, elem_size);
|
|
|
|
while (a) {
|
|
b = parent(a, lsbit, elem_size);
|
|
if (func->less(data + b, data + a, args))
|
|
break;
|
|
do_swap(data + a, data + b, elem_size, swp, args);
|
|
a = b;
|
|
}
|
|
}
|
|
|
|
#define min_heap_sift_up_inline(_heap, _idx, _func, _args) \
|
|
__min_heap_sift_up_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
|
|
_func, _args)
|
|
|
|
/* Floyd's approach to heapification that is O(nr). */
|
|
static __always_inline
|
|
void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args)
|
|
{
|
|
int i;
|
|
|
|
for (i = heap->nr / 2 - 1; i >= 0; i--)
|
|
__min_heap_sift_down_inline(heap, i, elem_size, func, args);
|
|
}
|
|
|
|
#define min_heapify_all_inline(_heap, _func, _args) \
|
|
__min_heapify_all_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
|
|
|
|
/* Remove minimum element from the heap, O(log2(nr)). */
|
|
static __always_inline
|
|
bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args)
|
|
{
|
|
void *data = heap->data;
|
|
|
|
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
|
|
return false;
|
|
|
|
/* Place last element at the root (position 0) and then sift down. */
|
|
heap->nr--;
|
|
memcpy(data, data + (heap->nr * elem_size), elem_size);
|
|
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
|
|
|
|
return true;
|
|
}
|
|
|
|
#define min_heap_pop_inline(_heap, _func, _args) \
|
|
__min_heap_pop_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
|
|
|
|
/*
|
|
* Remove the minimum element and then push the given element. The
|
|
* implementation performs 1 sift (O(log2(nr))) and is therefore more
|
|
* efficient than a pop followed by a push that does 2.
|
|
*/
|
|
static __always_inline
|
|
void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args)
|
|
{
|
|
memcpy(heap->data, element, elem_size);
|
|
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
|
|
}
|
|
|
|
#define min_heap_pop_push_inline(_heap, _element, _func, _args) \
|
|
__min_heap_pop_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
|
|
_func, _args)
|
|
|
|
/* Push an element on to the heap, O(log2(nr)). */
|
|
static __always_inline
|
|
bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args)
|
|
{
|
|
void *data = heap->data;
|
|
int pos;
|
|
|
|
if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
|
|
return false;
|
|
|
|
/* Place at the end of data. */
|
|
pos = heap->nr;
|
|
memcpy(data + (pos * elem_size), element, elem_size);
|
|
heap->nr++;
|
|
|
|
/* Sift child at pos up. */
|
|
__min_heap_sift_up_inline(heap, elem_size, pos, func, args);
|
|
|
|
return true;
|
|
}
|
|
|
|
#define min_heap_push_inline(_heap, _element, _func, _args) \
|
|
__min_heap_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
|
|
_func, _args)
|
|
|
|
/* Remove ith element from the heap, O(log2(nr)). */
|
|
static __always_inline
|
|
bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx,
|
|
const struct min_heap_callbacks *func, void *args)
|
|
{
|
|
void *data = heap->data;
|
|
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
|
|
|
|
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
|
|
return false;
|
|
|
|
if (!swp)
|
|
swp = select_swap_func(data, elem_size);
|
|
|
|
/* Place last element at the root (position 0) and then sift down. */
|
|
heap->nr--;
|
|
if (idx == heap->nr)
|
|
return true;
|
|
do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args);
|
|
__min_heap_sift_up_inline(heap, elem_size, idx, func, args);
|
|
__min_heap_sift_down_inline(heap, idx, elem_size, func, args);
|
|
|
|
return true;
|
|
}
|
|
|
|
#define min_heap_del_inline(_heap, _idx, _func, _args) \
|
|
__min_heap_del_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
|
|
_func, _args)
|
|
|
|
void __min_heap_init(min_heap_char *heap, void *data, int size);
|
|
void *__min_heap_peek(struct min_heap_char *heap);
|
|
bool __min_heap_full(min_heap_char *heap);
|
|
void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args);
|
|
void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
|
|
const struct min_heap_callbacks *func, void *args);
|
|
void __min_heapify_all(min_heap_char *heap, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args);
|
|
bool __min_heap_pop(min_heap_char *heap, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args);
|
|
void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args);
|
|
bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
|
|
const struct min_heap_callbacks *func, void *args);
|
|
bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
|
|
const struct min_heap_callbacks *func, void *args);
|
|
|
|
#define min_heap_init(_heap, _data, _size) \
|
|
__min_heap_init((min_heap_char *)_heap, _data, _size)
|
|
#define min_heap_peek(_heap) \
|
|
(__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap))
|
|
#define min_heap_full(_heap) \
|
|
__min_heap_full((min_heap_char *)_heap)
|
|
#define min_heap_sift_down(_heap, _pos, _func, _args) \
|
|
__min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args)
|
|
#define min_heap_sift_up(_heap, _idx, _func, _args) \
|
|
__min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
|
|
#define min_heapify_all(_heap, _func, _args) \
|
|
__min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
|
|
#define min_heap_pop(_heap, _func, _args) \
|
|
__min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
|
|
#define min_heap_pop_push(_heap, _element, _func, _args) \
|
|
__min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
|
|
_func, _args)
|
|
#define min_heap_push(_heap, _element, _func, _args) \
|
|
__min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
|
|
#define min_heap_del(_heap, _idx, _func, _args) \
|
|
__min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
|
|
|
|
#endif /* _LINUX_MIN_HEAP_H */
|