mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 13:58:46 +00:00
2920294686
intel_spi_populate_chip() use devm_kasprintf() to set pdata->name. This can return a NULL pointer on failure but this returned value is not checked. Fixes: e58db3bcd93b ("spi: intel: Add default partition and name to the second chip") Signed-off-by: Charles Han <hanchunchao@inspur.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Link: https://patch.msgid.link/20240830074106.8744-1-hanchunchao@inspur.com Signed-off-by: Mark Brown <broonie@kernel.org>
1461 lines
38 KiB
C
1461 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Intel PCH/PCU SPI flash driver.
|
|
*
|
|
* Copyright (C) 2016 - 2022, Intel Corporation
|
|
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
*/
|
|
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/spi-nor.h>
|
|
|
|
#include <linux/spi/flash.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-mem.h>
|
|
|
|
#include "spi-intel.h"
|
|
|
|
/* Offsets are from @ispi->base */
|
|
#define BFPREG 0x00
|
|
|
|
#define HSFSTS_CTL 0x04
|
|
#define HSFSTS_CTL_FSMIE BIT(31)
|
|
#define HSFSTS_CTL_FDBC_SHIFT 24
|
|
#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
|
|
|
|
#define HSFSTS_CTL_FCYCLE_SHIFT 17
|
|
#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
/* HW sequencer opcodes */
|
|
#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_RDSFDP (0x05 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
|
|
|
|
#define HSFSTS_CTL_FGO BIT(16)
|
|
#define HSFSTS_CTL_FLOCKDN BIT(15)
|
|
#define HSFSTS_CTL_FDV BIT(14)
|
|
#define HSFSTS_CTL_SCIP BIT(5)
|
|
#define HSFSTS_CTL_AEL BIT(2)
|
|
#define HSFSTS_CTL_FCERR BIT(1)
|
|
#define HSFSTS_CTL_FDONE BIT(0)
|
|
|
|
#define FADDR 0x08
|
|
#define DLOCK 0x0c
|
|
#define FDATA(n) (0x10 + ((n) * 4))
|
|
|
|
#define FRACC 0x50
|
|
|
|
#define FREG(n) (0x54 + ((n) * 4))
|
|
#define FREG_BASE_MASK GENMASK(14, 0)
|
|
#define FREG_LIMIT_SHIFT 16
|
|
#define FREG_LIMIT_MASK GENMASK(30, 16)
|
|
|
|
/* Offset is from @ispi->pregs */
|
|
#define PR(n) ((n) * 4)
|
|
#define PR_WPE BIT(31)
|
|
#define PR_LIMIT_SHIFT 16
|
|
#define PR_LIMIT_MASK GENMASK(30, 16)
|
|
#define PR_RPE BIT(15)
|
|
#define PR_BASE_MASK GENMASK(14, 0)
|
|
|
|
/* Offsets are from @ispi->sregs */
|
|
#define SSFSTS_CTL 0x00
|
|
#define SSFSTS_CTL_FSMIE BIT(23)
|
|
#define SSFSTS_CTL_DS BIT(22)
|
|
#define SSFSTS_CTL_DBC_SHIFT 16
|
|
#define SSFSTS_CTL_SPOP BIT(11)
|
|
#define SSFSTS_CTL_ACS BIT(10)
|
|
#define SSFSTS_CTL_SCGO BIT(9)
|
|
#define SSFSTS_CTL_COP_SHIFT 12
|
|
#define SSFSTS_CTL_FRS BIT(7)
|
|
#define SSFSTS_CTL_DOFRS BIT(6)
|
|
#define SSFSTS_CTL_AEL BIT(4)
|
|
#define SSFSTS_CTL_FCERR BIT(3)
|
|
#define SSFSTS_CTL_FDONE BIT(2)
|
|
#define SSFSTS_CTL_SCIP BIT(0)
|
|
|
|
#define PREOP_OPTYPE 0x04
|
|
#define OPMENU0 0x08
|
|
#define OPMENU1 0x0c
|
|
|
|
#define OPTYPE_READ_NO_ADDR 0
|
|
#define OPTYPE_WRITE_NO_ADDR 1
|
|
#define OPTYPE_READ_WITH_ADDR 2
|
|
#define OPTYPE_WRITE_WITH_ADDR 3
|
|
|
|
/* CPU specifics */
|
|
#define BYT_PR 0x74
|
|
#define BYT_SSFSTS_CTL 0x90
|
|
#define BYT_FREG_NUM 5
|
|
#define BYT_PR_NUM 5
|
|
|
|
#define LPT_PR 0x74
|
|
#define LPT_SSFSTS_CTL 0x90
|
|
#define LPT_FREG_NUM 5
|
|
#define LPT_PR_NUM 5
|
|
|
|
#define BXT_PR 0x84
|
|
#define BXT_SSFSTS_CTL 0xa0
|
|
#define BXT_FREG_NUM 12
|
|
#define BXT_PR_NUM 5
|
|
|
|
#define CNL_PR 0x84
|
|
#define CNL_FREG_NUM 6
|
|
#define CNL_PR_NUM 5
|
|
|
|
#define LVSCC 0xc4
|
|
#define UVSCC 0xc8
|
|
#define ERASE_OPCODE_SHIFT 8
|
|
#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
|
|
#define ERASE_64K_OPCODE_SHIFT 16
|
|
#define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT)
|
|
|
|
/* Flash descriptor fields */
|
|
#define FLVALSIG_MAGIC 0x0ff0a55a
|
|
#define FLMAP0_NC_MASK GENMASK(9, 8)
|
|
#define FLMAP0_NC_SHIFT 8
|
|
#define FLMAP0_FCBA_MASK GENMASK(7, 0)
|
|
|
|
#define FLCOMP_C0DEN_MASK GENMASK(3, 0)
|
|
#define FLCOMP_C0DEN_512K 0x00
|
|
#define FLCOMP_C0DEN_1M 0x01
|
|
#define FLCOMP_C0DEN_2M 0x02
|
|
#define FLCOMP_C0DEN_4M 0x03
|
|
#define FLCOMP_C0DEN_8M 0x04
|
|
#define FLCOMP_C0DEN_16M 0x05
|
|
#define FLCOMP_C0DEN_32M 0x06
|
|
#define FLCOMP_C0DEN_64M 0x07
|
|
|
|
#define INTEL_SPI_TIMEOUT 5000 /* ms */
|
|
#define INTEL_SPI_FIFO_SZ 64
|
|
|
|
/**
|
|
* struct intel_spi - Driver private data
|
|
* @dev: Device pointer
|
|
* @info: Pointer to board specific info
|
|
* @base: Beginning of MMIO space
|
|
* @pregs: Start of protection registers
|
|
* @sregs: Start of software sequencer registers
|
|
* @host: Pointer to the SPI controller structure
|
|
* @nregions: Maximum number of regions
|
|
* @pr_num: Maximum number of protected range registers
|
|
* @chip0_size: Size of the first flash chip in bytes
|
|
* @locked: Is SPI setting locked
|
|
* @swseq_reg: Use SW sequencer in register reads/writes
|
|
* @swseq_erase: Use SW sequencer in erase operation
|
|
* @atomic_preopcode: Holds preopcode when atomic sequence is requested
|
|
* @opcodes: Opcodes which are supported. This are programmed by BIOS
|
|
* before it locks down the controller.
|
|
* @mem_ops: Pointer to SPI MEM ops supported by the controller
|
|
*/
|
|
struct intel_spi {
|
|
struct device *dev;
|
|
const struct intel_spi_boardinfo *info;
|
|
void __iomem *base;
|
|
void __iomem *pregs;
|
|
void __iomem *sregs;
|
|
struct spi_controller *host;
|
|
size_t nregions;
|
|
size_t pr_num;
|
|
size_t chip0_size;
|
|
bool locked;
|
|
bool swseq_reg;
|
|
bool swseq_erase;
|
|
u8 atomic_preopcode;
|
|
u8 opcodes[8];
|
|
const struct intel_spi_mem_op *mem_ops;
|
|
};
|
|
|
|
struct intel_spi_mem_op {
|
|
struct spi_mem_op mem_op;
|
|
u32 replacement_op;
|
|
int (*exec_op)(struct intel_spi *ispi,
|
|
const struct spi_mem *mem,
|
|
const struct intel_spi_mem_op *iop,
|
|
const struct spi_mem_op *op);
|
|
};
|
|
|
|
static bool writeable;
|
|
module_param(writeable, bool, 0);
|
|
MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
|
|
|
|
static void intel_spi_dump_regs(struct intel_spi *ispi)
|
|
{
|
|
u32 value;
|
|
int i;
|
|
|
|
dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
|
|
|
|
value = readl(ispi->base + HSFSTS_CTL);
|
|
dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
|
|
if (value & HSFSTS_CTL_FLOCKDN)
|
|
dev_dbg(ispi->dev, "-> Locked\n");
|
|
|
|
dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
|
|
dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
|
|
|
|
for (i = 0; i < 16; i++)
|
|
dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
|
|
i, readl(ispi->base + FDATA(i)));
|
|
|
|
dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
|
|
|
|
for (i = 0; i < ispi->nregions; i++)
|
|
dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
|
|
readl(ispi->base + FREG(i)));
|
|
for (i = 0; i < ispi->pr_num; i++)
|
|
dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
|
|
readl(ispi->pregs + PR(i)));
|
|
|
|
if (ispi->sregs) {
|
|
value = readl(ispi->sregs + SSFSTS_CTL);
|
|
dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
|
|
dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
|
|
readl(ispi->sregs + PREOP_OPTYPE));
|
|
dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
|
|
readl(ispi->sregs + OPMENU0));
|
|
dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
|
|
readl(ispi->sregs + OPMENU1));
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
|
|
dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
|
|
|
|
dev_dbg(ispi->dev, "Protected regions:\n");
|
|
for (i = 0; i < ispi->pr_num; i++) {
|
|
u32 base, limit;
|
|
|
|
value = readl(ispi->pregs + PR(i));
|
|
if (!(value & (PR_WPE | PR_RPE)))
|
|
continue;
|
|
|
|
limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
|
|
base = value & PR_BASE_MASK;
|
|
|
|
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
|
|
i, base << 12, (limit << 12) | 0xfff,
|
|
value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "Flash regions:\n");
|
|
for (i = 0; i < ispi->nregions; i++) {
|
|
u32 region, base, limit;
|
|
|
|
region = readl(ispi->base + FREG(i));
|
|
base = region & FREG_BASE_MASK;
|
|
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
|
|
|
|
if (base >= limit || (i > 0 && limit == 0))
|
|
dev_dbg(ispi->dev, " %02d disabled\n", i);
|
|
else
|
|
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
|
|
i, base << 12, (limit << 12) | 0xfff);
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
|
|
ispi->swseq_reg ? 'S' : 'H');
|
|
dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
|
|
ispi->swseq_erase ? 'S' : 'H');
|
|
}
|
|
|
|
/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
|
|
static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
|
|
{
|
|
size_t bytes;
|
|
int i = 0;
|
|
|
|
if (size > INTEL_SPI_FIFO_SZ)
|
|
return -EINVAL;
|
|
|
|
while (size > 0) {
|
|
bytes = min_t(size_t, size, 4);
|
|
memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
|
|
size -= bytes;
|
|
buf += bytes;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
|
|
static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
|
|
size_t size)
|
|
{
|
|
size_t bytes;
|
|
int i = 0;
|
|
|
|
if (size > INTEL_SPI_FIFO_SZ)
|
|
return -EINVAL;
|
|
|
|
while (size > 0) {
|
|
bytes = min_t(size_t, size, 4);
|
|
memcpy_toio(ispi->base + FDATA(i), buf, bytes);
|
|
size -= bytes;
|
|
buf += bytes;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
|
|
{
|
|
u32 val;
|
|
|
|
return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
|
|
!(val & HSFSTS_CTL_SCIP), 0,
|
|
INTEL_SPI_TIMEOUT * 1000);
|
|
}
|
|
|
|
static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
|
|
{
|
|
u32 val;
|
|
|
|
return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
|
|
!(val & SSFSTS_CTL_SCIP), 0,
|
|
INTEL_SPI_TIMEOUT * 1000);
|
|
}
|
|
|
|
static bool intel_spi_set_writeable(struct intel_spi *ispi)
|
|
{
|
|
if (!ispi->info->set_writeable)
|
|
return false;
|
|
|
|
return ispi->info->set_writeable(ispi->base, ispi->info->data);
|
|
}
|
|
|
|
static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
|
|
{
|
|
int i;
|
|
int preop;
|
|
|
|
if (ispi->locked) {
|
|
for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
|
|
if (ispi->opcodes[i] == opcode)
|
|
return i;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The lock is off, so just use index 0 */
|
|
writel(opcode, ispi->sregs + OPMENU0);
|
|
preop = readw(ispi->sregs + PREOP_OPTYPE);
|
|
writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_hw_cycle(struct intel_spi *ispi,
|
|
const struct intel_spi_mem_op *iop, size_t len)
|
|
{
|
|
u32 val, status;
|
|
int ret;
|
|
|
|
if (!iop->replacement_op)
|
|
return -EINVAL;
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
|
|
val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
|
val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= HSFSTS_CTL_FGO;
|
|
val |= iop->replacement_op;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
return -EIO;
|
|
else if (status & HSFSTS_CTL_AEL)
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
|
|
int optype)
|
|
{
|
|
u32 val = 0, status;
|
|
u8 atomic_preopcode;
|
|
int ret;
|
|
|
|
ret = intel_spi_opcode_index(ispi, opcode, optype);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Always clear it after each SW sequencer operation regardless
|
|
* of whether it is successful or not.
|
|
*/
|
|
atomic_preopcode = ispi->atomic_preopcode;
|
|
ispi->atomic_preopcode = 0;
|
|
|
|
/* Only mark 'Data Cycle' bit when there is data to be transferred */
|
|
if (len > 0)
|
|
val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
|
|
val |= ret << SSFSTS_CTL_COP_SHIFT;
|
|
val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
|
|
val |= SSFSTS_CTL_SCGO;
|
|
if (atomic_preopcode) {
|
|
u16 preop;
|
|
|
|
switch (optype) {
|
|
case OPTYPE_WRITE_NO_ADDR:
|
|
case OPTYPE_WRITE_WITH_ADDR:
|
|
/* Pick matching preopcode for the atomic sequence */
|
|
preop = readw(ispi->sregs + PREOP_OPTYPE);
|
|
if ((preop & 0xff) == atomic_preopcode)
|
|
; /* Do nothing */
|
|
else if ((preop >> 8) == atomic_preopcode)
|
|
val |= SSFSTS_CTL_SPOP;
|
|
else
|
|
return -EINVAL;
|
|
|
|
/* Enable atomic sequence */
|
|
val |= SSFSTS_CTL_ACS;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
writel(val, ispi->sregs + SSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_sw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->sregs + SSFSTS_CTL);
|
|
if (status & SSFSTS_CTL_FCERR)
|
|
return -EIO;
|
|
else if (status & SSFSTS_CTL_AEL)
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
|
|
const struct spi_mem *mem)
|
|
{
|
|
/* Pick up the correct start address */
|
|
if (!mem)
|
|
return 0;
|
|
return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0;
|
|
}
|
|
|
|
static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
|
|
const struct intel_spi_mem_op *iop,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
|
|
size_t nbytes = op->data.nbytes;
|
|
u8 opcode = op->cmd.opcode;
|
|
int ret;
|
|
|
|
writel(addr, ispi->base + FADDR);
|
|
|
|
if (ispi->swseq_reg)
|
|
ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
|
|
OPTYPE_READ_NO_ADDR);
|
|
else
|
|
ret = intel_spi_hw_cycle(ispi, iop, nbytes);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
|
|
}
|
|
|
|
static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
|
|
const struct intel_spi_mem_op *iop,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
|
|
size_t nbytes = op->data.nbytes;
|
|
u8 opcode = op->cmd.opcode;
|
|
int ret;
|
|
|
|
/*
|
|
* This is handled with atomic operation and preop code in Intel
|
|
* controller so we only verify that it is available. If the
|
|
* controller is not locked, program the opcode to the PREOP
|
|
* register for later use.
|
|
*
|
|
* When hardware sequencer is used there is no need to program
|
|
* any opcodes (it handles them automatically as part of a command).
|
|
*/
|
|
if (opcode == SPINOR_OP_WREN) {
|
|
u16 preop;
|
|
|
|
if (!ispi->swseq_reg)
|
|
return 0;
|
|
|
|
preop = readw(ispi->sregs + PREOP_OPTYPE);
|
|
if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
|
|
if (ispi->locked)
|
|
return -EINVAL;
|
|
writel(opcode, ispi->sregs + PREOP_OPTYPE);
|
|
}
|
|
|
|
/*
|
|
* This enables atomic sequence on next SW sycle. Will
|
|
* be cleared after next operation.
|
|
*/
|
|
ispi->atomic_preopcode = opcode;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We hope that HW sequencer will do the right thing automatically and
|
|
* with the SW sequencer we cannot use preopcode anyway, so just ignore
|
|
* the Write Disable operation and pretend it was completed
|
|
* successfully.
|
|
*/
|
|
if (opcode == SPINOR_OP_WRDI)
|
|
return 0;
|
|
|
|
writel(addr, ispi->base + FADDR);
|
|
|
|
/* Write the value beforehand */
|
|
ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ispi->swseq_reg)
|
|
return intel_spi_sw_cycle(ispi, opcode, nbytes,
|
|
OPTYPE_WRITE_NO_ADDR);
|
|
return intel_spi_hw_cycle(ispi, iop, nbytes);
|
|
}
|
|
|
|
static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
|
|
const struct intel_spi_mem_op *iop,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
|
|
size_t block_size, nbytes = op->data.nbytes;
|
|
void *read_buf = op->data.buf.in;
|
|
u32 val, status;
|
|
int ret;
|
|
|
|
/*
|
|
* Atomic sequence is not expected with HW sequencer reads. Make
|
|
* sure it is cleared regardless.
|
|
*/
|
|
if (WARN_ON_ONCE(ispi->atomic_preopcode))
|
|
ispi->atomic_preopcode = 0;
|
|
|
|
while (nbytes > 0) {
|
|
block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
|
|
|
|
/* Read cannot cross 4K boundary */
|
|
block_size = min_t(loff_t, addr + block_size,
|
|
round_up(addr + 1, SZ_4K)) - addr;
|
|
|
|
writel(addr, ispi->base + FADDR);
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
|
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
|
val |= HSFSTS_CTL_FCYCLE_READ;
|
|
val |= HSFSTS_CTL_FGO;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
ret = -EIO;
|
|
else if (status & HSFSTS_CTL_AEL)
|
|
ret = -EACCES;
|
|
|
|
if (ret < 0) {
|
|
dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
|
|
return ret;
|
|
}
|
|
|
|
ret = intel_spi_read_block(ispi, read_buf, block_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nbytes -= block_size;
|
|
addr += block_size;
|
|
read_buf += block_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
|
|
const struct intel_spi_mem_op *iop,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
|
|
size_t block_size, nbytes = op->data.nbytes;
|
|
const void *write_buf = op->data.buf.out;
|
|
u32 val, status;
|
|
int ret;
|
|
|
|
/* Not needed with HW sequencer write, make sure it is cleared */
|
|
ispi->atomic_preopcode = 0;
|
|
|
|
while (nbytes > 0) {
|
|
block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
|
|
|
|
/* Write cannot cross 4K boundary */
|
|
block_size = min_t(loff_t, addr + block_size,
|
|
round_up(addr + 1, SZ_4K)) - addr;
|
|
|
|
writel(addr, ispi->base + FADDR);
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
|
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
|
val |= HSFSTS_CTL_FCYCLE_WRITE;
|
|
|
|
ret = intel_spi_write_block(ispi, write_buf, block_size);
|
|
if (ret) {
|
|
dev_err(ispi->dev, "failed to write block\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Start the write now */
|
|
val |= HSFSTS_CTL_FGO;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret) {
|
|
dev_err(ispi->dev, "timeout\n");
|
|
return ret;
|
|
}
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
ret = -EIO;
|
|
else if (status & HSFSTS_CTL_AEL)
|
|
ret = -EACCES;
|
|
|
|
if (ret < 0) {
|
|
dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
|
|
return ret;
|
|
}
|
|
|
|
nbytes -= block_size;
|
|
addr += block_size;
|
|
write_buf += block_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
|
|
const struct intel_spi_mem_op *iop,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
|
|
u8 opcode = op->cmd.opcode;
|
|
u32 val, status;
|
|
int ret;
|
|
|
|
writel(addr, ispi->base + FADDR);
|
|
|
|
if (ispi->swseq_erase)
|
|
return intel_spi_sw_cycle(ispi, opcode, 0,
|
|
OPTYPE_WRITE_WITH_ADDR);
|
|
|
|
/* Not needed with HW sequencer erase, make sure it is cleared */
|
|
ispi->atomic_preopcode = 0;
|
|
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
|
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
|
val |= HSFSTS_CTL_FGO;
|
|
val |= iop->replacement_op;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
ret = intel_spi_wait_hw_busy(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status = readl(ispi->base + HSFSTS_CTL);
|
|
if (status & HSFSTS_CTL_FCERR)
|
|
return -EIO;
|
|
if (status & HSFSTS_CTL_AEL)
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
|
|
{
|
|
op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ);
|
|
return 0;
|
|
}
|
|
|
|
static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
|
|
iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
|
|
iop->mem_op.cmd.dtr != op->cmd.dtr)
|
|
return false;
|
|
|
|
if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
|
|
iop->mem_op.addr.dtr != op->addr.dtr)
|
|
return false;
|
|
|
|
if (iop->mem_op.data.dir != op->data.dir ||
|
|
iop->mem_op.data.dtr != op->data.dtr)
|
|
return false;
|
|
|
|
if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
|
|
if (iop->mem_op.data.buswidth != op->data.buswidth)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static const struct intel_spi_mem_op *
|
|
intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
|
|
{
|
|
const struct intel_spi_mem_op *iop;
|
|
|
|
for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
|
|
if (iop->mem_op.cmd.opcode == op->cmd.opcode &&
|
|
intel_spi_cmp_mem_op(iop, op))
|
|
return iop;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool intel_spi_supports_mem_op(struct spi_mem *mem,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
|
|
const struct intel_spi_mem_op *iop;
|
|
|
|
iop = intel_spi_match_mem_op(ispi, op);
|
|
if (!iop) {
|
|
dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* For software sequencer check that the opcode is actually
|
|
* present in the opmenu if it is locked.
|
|
*/
|
|
if (ispi->swseq_reg && ispi->locked) {
|
|
int i;
|
|
|
|
/* Check if it is in the locked opcodes list */
|
|
for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
|
|
if (ispi->opcodes[i] == op->cmd.opcode)
|
|
return true;
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
{
|
|
struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
|
|
const struct intel_spi_mem_op *iop;
|
|
|
|
iop = intel_spi_match_mem_op(ispi, op);
|
|
if (!iop)
|
|
return -EOPNOTSUPP;
|
|
|
|
return iop->exec_op(ispi, mem, iop, op);
|
|
}
|
|
|
|
static const char *intel_spi_get_name(struct spi_mem *mem)
|
|
{
|
|
const struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
|
|
|
|
/*
|
|
* Return name of the flash controller device to be compatible
|
|
* with the MTD version.
|
|
*/
|
|
return dev_name(ispi->dev);
|
|
}
|
|
|
|
static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
|
|
{
|
|
struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
|
|
const struct intel_spi_mem_op *iop;
|
|
|
|
iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
|
|
if (!iop)
|
|
return -EOPNOTSUPP;
|
|
|
|
desc->priv = (void *)iop;
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
|
|
size_t len, void *buf)
|
|
{
|
|
struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
|
|
const struct intel_spi_mem_op *iop = desc->priv;
|
|
struct spi_mem_op op = desc->info.op_tmpl;
|
|
int ret;
|
|
|
|
/* Fill in the gaps */
|
|
op.addr.val = offs;
|
|
op.data.nbytes = len;
|
|
op.data.buf.in = buf;
|
|
|
|
ret = iop->exec_op(ispi, desc->mem, iop, &op);
|
|
return ret ? ret : len;
|
|
}
|
|
|
|
static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
|
|
size_t len, const void *buf)
|
|
{
|
|
struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
|
|
const struct intel_spi_mem_op *iop = desc->priv;
|
|
struct spi_mem_op op = desc->info.op_tmpl;
|
|
int ret;
|
|
|
|
op.addr.val = offs;
|
|
op.data.nbytes = len;
|
|
op.data.buf.out = buf;
|
|
|
|
ret = iop->exec_op(ispi, desc->mem, iop, &op);
|
|
return ret ? ret : len;
|
|
}
|
|
|
|
static const struct spi_controller_mem_ops intel_spi_mem_ops = {
|
|
.adjust_op_size = intel_spi_adjust_op_size,
|
|
.supports_op = intel_spi_supports_mem_op,
|
|
.exec_op = intel_spi_exec_mem_op,
|
|
.get_name = intel_spi_get_name,
|
|
.dirmap_create = intel_spi_dirmap_create,
|
|
.dirmap_read = intel_spi_dirmap_read,
|
|
.dirmap_write = intel_spi_dirmap_write,
|
|
};
|
|
|
|
#define INTEL_SPI_OP_ADDR(__nbytes) \
|
|
{ \
|
|
.nbytes = __nbytes, \
|
|
}
|
|
|
|
#define INTEL_SPI_OP_NO_DATA \
|
|
{ \
|
|
.dir = SPI_MEM_NO_DATA, \
|
|
}
|
|
|
|
#define INTEL_SPI_OP_DATA_IN(__buswidth) \
|
|
{ \
|
|
.dir = SPI_MEM_DATA_IN, \
|
|
.buswidth = __buswidth, \
|
|
}
|
|
|
|
#define INTEL_SPI_OP_DATA_OUT(__buswidth) \
|
|
{ \
|
|
.dir = SPI_MEM_DATA_OUT, \
|
|
.buswidth = __buswidth, \
|
|
}
|
|
|
|
#define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \
|
|
{ \
|
|
.mem_op = { \
|
|
.cmd = __cmd, \
|
|
.addr = __addr, \
|
|
.data = __data, \
|
|
}, \
|
|
.exec_op = __exec_op, \
|
|
}
|
|
|
|
#define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
|
|
{ \
|
|
.mem_op = { \
|
|
.cmd = __cmd, \
|
|
.addr = __addr, \
|
|
.data = __data, \
|
|
}, \
|
|
.exec_op = __exec_op, \
|
|
.replacement_op = __repl, \
|
|
}
|
|
|
|
/*
|
|
* The controller handles pretty much everything internally based on the
|
|
* SFDP data but we want to make sure we only support the operations
|
|
* actually possible. Only check buswidth and transfer direction, the
|
|
* core validates data.
|
|
*/
|
|
#define INTEL_SPI_GENERIC_OPS \
|
|
/* Status register operations */ \
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \
|
|
SPI_MEM_OP_NO_ADDR, \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read_reg, \
|
|
HSFSTS_CTL_FCYCLE_RDID), \
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \
|
|
SPI_MEM_OP_NO_ADDR, \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read_reg, \
|
|
HSFSTS_CTL_FCYCLE_RDSR), \
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \
|
|
SPI_MEM_OP_NO_ADDR, \
|
|
INTEL_SPI_OP_DATA_OUT(1), \
|
|
intel_spi_write_reg, \
|
|
HSFSTS_CTL_FCYCLE_WRSR), \
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read_reg, \
|
|
HSFSTS_CTL_FCYCLE_RDSFDP), \
|
|
/* Normal read */ \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_IN(2), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_IN(4), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(2), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(4), \
|
|
intel_spi_read), \
|
|
/* Fast read */ \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_IN(2), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_IN(4), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(2), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(4), \
|
|
intel_spi_read), \
|
|
/* Read with 4-byte address opcode */ \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(2), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(4), \
|
|
intel_spi_read), \
|
|
/* Fast read with 4-byte address opcode */ \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(1), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(2), \
|
|
intel_spi_read), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_IN(4), \
|
|
intel_spi_read), \
|
|
/* Write operations */ \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
INTEL_SPI_OP_DATA_OUT(1), \
|
|
intel_spi_write), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_OUT(1), \
|
|
intel_spi_write), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
INTEL_SPI_OP_DATA_OUT(1), \
|
|
intel_spi_write), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \
|
|
SPI_MEM_OP_NO_ADDR, \
|
|
SPI_MEM_OP_NO_DATA, \
|
|
intel_spi_write_reg), \
|
|
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \
|
|
SPI_MEM_OP_NO_ADDR, \
|
|
SPI_MEM_OP_NO_DATA, \
|
|
intel_spi_write_reg), \
|
|
/* Erase operations */ \
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
|
|
INTEL_SPI_OP_ADDR(3), \
|
|
SPI_MEM_OP_NO_DATA, \
|
|
intel_spi_erase, \
|
|
HSFSTS_CTL_FCYCLE_ERASE), \
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
SPI_MEM_OP_NO_DATA, \
|
|
intel_spi_erase, \
|
|
HSFSTS_CTL_FCYCLE_ERASE), \
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \
|
|
INTEL_SPI_OP_ADDR(4), \
|
|
SPI_MEM_OP_NO_DATA, \
|
|
intel_spi_erase, \
|
|
HSFSTS_CTL_FCYCLE_ERASE) \
|
|
|
|
static const struct intel_spi_mem_op generic_mem_ops[] = {
|
|
INTEL_SPI_GENERIC_OPS,
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
|
|
INTEL_SPI_GENERIC_OPS,
|
|
/* 64k sector erase operations */
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
|
|
INTEL_SPI_OP_ADDR(3),
|
|
SPI_MEM_OP_NO_DATA,
|
|
intel_spi_erase,
|
|
HSFSTS_CTL_FCYCLE_ERASE_64K),
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
|
|
INTEL_SPI_OP_ADDR(4),
|
|
SPI_MEM_OP_NO_DATA,
|
|
intel_spi_erase,
|
|
HSFSTS_CTL_FCYCLE_ERASE_64K),
|
|
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
|
|
INTEL_SPI_OP_ADDR(4),
|
|
SPI_MEM_OP_NO_DATA,
|
|
intel_spi_erase,
|
|
HSFSTS_CTL_FCYCLE_ERASE_64K),
|
|
{ },
|
|
};
|
|
|
|
static int intel_spi_init(struct intel_spi *ispi)
|
|
{
|
|
u32 opmenu0, opmenu1, lvscc, uvscc, val;
|
|
bool erase_64k = false;
|
|
int i;
|
|
|
|
switch (ispi->info->type) {
|
|
case INTEL_SPI_BYT:
|
|
ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
|
|
ispi->pregs = ispi->base + BYT_PR;
|
|
ispi->nregions = BYT_FREG_NUM;
|
|
ispi->pr_num = BYT_PR_NUM;
|
|
ispi->swseq_reg = true;
|
|
break;
|
|
|
|
case INTEL_SPI_LPT:
|
|
ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
|
|
ispi->pregs = ispi->base + LPT_PR;
|
|
ispi->nregions = LPT_FREG_NUM;
|
|
ispi->pr_num = LPT_PR_NUM;
|
|
ispi->swseq_reg = true;
|
|
break;
|
|
|
|
case INTEL_SPI_BXT:
|
|
ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
|
|
ispi->pregs = ispi->base + BXT_PR;
|
|
ispi->nregions = BXT_FREG_NUM;
|
|
ispi->pr_num = BXT_PR_NUM;
|
|
erase_64k = true;
|
|
break;
|
|
|
|
case INTEL_SPI_CNL:
|
|
ispi->sregs = NULL;
|
|
ispi->pregs = ispi->base + CNL_PR;
|
|
ispi->nregions = CNL_FREG_NUM;
|
|
ispi->pr_num = CNL_PR_NUM;
|
|
erase_64k = true;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Try to disable write protection if user asked to do so */
|
|
if (writeable && !intel_spi_set_writeable(ispi)) {
|
|
dev_warn(ispi->dev, "can't disable chip write protection\n");
|
|
writeable = false;
|
|
}
|
|
|
|
/* Disable #SMI generation from HW sequencer */
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
val &= ~HSFSTS_CTL_FSMIE;
|
|
writel(val, ispi->base + HSFSTS_CTL);
|
|
|
|
/*
|
|
* Determine whether erase operation should use HW or SW sequencer.
|
|
*
|
|
* The HW sequencer has a predefined list of opcodes, with only the
|
|
* erase opcode being programmable in LVSCC and UVSCC registers.
|
|
* If these registers don't contain a valid erase opcode, erase
|
|
* cannot be done using HW sequencer.
|
|
*/
|
|
lvscc = readl(ispi->base + LVSCC);
|
|
uvscc = readl(ispi->base + UVSCC);
|
|
if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
|
|
ispi->swseq_erase = true;
|
|
/* SPI controller on Intel BXT supports 64K erase opcode */
|
|
if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
|
|
if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
|
|
!(uvscc & ERASE_64K_OPCODE_MASK))
|
|
erase_64k = false;
|
|
|
|
if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
|
|
dev_err(ispi->dev, "software sequencer not supported, but required\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Some controllers can only do basic operations using hardware
|
|
* sequencer. All other operations are supposed to be carried out
|
|
* using software sequencer.
|
|
*/
|
|
if (ispi->swseq_reg) {
|
|
/* Disable #SMI generation from SW sequencer */
|
|
val = readl(ispi->sregs + SSFSTS_CTL);
|
|
val &= ~SSFSTS_CTL_FSMIE;
|
|
writel(val, ispi->sregs + SSFSTS_CTL);
|
|
}
|
|
|
|
/* Check controller's lock status */
|
|
val = readl(ispi->base + HSFSTS_CTL);
|
|
ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
|
|
|
|
if (ispi->locked && ispi->sregs) {
|
|
/*
|
|
* BIOS programs allowed opcodes and then locks down the
|
|
* register. So read back what opcodes it decided to support.
|
|
* That's the set we are going to support as well.
|
|
*/
|
|
opmenu0 = readl(ispi->sregs + OPMENU0);
|
|
opmenu1 = readl(ispi->sregs + OPMENU1);
|
|
|
|
if (opmenu0 && opmenu1) {
|
|
for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
|
|
ispi->opcodes[i] = opmenu0 >> i * 8;
|
|
ispi->opcodes[i + 4] = opmenu1 >> i * 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (erase_64k) {
|
|
dev_dbg(ispi->dev, "Using erase_64k memory operations");
|
|
ispi->mem_ops = erase_64k_mem_ops;
|
|
} else {
|
|
dev_dbg(ispi->dev, "Using generic memory operations");
|
|
ispi->mem_ops = generic_mem_ops;
|
|
}
|
|
|
|
intel_spi_dump_regs(ispi);
|
|
return 0;
|
|
}
|
|
|
|
static bool intel_spi_is_protected(const struct intel_spi *ispi,
|
|
unsigned int base, unsigned int limit)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ispi->pr_num; i++) {
|
|
u32 pr_base, pr_limit, pr_value;
|
|
|
|
pr_value = readl(ispi->pregs + PR(i));
|
|
if (!(pr_value & (PR_WPE | PR_RPE)))
|
|
continue;
|
|
|
|
pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
|
|
pr_base = pr_value & PR_BASE_MASK;
|
|
|
|
if (pr_base >= base && pr_limit <= limit)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* There will be a single partition holding all enabled flash regions. We
|
|
* call this "BIOS".
|
|
*/
|
|
static void intel_spi_fill_partition(struct intel_spi *ispi,
|
|
struct mtd_partition *part)
|
|
{
|
|
u64 end;
|
|
int i;
|
|
|
|
memset(part, 0, sizeof(*part));
|
|
|
|
/* Start from the mandatory descriptor region */
|
|
part->size = 4096;
|
|
part->name = "BIOS";
|
|
|
|
/*
|
|
* Now try to find where this partition ends based on the flash
|
|
* region registers.
|
|
*/
|
|
for (i = 1; i < ispi->nregions; i++) {
|
|
u32 region, base, limit;
|
|
|
|
region = readl(ispi->base + FREG(i));
|
|
base = region & FREG_BASE_MASK;
|
|
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
|
|
|
|
if (base >= limit || limit == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If any of the regions have protection bits set, make the
|
|
* whole partition read-only to be on the safe side.
|
|
*
|
|
* Also if the user did not ask the chip to be writeable
|
|
* mask the bit too.
|
|
*/
|
|
if (!writeable || intel_spi_is_protected(ispi, base, limit))
|
|
part->mask_flags |= MTD_WRITEABLE;
|
|
|
|
end = (limit << 12) + 4096;
|
|
if (end > part->size)
|
|
part->size = end;
|
|
}
|
|
|
|
/*
|
|
* Regions can refer to the second chip too so in this case we
|
|
* just make the BIOS partition to occupy the whole chip.
|
|
*/
|
|
if (ispi->chip0_size && part->size > ispi->chip0_size)
|
|
part->size = MTDPART_SIZ_FULL;
|
|
}
|
|
|
|
static int intel_spi_read_desc(struct intel_spi *ispi)
|
|
{
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
|
|
SPI_MEM_OP_ADDR(3, 0, 0),
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_IN(0, NULL, 0));
|
|
u32 buf[2], nc, fcba, flcomp;
|
|
ssize_t ret;
|
|
|
|
op.addr.val = 0x10;
|
|
op.data.buf.in = buf;
|
|
op.data.nbytes = sizeof(buf);
|
|
|
|
ret = intel_spi_read(ispi, NULL, NULL, &op);
|
|
if (ret) {
|
|
dev_warn(ispi->dev, "failed to read descriptor\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
|
|
dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
|
|
|
|
if (buf[0] != FLVALSIG_MAGIC) {
|
|
dev_warn(ispi->dev, "descriptor signature not valid\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
|
|
dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
|
|
|
|
op.addr.val = fcba;
|
|
op.data.buf.in = &flcomp;
|
|
op.data.nbytes = sizeof(flcomp);
|
|
|
|
ret = intel_spi_read(ispi, NULL, NULL, &op);
|
|
if (ret) {
|
|
dev_warn(ispi->dev, "failed to read FLCOMP\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
|
|
|
|
switch (flcomp & FLCOMP_C0DEN_MASK) {
|
|
case FLCOMP_C0DEN_512K:
|
|
ispi->chip0_size = SZ_512K;
|
|
break;
|
|
case FLCOMP_C0DEN_1M:
|
|
ispi->chip0_size = SZ_1M;
|
|
break;
|
|
case FLCOMP_C0DEN_2M:
|
|
ispi->chip0_size = SZ_2M;
|
|
break;
|
|
case FLCOMP_C0DEN_4M:
|
|
ispi->chip0_size = SZ_4M;
|
|
break;
|
|
case FLCOMP_C0DEN_8M:
|
|
ispi->chip0_size = SZ_8M;
|
|
break;
|
|
case FLCOMP_C0DEN_16M:
|
|
ispi->chip0_size = SZ_16M;
|
|
break;
|
|
case FLCOMP_C0DEN_32M:
|
|
ispi->chip0_size = SZ_32M;
|
|
break;
|
|
case FLCOMP_C0DEN_64M:
|
|
ispi->chip0_size = SZ_64M;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
|
|
|
|
nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
|
|
if (!nc)
|
|
ispi->host->num_chipselect = 1;
|
|
else if (nc == 1)
|
|
ispi->host->num_chipselect = 2;
|
|
else
|
|
return -EINVAL;
|
|
|
|
dev_dbg(ispi->dev, "%u flash components found\n",
|
|
ispi->host->num_chipselect);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_spi_populate_chip(struct intel_spi *ispi)
|
|
{
|
|
struct flash_platform_data *pdata;
|
|
struct mtd_partition *parts;
|
|
struct spi_board_info chip;
|
|
int ret;
|
|
|
|
ret = intel_spi_read_desc(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
|
|
if (!pdata)
|
|
return -ENOMEM;
|
|
|
|
pdata->nr_parts = 1;
|
|
pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
|
|
sizeof(*pdata->parts), GFP_KERNEL);
|
|
if (!pdata->parts)
|
|
return -ENOMEM;
|
|
|
|
intel_spi_fill_partition(ispi, pdata->parts);
|
|
|
|
memset(&chip, 0, sizeof(chip));
|
|
snprintf(chip.modalias, 8, "spi-nor");
|
|
chip.platform_data = pdata;
|
|
|
|
if (!spi_new_device(ispi->host, &chip))
|
|
return -ENODEV;
|
|
|
|
/* Add the second chip if present */
|
|
if (ispi->host->num_chipselect < 2)
|
|
return 0;
|
|
|
|
pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
|
|
if (!pdata)
|
|
return -ENOMEM;
|
|
|
|
pdata->name = devm_kasprintf(ispi->dev, GFP_KERNEL, "%s-chip1",
|
|
dev_name(ispi->dev));
|
|
if (!pdata->name)
|
|
return -ENOMEM;
|
|
|
|
pdata->nr_parts = 1;
|
|
parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*parts),
|
|
GFP_KERNEL);
|
|
if (!parts)
|
|
return -ENOMEM;
|
|
|
|
parts[0].size = MTDPART_SIZ_FULL;
|
|
parts[0].name = "BIOS1";
|
|
pdata->parts = parts;
|
|
|
|
chip.platform_data = pdata;
|
|
chip.chip_select = 1;
|
|
|
|
if (!spi_new_device(ispi->host, &chip))
|
|
return -ENODEV;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_spi_probe() - Probe the Intel SPI flash controller
|
|
* @dev: Pointer to the parent device
|
|
* @mem: MMIO resource
|
|
* @info: Platform specific information
|
|
*
|
|
* Probes Intel SPI flash controller and creates the flash chip device.
|
|
* Returns %0 on success and negative errno in case of failure.
|
|
*/
|
|
int intel_spi_probe(struct device *dev, struct resource *mem,
|
|
const struct intel_spi_boardinfo *info)
|
|
{
|
|
struct spi_controller *host;
|
|
struct intel_spi *ispi;
|
|
int ret;
|
|
|
|
host = devm_spi_alloc_host(dev, sizeof(*ispi));
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
host->mem_ops = &intel_spi_mem_ops;
|
|
|
|
ispi = spi_controller_get_devdata(host);
|
|
|
|
ispi->base = devm_ioremap_resource(dev, mem);
|
|
if (IS_ERR(ispi->base))
|
|
return PTR_ERR(ispi->base);
|
|
|
|
ispi->dev = dev;
|
|
ispi->host = host;
|
|
ispi->info = info;
|
|
|
|
ret = intel_spi_init(ispi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = devm_spi_register_controller(dev, host);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return intel_spi_populate_chip(ispi);
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_spi_probe);
|
|
|
|
MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
|
|
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
|
|
MODULE_LICENSE("GPL v2");
|