mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 23:39:18 +00:00
2bad466cc9
Patch series "mm/uffd: Add feature bit UFFD_FEATURE_WP_UNPOPULATED", v4. The new feature bit makes anonymous memory acts the same as file memory on userfaultfd-wp in that it'll also wr-protect none ptes. It can be useful in two cases: (1) Uffd-wp app that needs to wr-protect none ptes like QEMU snapshot, so pre-fault can be replaced by enabling this flag and speed up protections (2) It helps to implement async uffd-wp mode that Muhammad is working on [1] It's debatable whether this is the most ideal solution because with the new feature bit set, wr-protect none pte needs to pre-populate the pgtables to the last level (PAGE_SIZE). But it seems fine so far to service either purpose above, so we can leave optimizations for later. The series brings pte markers to anonymous memory too. There's some change in the common mm code path in the 1st patch, great to have some eye looking at it, but hopefully they're still relatively straightforward. This patch (of 2): This is a new feature that controls how uffd-wp handles none ptes. When it's set, the kernel will handle anonymous memory the same way as file memory, by allowing the user to wr-protect unpopulated ptes. File memories handles none ptes consistently by allowing wr-protecting of none ptes because of the unawareness of page cache being exist or not. For anonymous it was not as persistent because we used to assume that we don't need protections on none ptes or known zero pages. One use case of such a feature bit was VM live snapshot, where if without wr-protecting empty ptes the snapshot can contain random rubbish in the holes of the anonymous memory, which can cause misbehave of the guest when the guest OS assumes the pages should be all zeros. QEMU worked it around by pre-populate the section with reads to fill in zero page entries before starting the whole snapshot process [1]. Recently there's another need raised on using userfaultfd wr-protect for detecting dirty pages (to replace soft-dirty in some cases) [2]. In that case if without being able to wr-protect none ptes by default, the dirty info can get lost, since we cannot treat every none pte to be dirty (the current design is identify a page dirty based on uffd-wp bit being cleared). In general, we want to be able to wr-protect empty ptes too even for anonymous. This patch implements UFFD_FEATURE_WP_UNPOPULATED so that it'll make uffd-wp handling on none ptes being consistent no matter what the memory type is underneath. It doesn't have any impact on file memories so far because we already have pte markers taking care of that. So it only affects anonymous. The feature bit is by default off, so the old behavior will be maintained. Sometimes it may be wanted because the wr-protect of none ptes will contain overheads not only during UFFDIO_WRITEPROTECT (by applying pte markers to anonymous), but also on creating the pgtables to store the pte markers. So there's potentially less chance of using thp on the first fault for a none pmd or larger than a pmd. The major implementation part is teaching the whole kernel to understand pte markers even for anonymously mapped ranges, meanwhile allowing the UFFDIO_WRITEPROTECT ioctl to apply pte markers for anonymous too when the new feature bit is set. Note that even if the patch subject starts with mm/uffd, there're a few small refactors to major mm path of handling anonymous page faults. But they should be straightforward. With WP_UNPOPUATED, application like QEMU can avoid pre-read faults all the memory before wr-protect during taking a live snapshot. Quotting from Muhammad's test result here [3] based on a simple program [4]: (1) With huge page disabled echo madvise > /sys/kernel/mm/transparent_hugepage/enabled ./uffd_wp_perf Test DEFAULT: 4 Test PRE-READ: 1111453 (pre-fault 1101011) Test MADVISE: 278276 (pre-fault 266378) Test WP-UNPOPULATE: 11712 (2) With Huge page enabled echo always > /sys/kernel/mm/transparent_hugepage/enabled ./uffd_wp_perf Test DEFAULT: 4 Test PRE-READ: 22521 (pre-fault 22348) Test MADVISE: 4909 (pre-fault 4743) Test WP-UNPOPULATE: 14448 There'll be a great perf boost for no-thp case, while for thp enabled with extreme case of all-thp-zero WP_UNPOPULATED can be slower than MADVISE, but that's low possibility in reality, also the overhead was not reduced but postponed until a follow up write on any huge zero thp, so potentially it is faster by making the follow up writes slower. [1] https://lore.kernel.org/all/20210401092226.102804-4-andrey.gruzdev@virtuozzo.com/ [2] https://lore.kernel.org/all/Y+v2HJ8+3i%2FKzDBu@x1n/ [3] https://lore.kernel.org/all/d0eb0a13-16dc-1ac1-653a-78b7273781e3@collabora.com/ [4] https://github.com/xzpeter/clibs/blob/master/uffd-test/uffd-wp-perf.c [peterx@redhat.com: comment changes, oneliner fix to khugepaged] Link: https://lkml.kernel.org/r/ZB2/8jPhD3fpx5U8@x1n Link: https://lkml.kernel.org/r/20230309223711.823547-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20230309223711.823547-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Paul Gofman <pgofman@codeweavers.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
598 lines
17 KiB
C
598 lines
17 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef LINUX_MM_INLINE_H
|
|
#define LINUX_MM_INLINE_H
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/string.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/swapops.h>
|
|
|
|
/**
|
|
* folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
|
|
* @folio: The folio to test.
|
|
*
|
|
* We would like to get this info without a page flag, but the state
|
|
* needs to survive until the folio is last deleted from the LRU, which
|
|
* could be as far down as __page_cache_release.
|
|
*
|
|
* Return: An integer (not a boolean!) used to sort a folio onto the
|
|
* right LRU list and to account folios correctly.
|
|
* 1 if @folio is a regular filesystem backed page cache folio
|
|
* or a lazily freed anonymous folio (e.g. via MADV_FREE).
|
|
* 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
|
|
* ram or swap backed folio.
|
|
*/
|
|
static inline int folio_is_file_lru(struct folio *folio)
|
|
{
|
|
return !folio_test_swapbacked(folio);
|
|
}
|
|
|
|
static inline int page_is_file_lru(struct page *page)
|
|
{
|
|
return folio_is_file_lru(page_folio(page));
|
|
}
|
|
|
|
static __always_inline void __update_lru_size(struct lruvec *lruvec,
|
|
enum lru_list lru, enum zone_type zid,
|
|
long nr_pages)
|
|
{
|
|
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
|
|
|
|
lockdep_assert_held(&lruvec->lru_lock);
|
|
WARN_ON_ONCE(nr_pages != (int)nr_pages);
|
|
|
|
__mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
|
|
__mod_zone_page_state(&pgdat->node_zones[zid],
|
|
NR_ZONE_LRU_BASE + lru, nr_pages);
|
|
}
|
|
|
|
static __always_inline void update_lru_size(struct lruvec *lruvec,
|
|
enum lru_list lru, enum zone_type zid,
|
|
long nr_pages)
|
|
{
|
|
__update_lru_size(lruvec, lru, zid, nr_pages);
|
|
#ifdef CONFIG_MEMCG
|
|
mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* __folio_clear_lru_flags - Clear page lru flags before releasing a page.
|
|
* @folio: The folio that was on lru and now has a zero reference.
|
|
*/
|
|
static __always_inline void __folio_clear_lru_flags(struct folio *folio)
|
|
{
|
|
VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
|
|
|
|
__folio_clear_lru(folio);
|
|
|
|
/* this shouldn't happen, so leave the flags to bad_page() */
|
|
if (folio_test_active(folio) && folio_test_unevictable(folio))
|
|
return;
|
|
|
|
__folio_clear_active(folio);
|
|
__folio_clear_unevictable(folio);
|
|
}
|
|
|
|
/**
|
|
* folio_lru_list - Which LRU list should a folio be on?
|
|
* @folio: The folio to test.
|
|
*
|
|
* Return: The LRU list a folio should be on, as an index
|
|
* into the array of LRU lists.
|
|
*/
|
|
static __always_inline enum lru_list folio_lru_list(struct folio *folio)
|
|
{
|
|
enum lru_list lru;
|
|
|
|
VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
|
|
|
|
if (folio_test_unevictable(folio))
|
|
return LRU_UNEVICTABLE;
|
|
|
|
lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
|
|
if (folio_test_active(folio))
|
|
lru += LRU_ACTIVE;
|
|
|
|
return lru;
|
|
}
|
|
|
|
#ifdef CONFIG_LRU_GEN
|
|
|
|
#ifdef CONFIG_LRU_GEN_ENABLED
|
|
static inline bool lru_gen_enabled(void)
|
|
{
|
|
DECLARE_STATIC_KEY_TRUE(lru_gen_caps[NR_LRU_GEN_CAPS]);
|
|
|
|
return static_branch_likely(&lru_gen_caps[LRU_GEN_CORE]);
|
|
}
|
|
#else
|
|
static inline bool lru_gen_enabled(void)
|
|
{
|
|
DECLARE_STATIC_KEY_FALSE(lru_gen_caps[NR_LRU_GEN_CAPS]);
|
|
|
|
return static_branch_unlikely(&lru_gen_caps[LRU_GEN_CORE]);
|
|
}
|
|
#endif
|
|
|
|
static inline bool lru_gen_in_fault(void)
|
|
{
|
|
return current->in_lru_fault;
|
|
}
|
|
|
|
static inline int lru_gen_from_seq(unsigned long seq)
|
|
{
|
|
return seq % MAX_NR_GENS;
|
|
}
|
|
|
|
static inline int lru_hist_from_seq(unsigned long seq)
|
|
{
|
|
return seq % NR_HIST_GENS;
|
|
}
|
|
|
|
static inline int lru_tier_from_refs(int refs)
|
|
{
|
|
VM_WARN_ON_ONCE(refs > BIT(LRU_REFS_WIDTH));
|
|
|
|
/* see the comment in folio_lru_refs() */
|
|
return order_base_2(refs + 1);
|
|
}
|
|
|
|
static inline int folio_lru_refs(struct folio *folio)
|
|
{
|
|
unsigned long flags = READ_ONCE(folio->flags);
|
|
bool workingset = flags & BIT(PG_workingset);
|
|
|
|
/*
|
|
* Return the number of accesses beyond PG_referenced, i.e., N-1 if the
|
|
* total number of accesses is N>1, since N=0,1 both map to the first
|
|
* tier. lru_tier_from_refs() will account for this off-by-one. Also see
|
|
* the comment on MAX_NR_TIERS.
|
|
*/
|
|
return ((flags & LRU_REFS_MASK) >> LRU_REFS_PGOFF) + workingset;
|
|
}
|
|
|
|
static inline int folio_lru_gen(struct folio *folio)
|
|
{
|
|
unsigned long flags = READ_ONCE(folio->flags);
|
|
|
|
return ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
|
|
}
|
|
|
|
static inline bool lru_gen_is_active(struct lruvec *lruvec, int gen)
|
|
{
|
|
unsigned long max_seq = lruvec->lrugen.max_seq;
|
|
|
|
VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
|
|
|
|
/* see the comment on MIN_NR_GENS */
|
|
return gen == lru_gen_from_seq(max_seq) || gen == lru_gen_from_seq(max_seq - 1);
|
|
}
|
|
|
|
static inline void lru_gen_update_size(struct lruvec *lruvec, struct folio *folio,
|
|
int old_gen, int new_gen)
|
|
{
|
|
int type = folio_is_file_lru(folio);
|
|
int zone = folio_zonenum(folio);
|
|
int delta = folio_nr_pages(folio);
|
|
enum lru_list lru = type * LRU_INACTIVE_FILE;
|
|
struct lru_gen_folio *lrugen = &lruvec->lrugen;
|
|
|
|
VM_WARN_ON_ONCE(old_gen != -1 && old_gen >= MAX_NR_GENS);
|
|
VM_WARN_ON_ONCE(new_gen != -1 && new_gen >= MAX_NR_GENS);
|
|
VM_WARN_ON_ONCE(old_gen == -1 && new_gen == -1);
|
|
|
|
if (old_gen >= 0)
|
|
WRITE_ONCE(lrugen->nr_pages[old_gen][type][zone],
|
|
lrugen->nr_pages[old_gen][type][zone] - delta);
|
|
if (new_gen >= 0)
|
|
WRITE_ONCE(lrugen->nr_pages[new_gen][type][zone],
|
|
lrugen->nr_pages[new_gen][type][zone] + delta);
|
|
|
|
/* addition */
|
|
if (old_gen < 0) {
|
|
if (lru_gen_is_active(lruvec, new_gen))
|
|
lru += LRU_ACTIVE;
|
|
__update_lru_size(lruvec, lru, zone, delta);
|
|
return;
|
|
}
|
|
|
|
/* deletion */
|
|
if (new_gen < 0) {
|
|
if (lru_gen_is_active(lruvec, old_gen))
|
|
lru += LRU_ACTIVE;
|
|
__update_lru_size(lruvec, lru, zone, -delta);
|
|
return;
|
|
}
|
|
|
|
/* promotion */
|
|
if (!lru_gen_is_active(lruvec, old_gen) && lru_gen_is_active(lruvec, new_gen)) {
|
|
__update_lru_size(lruvec, lru, zone, -delta);
|
|
__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, delta);
|
|
}
|
|
|
|
/* demotion requires isolation, e.g., lru_deactivate_fn() */
|
|
VM_WARN_ON_ONCE(lru_gen_is_active(lruvec, old_gen) && !lru_gen_is_active(lruvec, new_gen));
|
|
}
|
|
|
|
static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
|
|
{
|
|
unsigned long seq;
|
|
unsigned long flags;
|
|
int gen = folio_lru_gen(folio);
|
|
int type = folio_is_file_lru(folio);
|
|
int zone = folio_zonenum(folio);
|
|
struct lru_gen_folio *lrugen = &lruvec->lrugen;
|
|
|
|
VM_WARN_ON_ONCE_FOLIO(gen != -1, folio);
|
|
|
|
if (folio_test_unevictable(folio) || !lrugen->enabled)
|
|
return false;
|
|
/*
|
|
* There are three common cases for this page:
|
|
* 1. If it's hot, e.g., freshly faulted in or previously hot and
|
|
* migrated, add it to the youngest generation.
|
|
* 2. If it's cold but can't be evicted immediately, i.e., an anon page
|
|
* not in swapcache or a dirty page pending writeback, add it to the
|
|
* second oldest generation.
|
|
* 3. Everything else (clean, cold) is added to the oldest generation.
|
|
*/
|
|
if (folio_test_active(folio))
|
|
seq = lrugen->max_seq;
|
|
else if ((type == LRU_GEN_ANON && !folio_test_swapcache(folio)) ||
|
|
(folio_test_reclaim(folio) &&
|
|
(folio_test_dirty(folio) || folio_test_writeback(folio))))
|
|
seq = lrugen->min_seq[type] + 1;
|
|
else
|
|
seq = lrugen->min_seq[type];
|
|
|
|
gen = lru_gen_from_seq(seq);
|
|
flags = (gen + 1UL) << LRU_GEN_PGOFF;
|
|
/* see the comment on MIN_NR_GENS about PG_active */
|
|
set_mask_bits(&folio->flags, LRU_GEN_MASK | BIT(PG_active), flags);
|
|
|
|
lru_gen_update_size(lruvec, folio, -1, gen);
|
|
/* for folio_rotate_reclaimable() */
|
|
if (reclaiming)
|
|
list_add_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
|
|
else
|
|
list_add(&folio->lru, &lrugen->folios[gen][type][zone]);
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
|
|
{
|
|
unsigned long flags;
|
|
int gen = folio_lru_gen(folio);
|
|
|
|
if (gen < 0)
|
|
return false;
|
|
|
|
VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
|
|
VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
|
|
|
|
/* for folio_migrate_flags() */
|
|
flags = !reclaiming && lru_gen_is_active(lruvec, gen) ? BIT(PG_active) : 0;
|
|
flags = set_mask_bits(&folio->flags, LRU_GEN_MASK, flags);
|
|
gen = ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
|
|
|
|
lru_gen_update_size(lruvec, folio, gen, -1);
|
|
list_del(&folio->lru);
|
|
|
|
return true;
|
|
}
|
|
|
|
#else /* !CONFIG_LRU_GEN */
|
|
|
|
static inline bool lru_gen_enabled(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool lru_gen_in_fault(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* CONFIG_LRU_GEN */
|
|
|
|
static __always_inline
|
|
void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
enum lru_list lru = folio_lru_list(folio);
|
|
|
|
if (lru_gen_add_folio(lruvec, folio, false))
|
|
return;
|
|
|
|
update_lru_size(lruvec, lru, folio_zonenum(folio),
|
|
folio_nr_pages(folio));
|
|
if (lru != LRU_UNEVICTABLE)
|
|
list_add(&folio->lru, &lruvec->lists[lru]);
|
|
}
|
|
|
|
static __always_inline void add_page_to_lru_list(struct page *page,
|
|
struct lruvec *lruvec)
|
|
{
|
|
lruvec_add_folio(lruvec, page_folio(page));
|
|
}
|
|
|
|
static __always_inline
|
|
void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
enum lru_list lru = folio_lru_list(folio);
|
|
|
|
if (lru_gen_add_folio(lruvec, folio, true))
|
|
return;
|
|
|
|
update_lru_size(lruvec, lru, folio_zonenum(folio),
|
|
folio_nr_pages(folio));
|
|
/* This is not expected to be used on LRU_UNEVICTABLE */
|
|
list_add_tail(&folio->lru, &lruvec->lists[lru]);
|
|
}
|
|
|
|
static __always_inline
|
|
void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
enum lru_list lru = folio_lru_list(folio);
|
|
|
|
if (lru_gen_del_folio(lruvec, folio, false))
|
|
return;
|
|
|
|
if (lru != LRU_UNEVICTABLE)
|
|
list_del(&folio->lru);
|
|
update_lru_size(lruvec, lru, folio_zonenum(folio),
|
|
-folio_nr_pages(folio));
|
|
}
|
|
|
|
static __always_inline void del_page_from_lru_list(struct page *page,
|
|
struct lruvec *lruvec)
|
|
{
|
|
lruvec_del_folio(lruvec, page_folio(page));
|
|
}
|
|
|
|
#ifdef CONFIG_ANON_VMA_NAME
|
|
/*
|
|
* mmap_lock should be read-locked when calling anon_vma_name(). Caller should
|
|
* either keep holding the lock while using the returned pointer or it should
|
|
* raise anon_vma_name refcount before releasing the lock.
|
|
*/
|
|
extern struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
|
|
extern struct anon_vma_name *anon_vma_name_alloc(const char *name);
|
|
extern void anon_vma_name_free(struct kref *kref);
|
|
|
|
/* mmap_lock should be read-locked */
|
|
static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
|
|
{
|
|
if (anon_name)
|
|
kref_get(&anon_name->kref);
|
|
}
|
|
|
|
static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
|
|
{
|
|
if (anon_name)
|
|
kref_put(&anon_name->kref, anon_vma_name_free);
|
|
}
|
|
|
|
static inline
|
|
struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
|
|
{
|
|
/* Prevent anon_name refcount saturation early on */
|
|
if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
|
|
anon_vma_name_get(anon_name);
|
|
return anon_name;
|
|
|
|
}
|
|
return anon_vma_name_alloc(anon_name->name);
|
|
}
|
|
|
|
static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
|
|
struct vm_area_struct *new_vma)
|
|
{
|
|
struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
|
|
|
|
if (anon_name)
|
|
new_vma->anon_name = anon_vma_name_reuse(anon_name);
|
|
}
|
|
|
|
static inline void free_anon_vma_name(struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* Not using anon_vma_name because it generates a warning if mmap_lock
|
|
* is not held, which might be the case here.
|
|
*/
|
|
anon_vma_name_put(vma->anon_name);
|
|
}
|
|
|
|
static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
|
|
struct anon_vma_name *anon_name2)
|
|
{
|
|
if (anon_name1 == anon_name2)
|
|
return true;
|
|
|
|
return anon_name1 && anon_name2 &&
|
|
!strcmp(anon_name1->name, anon_name2->name);
|
|
}
|
|
|
|
#else /* CONFIG_ANON_VMA_NAME */
|
|
static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
|
|
static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
|
|
static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
|
|
struct vm_area_struct *new_vma) {}
|
|
static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
|
|
|
|
static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
|
|
struct anon_vma_name *anon_name2)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
#endif /* CONFIG_ANON_VMA_NAME */
|
|
|
|
static inline void init_tlb_flush_pending(struct mm_struct *mm)
|
|
{
|
|
atomic_set(&mm->tlb_flush_pending, 0);
|
|
}
|
|
|
|
static inline void inc_tlb_flush_pending(struct mm_struct *mm)
|
|
{
|
|
atomic_inc(&mm->tlb_flush_pending);
|
|
/*
|
|
* The only time this value is relevant is when there are indeed pages
|
|
* to flush. And we'll only flush pages after changing them, which
|
|
* requires the PTL.
|
|
*
|
|
* So the ordering here is:
|
|
*
|
|
* atomic_inc(&mm->tlb_flush_pending);
|
|
* spin_lock(&ptl);
|
|
* ...
|
|
* set_pte_at();
|
|
* spin_unlock(&ptl);
|
|
*
|
|
* spin_lock(&ptl)
|
|
* mm_tlb_flush_pending();
|
|
* ....
|
|
* spin_unlock(&ptl);
|
|
*
|
|
* flush_tlb_range();
|
|
* atomic_dec(&mm->tlb_flush_pending);
|
|
*
|
|
* Where the increment if constrained by the PTL unlock, it thus
|
|
* ensures that the increment is visible if the PTE modification is
|
|
* visible. After all, if there is no PTE modification, nobody cares
|
|
* about TLB flushes either.
|
|
*
|
|
* This very much relies on users (mm_tlb_flush_pending() and
|
|
* mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
|
|
* therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
|
|
* locks (PPC) the unlock of one doesn't order against the lock of
|
|
* another PTL.
|
|
*
|
|
* The decrement is ordered by the flush_tlb_range(), such that
|
|
* mm_tlb_flush_pending() will not return false unless all flushes have
|
|
* completed.
|
|
*/
|
|
}
|
|
|
|
static inline void dec_tlb_flush_pending(struct mm_struct *mm)
|
|
{
|
|
/*
|
|
* See inc_tlb_flush_pending().
|
|
*
|
|
* This cannot be smp_mb__before_atomic() because smp_mb() simply does
|
|
* not order against TLB invalidate completion, which is what we need.
|
|
*
|
|
* Therefore we must rely on tlb_flush_*() to guarantee order.
|
|
*/
|
|
atomic_dec(&mm->tlb_flush_pending);
|
|
}
|
|
|
|
static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
|
|
{
|
|
/*
|
|
* Must be called after having acquired the PTL; orders against that
|
|
* PTLs release and therefore ensures that if we observe the modified
|
|
* PTE we must also observe the increment from inc_tlb_flush_pending().
|
|
*
|
|
* That is, it only guarantees to return true if there is a flush
|
|
* pending for _this_ PTL.
|
|
*/
|
|
return atomic_read(&mm->tlb_flush_pending);
|
|
}
|
|
|
|
static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
|
|
{
|
|
/*
|
|
* Similar to mm_tlb_flush_pending(), we must have acquired the PTL
|
|
* for which there is a TLB flush pending in order to guarantee
|
|
* we've seen both that PTE modification and the increment.
|
|
*
|
|
* (no requirement on actually still holding the PTL, that is irrelevant)
|
|
*/
|
|
return atomic_read(&mm->tlb_flush_pending) > 1;
|
|
}
|
|
|
|
/*
|
|
* If this pte is wr-protected by uffd-wp in any form, arm the special pte to
|
|
* replace a none pte. NOTE! This should only be called when *pte is already
|
|
* cleared so we will never accidentally replace something valuable. Meanwhile
|
|
* none pte also means we are not demoting the pte so tlb flushed is not needed.
|
|
* E.g., when pte cleared the caller should have taken care of the tlb flush.
|
|
*
|
|
* Must be called with pgtable lock held so that no thread will see the none
|
|
* pte, and if they see it, they'll fault and serialize at the pgtable lock.
|
|
*
|
|
* This function is a no-op if PTE_MARKER_UFFD_WP is not enabled.
|
|
*/
|
|
static inline void
|
|
pte_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *pte, pte_t pteval)
|
|
{
|
|
#ifdef CONFIG_PTE_MARKER_UFFD_WP
|
|
bool arm_uffd_pte = false;
|
|
|
|
/* The current status of the pte should be "cleared" before calling */
|
|
WARN_ON_ONCE(!pte_none(*pte));
|
|
|
|
/*
|
|
* NOTE: userfaultfd_wp_unpopulated() doesn't need this whole
|
|
* thing, because when zapping either it means it's dropping the
|
|
* page, or in TTU where the present pte will be quickly replaced
|
|
* with a swap pte. There's no way of leaking the bit.
|
|
*/
|
|
if (vma_is_anonymous(vma) || !userfaultfd_wp(vma))
|
|
return;
|
|
|
|
/* A uffd-wp wr-protected normal pte */
|
|
if (unlikely(pte_present(pteval) && pte_uffd_wp(pteval)))
|
|
arm_uffd_pte = true;
|
|
|
|
/*
|
|
* A uffd-wp wr-protected swap pte. Note: this should even cover an
|
|
* existing pte marker with uffd-wp bit set.
|
|
*/
|
|
if (unlikely(pte_swp_uffd_wp_any(pteval)))
|
|
arm_uffd_pte = true;
|
|
|
|
if (unlikely(arm_uffd_pte))
|
|
set_pte_at(vma->vm_mm, addr, pte,
|
|
make_pte_marker(PTE_MARKER_UFFD_WP));
|
|
#endif
|
|
}
|
|
|
|
static inline bool vma_has_recency(struct vm_area_struct *vma)
|
|
{
|
|
if (vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))
|
|
return false;
|
|
|
|
if (vma->vm_file && (vma->vm_file->f_mode & FMODE_NOREUSE))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|