Linus Torvalds 32913f3482 futex: fix user access on powerpc
The powerpc user access code is special, and unlike other architectures
distinguishes between user access for reading and writing.

And commit 43a43faf5376 ("futex: improve user space accesses") messed
that up.  It went undetected elsewhere, but caused ppc32 to fail early
during boot, because the user access had been started with
user_read_access_begin(), but then finished off with just a plain
"user_access_end()".

Note that the address-masking user access helpers don't even have that
read-vs-write distinction, so if powerpc ever wants to do address
masking tricks, we'll have to do some extra work for it.

[ Make sure to also do it for the EFAULT case, as pointed out by
  Christophe Leroy ]

Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Link: https://lore.kernel.org/all/87bjxl6b0i.fsf@igel.home/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-12-09 10:00:25 -08:00

442 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _FUTEX_H
#define _FUTEX_H
#include <linux/futex.h>
#include <linux/rtmutex.h>
#include <linux/sched/wake_q.h>
#include <linux/compat.h>
#include <linux/uaccess.h>
#ifdef CONFIG_PREEMPT_RT
#include <linux/rcuwait.h>
#endif
#include <asm/futex.h>
/*
* Futex flags used to encode options to functions and preserve them across
* restarts.
*/
#define FLAGS_SIZE_8 0x0000
#define FLAGS_SIZE_16 0x0001
#define FLAGS_SIZE_32 0x0002
#define FLAGS_SIZE_64 0x0003
#define FLAGS_SIZE_MASK 0x0003
#ifdef CONFIG_MMU
# define FLAGS_SHARED 0x0010
#else
/*
* NOMMU does not have per process address space. Let the compiler optimize
* code away.
*/
# define FLAGS_SHARED 0x0000
#endif
#define FLAGS_CLOCKRT 0x0020
#define FLAGS_HAS_TIMEOUT 0x0040
#define FLAGS_NUMA 0x0080
#define FLAGS_STRICT 0x0100
/* FUTEX_ to FLAGS_ */
static inline unsigned int futex_to_flags(unsigned int op)
{
unsigned int flags = FLAGS_SIZE_32;
if (!(op & FUTEX_PRIVATE_FLAG))
flags |= FLAGS_SHARED;
if (op & FUTEX_CLOCK_REALTIME)
flags |= FLAGS_CLOCKRT;
return flags;
}
#define FUTEX2_VALID_MASK (FUTEX2_SIZE_MASK | FUTEX2_PRIVATE)
/* FUTEX2_ to FLAGS_ */
static inline unsigned int futex2_to_flags(unsigned int flags2)
{
unsigned int flags = flags2 & FUTEX2_SIZE_MASK;
if (!(flags2 & FUTEX2_PRIVATE))
flags |= FLAGS_SHARED;
if (flags2 & FUTEX2_NUMA)
flags |= FLAGS_NUMA;
return flags;
}
static inline unsigned int futex_size(unsigned int flags)
{
return 1 << (flags & FLAGS_SIZE_MASK);
}
static inline bool futex_flags_valid(unsigned int flags)
{
/* Only 64bit futexes for 64bit code */
if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) {
if ((flags & FLAGS_SIZE_MASK) == FLAGS_SIZE_64)
return false;
}
/* Only 32bit futexes are implemented -- for now */
if ((flags & FLAGS_SIZE_MASK) != FLAGS_SIZE_32)
return false;
return true;
}
static inline bool futex_validate_input(unsigned int flags, u64 val)
{
int bits = 8 * futex_size(flags);
if (bits < 64 && (val >> bits))
return false;
return true;
}
#ifdef CONFIG_FAIL_FUTEX
extern bool should_fail_futex(bool fshared);
#else
static inline bool should_fail_futex(bool fshared)
{
return false;
}
#endif
/*
* Hash buckets are shared by all the futex_keys that hash to the same
* location. Each key may have multiple futex_q structures, one for each task
* waiting on a futex.
*/
struct futex_hash_bucket {
atomic_t waiters;
spinlock_t lock;
struct plist_head chain;
} ____cacheline_aligned_in_smp;
/*
* Priority Inheritance state:
*/
struct futex_pi_state {
/*
* list of 'owned' pi_state instances - these have to be
* cleaned up in do_exit() if the task exits prematurely:
*/
struct list_head list;
/*
* The PI object:
*/
struct rt_mutex_base pi_mutex;
struct task_struct *owner;
refcount_t refcount;
union futex_key key;
} __randomize_layout;
struct futex_q;
typedef void (futex_wake_fn)(struct wake_q_head *wake_q, struct futex_q *q);
/**
* struct futex_q - The hashed futex queue entry, one per waiting task
* @list: priority-sorted list of tasks waiting on this futex
* @task: the task waiting on the futex
* @lock_ptr: the hash bucket lock
* @wake: the wake handler for this queue
* @wake_data: data associated with the wake handler
* @key: the key the futex is hashed on
* @pi_state: optional priority inheritance state
* @rt_waiter: rt_waiter storage for use with requeue_pi
* @requeue_pi_key: the requeue_pi target futex key
* @bitset: bitset for the optional bitmasked wakeup
* @requeue_state: State field for futex_requeue_pi()
* @requeue_wait: RCU wait for futex_requeue_pi() (RT only)
*
* We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
* we can wake only the relevant ones (hashed queues may be shared).
*
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
* The order of wakeup is always to make the first condition true, then
* the second.
*
* PI futexes are typically woken before they are removed from the hash list via
* the rt_mutex code. See futex_unqueue_pi().
*/
struct futex_q {
struct plist_node list;
struct task_struct *task;
spinlock_t *lock_ptr;
futex_wake_fn *wake;
void *wake_data;
union futex_key key;
struct futex_pi_state *pi_state;
struct rt_mutex_waiter *rt_waiter;
union futex_key *requeue_pi_key;
u32 bitset;
atomic_t requeue_state;
#ifdef CONFIG_PREEMPT_RT
struct rcuwait requeue_wait;
#endif
} __randomize_layout;
extern const struct futex_q futex_q_init;
enum futex_access {
FUTEX_READ,
FUTEX_WRITE
};
extern int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
enum futex_access rw);
extern struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
int flags, u64 range_ns);
extern struct futex_hash_bucket *futex_hash(union futex_key *key);
/**
* futex_match - Check whether two futex keys are equal
* @key1: Pointer to key1
* @key2: Pointer to key2
*
* Return 1 if two futex_keys are equal, 0 otherwise.
*/
static inline int futex_match(union futex_key *key1, union futex_key *key2)
{
return (key1 && key2
&& key1->both.word == key2->both.word
&& key1->both.ptr == key2->both.ptr
&& key1->both.offset == key2->both.offset);
}
extern int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
struct futex_q *q, struct futex_hash_bucket **hb);
extern void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
struct hrtimer_sleeper *timeout);
extern bool __futex_wake_mark(struct futex_q *q);
extern void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q);
extern int fault_in_user_writeable(u32 __user *uaddr);
extern struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key);
static inline int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
{
int ret;
pagefault_disable();
ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
pagefault_enable();
return ret;
}
/*
* This does a plain atomic user space read, and the user pointer has
* already been verified earlier by get_futex_key() to be both aligned
* and actually in user space, just like futex_atomic_cmpxchg_inatomic().
*
* We still want to avoid any speculation, and while __get_user() is
* the traditional model for this, it's actually slower than doing
* this manually these days.
*
* We could just have a per-architecture special function for it,
* the same way we do futex_atomic_cmpxchg_inatomic(), but rather
* than force everybody to do that, write it out long-hand using
* the low-level user-access infrastructure.
*
* This looks a bit overkill, but generally just results in a couple
* of instructions.
*/
static __always_inline int futex_read_inatomic(u32 *dest, u32 __user *from)
{
u32 val;
if (can_do_masked_user_access())
from = masked_user_access_begin(from);
else if (!user_read_access_begin(from, sizeof(*from)))
return -EFAULT;
unsafe_get_user(val, from, Efault);
user_read_access_end();
*dest = val;
return 0;
Efault:
user_read_access_end();
return -EFAULT;
}
static inline int futex_get_value_locked(u32 *dest, u32 __user *from)
{
int ret;
pagefault_disable();
ret = futex_read_inatomic(dest, from);
pagefault_enable();
return ret;
}
extern void __futex_unqueue(struct futex_q *q);
extern void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb);
extern int futex_unqueue(struct futex_q *q);
/**
* futex_queue() - Enqueue the futex_q on the futex_hash_bucket
* @q: The futex_q to enqueue
* @hb: The destination hash bucket
*
* The hb->lock must be held by the caller, and is released here. A call to
* futex_queue() is typically paired with exactly one call to futex_unqueue(). The
* exceptions involve the PI related operations, which may use futex_unqueue_pi()
* or nothing if the unqueue is done as part of the wake process and the unqueue
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
* an example).
*/
static inline void futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
__releases(&hb->lock)
{
__futex_queue(q, hb);
spin_unlock(&hb->lock);
}
extern void futex_unqueue_pi(struct futex_q *q);
extern void wait_for_owner_exiting(int ret, struct task_struct *exiting);
/*
* Reflects a new waiter being added to the waitqueue.
*/
static inline void futex_hb_waiters_inc(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
atomic_inc(&hb->waiters);
/*
* Full barrier (A), see the ordering comment above.
*/
smp_mb__after_atomic();
#endif
}
/*
* Reflects a waiter being removed from the waitqueue by wakeup
* paths.
*/
static inline void futex_hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
atomic_dec(&hb->waiters);
#endif
}
static inline int futex_hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
/*
* Full barrier (B), see the ordering comment above.
*/
smp_mb();
return atomic_read(&hb->waiters);
#else
return 1;
#endif
}
extern struct futex_hash_bucket *futex_q_lock(struct futex_q *q);
extern void futex_q_unlock(struct futex_hash_bucket *hb);
extern int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
union futex_key *key,
struct futex_pi_state **ps,
struct task_struct *task,
struct task_struct **exiting,
int set_waiters);
extern int refill_pi_state_cache(void);
extern void get_pi_state(struct futex_pi_state *pi_state);
extern void put_pi_state(struct futex_pi_state *pi_state);
extern int fixup_pi_owner(u32 __user *uaddr, struct futex_q *q, int locked);
/*
* Express the locking dependencies for lockdep:
*/
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
if (hb1 > hb2)
swap(hb1, hb2);
spin_lock(&hb1->lock);
if (hb1 != hb2)
spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
}
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
spin_unlock(&hb1->lock);
if (hb1 != hb2)
spin_unlock(&hb2->lock);
}
/* syscalls */
extern int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, u32
val, ktime_t *abs_time, u32 bitset, u32 __user
*uaddr2);
extern int futex_requeue(u32 __user *uaddr1, unsigned int flags1,
u32 __user *uaddr2, unsigned int flags2,
int nr_wake, int nr_requeue,
u32 *cmpval, int requeue_pi);
extern int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
struct hrtimer_sleeper *to, u32 bitset);
extern int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
ktime_t *abs_time, u32 bitset);
/**
* struct futex_vector - Auxiliary struct for futex_waitv()
* @w: Userspace provided data
* @q: Kernel side data
*
* Struct used to build an array with all data need for futex_waitv()
*/
struct futex_vector {
struct futex_waitv w;
struct futex_q q;
};
extern int futex_parse_waitv(struct futex_vector *futexv,
struct futex_waitv __user *uwaitv,
unsigned int nr_futexes, futex_wake_fn *wake,
void *wake_data);
extern int futex_wait_multiple_setup(struct futex_vector *vs, int count,
int *woken);
extern int futex_unqueue_multiple(struct futex_vector *v, int count);
extern int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
struct hrtimer_sleeper *to);
extern int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset);
extern int futex_wake_op(u32 __user *uaddr1, unsigned int flags,
u32 __user *uaddr2, int nr_wake, int nr_wake2, int op);
extern int futex_unlock_pi(u32 __user *uaddr, unsigned int flags);
extern int futex_lock_pi(u32 __user *uaddr, unsigned int flags, ktime_t *time, int trylock);
#endif /* _FUTEX_H */