linux-next/net/rxrpc/call_accept.c
David Howells 9faaff5934 rxrpc: Provide a different lockdep key for call->user_mutex for kernel calls
Provide a different lockdep key for rxrpc_call::user_mutex when the call is
made on a kernel socket, such as by the AFS filesystem.

The problem is that lockdep registers a false positive between userspace
calling the sendmsg syscall on a user socket where call->user_mutex is held
whilst userspace memory is accessed whereas the AFS filesystem may perform
operations with mmap_sem held by the caller.

In such a case, the following warning is produced.

======================================================
WARNING: possible circular locking dependency detected
4.14.0-fscache+ #243 Tainted: G            E
------------------------------------------------------
modpost/16701 is trying to acquire lock:
 (&vnode->io_lock){+.+.}, at: [<ffffffffa000fc40>] afs_begin_vnode_operation+0x33/0x77 [kafs]

but task is already holding lock:
 (&mm->mmap_sem){++++}, at: [<ffffffff8104376a>] __do_page_fault+0x1ef/0x486

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #3 (&mm->mmap_sem){++++}:
       __might_fault+0x61/0x89
       _copy_from_iter_full+0x40/0x1fa
       rxrpc_send_data+0x8dc/0xff3
       rxrpc_do_sendmsg+0x62f/0x6a1
       rxrpc_sendmsg+0x166/0x1b7
       sock_sendmsg+0x2d/0x39
       ___sys_sendmsg+0x1ad/0x22b
       __sys_sendmsg+0x41/0x62
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

-> #2 (&call->user_mutex){+.+.}:
       __mutex_lock+0x86/0x7d2
       rxrpc_new_client_call+0x378/0x80e
       rxrpc_kernel_begin_call+0xf3/0x154
       afs_make_call+0x195/0x454 [kafs]
       afs_vl_get_capabilities+0x193/0x198 [kafs]
       afs_vl_lookup_vldb+0x5f/0x151 [kafs]
       afs_create_volume+0x2e/0x2f4 [kafs]
       afs_mount+0x56a/0x8d7 [kafs]
       mount_fs+0x6a/0x109
       vfs_kern_mount+0x67/0x135
       do_mount+0x90b/0xb57
       SyS_mount+0x72/0x98
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

-> #1 (k-sk_lock-AF_RXRPC){+.+.}:
       lock_sock_nested+0x74/0x8a
       rxrpc_kernel_begin_call+0x8a/0x154
       afs_make_call+0x195/0x454 [kafs]
       afs_fs_get_capabilities+0x17a/0x17f [kafs]
       afs_probe_fileserver+0xf7/0x2f0 [kafs]
       afs_select_fileserver+0x83f/0x903 [kafs]
       afs_fetch_status+0x89/0x11d [kafs]
       afs_iget+0x16f/0x4f8 [kafs]
       afs_mount+0x6c6/0x8d7 [kafs]
       mount_fs+0x6a/0x109
       vfs_kern_mount+0x67/0x135
       do_mount+0x90b/0xb57
       SyS_mount+0x72/0x98
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

-> #0 (&vnode->io_lock){+.+.}:
       lock_acquire+0x174/0x19f
       __mutex_lock+0x86/0x7d2
       afs_begin_vnode_operation+0x33/0x77 [kafs]
       afs_fetch_data+0x80/0x12a [kafs]
       afs_readpages+0x314/0x405 [kafs]
       __do_page_cache_readahead+0x203/0x2ba
       filemap_fault+0x179/0x54d
       __do_fault+0x17/0x60
       __handle_mm_fault+0x6d7/0x95c
       handle_mm_fault+0x24e/0x2a3
       __do_page_fault+0x301/0x486
       do_page_fault+0x236/0x259
       page_fault+0x22/0x30
       __clear_user+0x3d/0x60
       padzero+0x1c/0x2b
       load_elf_binary+0x785/0xdc7
       search_binary_handler+0x81/0x1ff
       do_execveat_common.isra.14+0x600/0x888
       do_execve+0x1f/0x21
       SyS_execve+0x28/0x2f
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

other info that might help us debug this:

Chain exists of:
  &vnode->io_lock --> &call->user_mutex --> &mm->mmap_sem

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&mm->mmap_sem);
                               lock(&call->user_mutex);
                               lock(&mm->mmap_sem);
  lock(&vnode->io_lock);

 *** DEADLOCK ***

1 lock held by modpost/16701:
 #0:  (&mm->mmap_sem){++++}, at: [<ffffffff8104376a>] __do_page_fault+0x1ef/0x486

stack backtrace:
CPU: 0 PID: 16701 Comm: modpost Tainted: G            E   4.14.0-fscache+ #243
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Call Trace:
 dump_stack+0x67/0x8e
 print_circular_bug+0x341/0x34f
 check_prev_add+0x11f/0x5d4
 ? add_lock_to_list.isra.12+0x8b/0x8b
 ? add_lock_to_list.isra.12+0x8b/0x8b
 ? __lock_acquire+0xf77/0x10b4
 __lock_acquire+0xf77/0x10b4
 lock_acquire+0x174/0x19f
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 __mutex_lock+0x86/0x7d2
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 afs_begin_vnode_operation+0x33/0x77 [kafs]
 afs_fetch_data+0x80/0x12a [kafs]
 afs_readpages+0x314/0x405 [kafs]
 __do_page_cache_readahead+0x203/0x2ba
 ? filemap_fault+0x179/0x54d
 filemap_fault+0x179/0x54d
 __do_fault+0x17/0x60
 __handle_mm_fault+0x6d7/0x95c
 handle_mm_fault+0x24e/0x2a3
 __do_page_fault+0x301/0x486
 do_page_fault+0x236/0x259
 page_fault+0x22/0x30
RIP: 0010:__clear_user+0x3d/0x60
RSP: 0018:ffff880071e93da0 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 000000000000011c RCX: 000000000000011c
RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000060f720
RBP: 000000000060f720 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: ffff8800b5459b68 R12: ffff8800ce150e00
R13: 000000000060f720 R14: 00000000006127a8 R15: 0000000000000000
 padzero+0x1c/0x2b
 load_elf_binary+0x785/0xdc7
 search_binary_handler+0x81/0x1ff
 do_execveat_common.isra.14+0x600/0x888
 do_execve+0x1f/0x21
 SyS_execve+0x28/0x2f
 do_syscall_64+0x89/0x1be
 entry_SYSCALL64_slow_path+0x25/0x25
RIP: 0033:0x7fdb6009ee07
RSP: 002b:00007fff566d9728 EFLAGS: 00000246 ORIG_RAX: 000000000000003b
RAX: ffffffffffffffda RBX: 000055ba57280900 RCX: 00007fdb6009ee07
RDX: 000055ba5727f270 RSI: 000055ba5727cac0 RDI: 000055ba57280900
RBP: 000055ba57280900 R08: 00007fff566d9700 R09: 0000000000000000
R10: 000055ba5727cac0 R11: 0000000000000246 R12: 0000000000000000
R13: 000055ba5727cac0 R14: 000055ba5727f270 R15: 0000000000000000

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-24 10:18:40 +00:00

661 lines
18 KiB
C

/* incoming call handling
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/errqueue.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/icmp.h>
#include <linux/gfp.h>
#include <linux/circ_buf.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include <net/ip.h>
#include "ar-internal.h"
/*
* Preallocate a single service call, connection and peer and, if possible,
* give them a user ID and attach the user's side of the ID to them.
*/
static int rxrpc_service_prealloc_one(struct rxrpc_sock *rx,
struct rxrpc_backlog *b,
rxrpc_notify_rx_t notify_rx,
rxrpc_user_attach_call_t user_attach_call,
unsigned long user_call_ID, gfp_t gfp)
{
const void *here = __builtin_return_address(0);
struct rxrpc_call *call;
struct rxrpc_net *rxnet = rxrpc_net(sock_net(&rx->sk));
int max, tmp;
unsigned int size = RXRPC_BACKLOG_MAX;
unsigned int head, tail, call_head, call_tail;
max = rx->sk.sk_max_ack_backlog;
tmp = rx->sk.sk_ack_backlog;
if (tmp >= max) {
_leave(" = -ENOBUFS [full %u]", max);
return -ENOBUFS;
}
max -= tmp;
/* We don't need more conns and peers than we have calls, but on the
* other hand, we shouldn't ever use more peers than conns or conns
* than calls.
*/
call_head = b->call_backlog_head;
call_tail = READ_ONCE(b->call_backlog_tail);
tmp = CIRC_CNT(call_head, call_tail, size);
if (tmp >= max) {
_leave(" = -ENOBUFS [enough %u]", tmp);
return -ENOBUFS;
}
max = tmp + 1;
head = b->peer_backlog_head;
tail = READ_ONCE(b->peer_backlog_tail);
if (CIRC_CNT(head, tail, size) < max) {
struct rxrpc_peer *peer = rxrpc_alloc_peer(rx->local, gfp);
if (!peer)
return -ENOMEM;
b->peer_backlog[head] = peer;
smp_store_release(&b->peer_backlog_head,
(head + 1) & (size - 1));
}
head = b->conn_backlog_head;
tail = READ_ONCE(b->conn_backlog_tail);
if (CIRC_CNT(head, tail, size) < max) {
struct rxrpc_connection *conn;
conn = rxrpc_prealloc_service_connection(rxnet, gfp);
if (!conn)
return -ENOMEM;
b->conn_backlog[head] = conn;
smp_store_release(&b->conn_backlog_head,
(head + 1) & (size - 1));
trace_rxrpc_conn(conn, rxrpc_conn_new_service,
atomic_read(&conn->usage), here);
}
/* Now it gets complicated, because calls get registered with the
* socket here, particularly if a user ID is preassigned by the user.
*/
call = rxrpc_alloc_call(rx, gfp);
if (!call)
return -ENOMEM;
call->flags |= (1 << RXRPC_CALL_IS_SERVICE);
call->state = RXRPC_CALL_SERVER_PREALLOC;
trace_rxrpc_call(call, rxrpc_call_new_service,
atomic_read(&call->usage),
here, (const void *)user_call_ID);
write_lock(&rx->call_lock);
if (user_attach_call) {
struct rxrpc_call *xcall;
struct rb_node *parent, **pp;
/* Check the user ID isn't already in use */
pp = &rx->calls.rb_node;
parent = NULL;
while (*pp) {
parent = *pp;
xcall = rb_entry(parent, struct rxrpc_call, sock_node);
if (user_call_ID < call->user_call_ID)
pp = &(*pp)->rb_left;
else if (user_call_ID > call->user_call_ID)
pp = &(*pp)->rb_right;
else
goto id_in_use;
}
call->user_call_ID = user_call_ID;
call->notify_rx = notify_rx;
rxrpc_get_call(call, rxrpc_call_got_kernel);
user_attach_call(call, user_call_ID);
rxrpc_get_call(call, rxrpc_call_got_userid);
rb_link_node(&call->sock_node, parent, pp);
rb_insert_color(&call->sock_node, &rx->calls);
set_bit(RXRPC_CALL_HAS_USERID, &call->flags);
}
list_add(&call->sock_link, &rx->sock_calls);
write_unlock(&rx->call_lock);
write_lock(&rxnet->call_lock);
list_add_tail(&call->link, &rxnet->calls);
write_unlock(&rxnet->call_lock);
b->call_backlog[call_head] = call;
smp_store_release(&b->call_backlog_head, (call_head + 1) & (size - 1));
_leave(" = 0 [%d -> %lx]", call->debug_id, user_call_ID);
return 0;
id_in_use:
write_unlock(&rx->call_lock);
rxrpc_cleanup_call(call);
_leave(" = -EBADSLT");
return -EBADSLT;
}
/*
* Preallocate sufficient service connections, calls and peers to cover the
* entire backlog of a socket. When a new call comes in, if we don't have
* sufficient of each available, the call gets rejected as busy or ignored.
*
* The backlog is replenished when a connection is accepted or rejected.
*/
int rxrpc_service_prealloc(struct rxrpc_sock *rx, gfp_t gfp)
{
struct rxrpc_backlog *b = rx->backlog;
if (!b) {
b = kzalloc(sizeof(struct rxrpc_backlog), gfp);
if (!b)
return -ENOMEM;
rx->backlog = b;
}
if (rx->discard_new_call)
return 0;
while (rxrpc_service_prealloc_one(rx, b, NULL, NULL, 0, gfp) == 0)
;
return 0;
}
/*
* Discard the preallocation on a service.
*/
void rxrpc_discard_prealloc(struct rxrpc_sock *rx)
{
struct rxrpc_backlog *b = rx->backlog;
struct rxrpc_net *rxnet = rxrpc_net(sock_net(&rx->sk));
unsigned int size = RXRPC_BACKLOG_MAX, head, tail;
if (!b)
return;
rx->backlog = NULL;
/* Make sure that there aren't any incoming calls in progress before we
* clear the preallocation buffers.
*/
spin_lock_bh(&rx->incoming_lock);
spin_unlock_bh(&rx->incoming_lock);
head = b->peer_backlog_head;
tail = b->peer_backlog_tail;
while (CIRC_CNT(head, tail, size) > 0) {
struct rxrpc_peer *peer = b->peer_backlog[tail];
kfree(peer);
tail = (tail + 1) & (size - 1);
}
head = b->conn_backlog_head;
tail = b->conn_backlog_tail;
while (CIRC_CNT(head, tail, size) > 0) {
struct rxrpc_connection *conn = b->conn_backlog[tail];
write_lock(&rxnet->conn_lock);
list_del(&conn->link);
list_del(&conn->proc_link);
write_unlock(&rxnet->conn_lock);
kfree(conn);
tail = (tail + 1) & (size - 1);
}
head = b->call_backlog_head;
tail = b->call_backlog_tail;
while (CIRC_CNT(head, tail, size) > 0) {
struct rxrpc_call *call = b->call_backlog[tail];
call->socket = rx;
if (rx->discard_new_call) {
_debug("discard %lx", call->user_call_ID);
rx->discard_new_call(call, call->user_call_ID);
rxrpc_put_call(call, rxrpc_call_put_kernel);
}
rxrpc_call_completed(call);
rxrpc_release_call(rx, call);
rxrpc_put_call(call, rxrpc_call_put);
tail = (tail + 1) & (size - 1);
}
kfree(b);
}
/*
* Allocate a new incoming call from the prealloc pool, along with a connection
* and a peer as necessary.
*/
static struct rxrpc_call *rxrpc_alloc_incoming_call(struct rxrpc_sock *rx,
struct rxrpc_local *local,
struct rxrpc_connection *conn,
struct sk_buff *skb)
{
struct rxrpc_backlog *b = rx->backlog;
struct rxrpc_peer *peer, *xpeer;
struct rxrpc_call *call;
unsigned short call_head, conn_head, peer_head;
unsigned short call_tail, conn_tail, peer_tail;
unsigned short call_count, conn_count;
/* #calls >= #conns >= #peers must hold true. */
call_head = smp_load_acquire(&b->call_backlog_head);
call_tail = b->call_backlog_tail;
call_count = CIRC_CNT(call_head, call_tail, RXRPC_BACKLOG_MAX);
conn_head = smp_load_acquire(&b->conn_backlog_head);
conn_tail = b->conn_backlog_tail;
conn_count = CIRC_CNT(conn_head, conn_tail, RXRPC_BACKLOG_MAX);
ASSERTCMP(conn_count, >=, call_count);
peer_head = smp_load_acquire(&b->peer_backlog_head);
peer_tail = b->peer_backlog_tail;
ASSERTCMP(CIRC_CNT(peer_head, peer_tail, RXRPC_BACKLOG_MAX), >=,
conn_count);
if (call_count == 0)
return NULL;
if (!conn) {
/* No connection. We're going to need a peer to start off
* with. If one doesn't yet exist, use a spare from the
* preallocation set. We dump the address into the spare in
* anticipation - and to save on stack space.
*/
xpeer = b->peer_backlog[peer_tail];
if (rxrpc_extract_addr_from_skb(local, &xpeer->srx, skb) < 0)
return NULL;
peer = rxrpc_lookup_incoming_peer(local, xpeer);
if (peer == xpeer) {
b->peer_backlog[peer_tail] = NULL;
smp_store_release(&b->peer_backlog_tail,
(peer_tail + 1) &
(RXRPC_BACKLOG_MAX - 1));
}
/* Now allocate and set up the connection */
conn = b->conn_backlog[conn_tail];
b->conn_backlog[conn_tail] = NULL;
smp_store_release(&b->conn_backlog_tail,
(conn_tail + 1) & (RXRPC_BACKLOG_MAX - 1));
rxrpc_get_local(local);
conn->params.local = local;
conn->params.peer = peer;
rxrpc_see_connection(conn);
rxrpc_new_incoming_connection(rx, conn, skb);
} else {
rxrpc_get_connection(conn);
}
/* And now we can allocate and set up a new call */
call = b->call_backlog[call_tail];
b->call_backlog[call_tail] = NULL;
smp_store_release(&b->call_backlog_tail,
(call_tail + 1) & (RXRPC_BACKLOG_MAX - 1));
rxrpc_see_call(call);
call->conn = conn;
call->peer = rxrpc_get_peer(conn->params.peer);
call->cong_cwnd = call->peer->cong_cwnd;
return call;
}
/*
* Set up a new incoming call. Called in BH context with the RCU read lock
* held.
*
* If this is for a kernel service, when we allocate the call, it will have
* three refs on it: (1) the kernel service, (2) the user_call_ID tree, (3) the
* retainer ref obtained from the backlog buffer. Prealloc calls for userspace
* services only have the ref from the backlog buffer. We want to pass this
* ref to non-BH context to dispose of.
*
* If we want to report an error, we mark the skb with the packet type and
* abort code and return NULL.
*
* The call is returned with the user access mutex held.
*/
struct rxrpc_call *rxrpc_new_incoming_call(struct rxrpc_local *local,
struct rxrpc_connection *conn,
struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_sock *rx;
struct rxrpc_call *call;
u16 service_id = sp->hdr.serviceId;
_enter("");
/* Get the socket providing the service */
rx = rcu_dereference(local->service);
if (rx && (service_id == rx->srx.srx_service ||
service_id == rx->second_service))
goto found_service;
trace_rxrpc_abort("INV", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
RX_INVALID_OPERATION, EOPNOTSUPP);
skb->mark = RXRPC_SKB_MARK_LOCAL_ABORT;
skb->priority = RX_INVALID_OPERATION;
_leave(" = NULL [service]");
return NULL;
found_service:
spin_lock(&rx->incoming_lock);
if (rx->sk.sk_state == RXRPC_SERVER_LISTEN_DISABLED ||
rx->sk.sk_state == RXRPC_CLOSE) {
trace_rxrpc_abort("CLS", sp->hdr.cid, sp->hdr.callNumber,
sp->hdr.seq, RX_INVALID_OPERATION, ESHUTDOWN);
skb->mark = RXRPC_SKB_MARK_LOCAL_ABORT;
skb->priority = RX_INVALID_OPERATION;
_leave(" = NULL [close]");
call = NULL;
goto out;
}
call = rxrpc_alloc_incoming_call(rx, local, conn, skb);
if (!call) {
skb->mark = RXRPC_SKB_MARK_BUSY;
_leave(" = NULL [busy]");
call = NULL;
goto out;
}
trace_rxrpc_receive(call, rxrpc_receive_incoming,
sp->hdr.serial, sp->hdr.seq);
/* Lock the call to prevent rxrpc_kernel_send/recv_data() and
* sendmsg()/recvmsg() inconveniently stealing the mutex once the
* notification is generated.
*
* The BUG should never happen because the kernel should be well
* behaved enough not to access the call before the first notification
* event and userspace is prevented from doing so until the state is
* appropriate.
*/
if (!mutex_trylock(&call->user_mutex))
BUG();
/* Make the call live. */
rxrpc_incoming_call(rx, call, skb);
conn = call->conn;
if (rx->notify_new_call)
rx->notify_new_call(&rx->sk, call, call->user_call_ID);
else
sk_acceptq_added(&rx->sk);
spin_lock(&conn->state_lock);
switch (conn->state) {
case RXRPC_CONN_SERVICE_UNSECURED:
conn->state = RXRPC_CONN_SERVICE_CHALLENGING;
set_bit(RXRPC_CONN_EV_CHALLENGE, &call->conn->events);
rxrpc_queue_conn(call->conn);
break;
case RXRPC_CONN_SERVICE:
write_lock(&call->state_lock);
if (rx->discard_new_call)
call->state = RXRPC_CALL_SERVER_RECV_REQUEST;
else
call->state = RXRPC_CALL_SERVER_ACCEPTING;
write_unlock(&call->state_lock);
break;
case RXRPC_CONN_REMOTELY_ABORTED:
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
conn->remote_abort, -ECONNABORTED);
break;
case RXRPC_CONN_LOCALLY_ABORTED:
rxrpc_abort_call("CON", call, sp->hdr.seq,
conn->local_abort, -ECONNABORTED);
break;
default:
BUG();
}
spin_unlock(&conn->state_lock);
if (call->state == RXRPC_CALL_SERVER_ACCEPTING)
rxrpc_notify_socket(call);
/* We have to discard the prealloc queue's ref here and rely on a
* combination of the RCU read lock and refs held either by the socket
* (recvmsg queue, to-be-accepted queue or user ID tree) or the kernel
* service to prevent the call from being deallocated too early.
*/
rxrpc_put_call(call, rxrpc_call_put);
_leave(" = %p{%d}", call, call->debug_id);
out:
spin_unlock(&rx->incoming_lock);
return call;
}
/*
* handle acceptance of a call by userspace
* - assign the user call ID to the call at the front of the queue
* - called with the socket locked.
*/
struct rxrpc_call *rxrpc_accept_call(struct rxrpc_sock *rx,
unsigned long user_call_ID,
rxrpc_notify_rx_t notify_rx)
__releases(&rx->sk.sk_lock.slock)
{
struct rxrpc_call *call;
struct rb_node *parent, **pp;
int ret;
_enter(",%lx", user_call_ID);
ASSERT(!irqs_disabled());
write_lock(&rx->call_lock);
if (list_empty(&rx->to_be_accepted)) {
write_unlock(&rx->call_lock);
release_sock(&rx->sk);
kleave(" = -ENODATA [empty]");
return ERR_PTR(-ENODATA);
}
/* check the user ID isn't already in use */
pp = &rx->calls.rb_node;
parent = NULL;
while (*pp) {
parent = *pp;
call = rb_entry(parent, struct rxrpc_call, sock_node);
if (user_call_ID < call->user_call_ID)
pp = &(*pp)->rb_left;
else if (user_call_ID > call->user_call_ID)
pp = &(*pp)->rb_right;
else
goto id_in_use;
}
/* Dequeue the first call and check it's still valid. We gain
* responsibility for the queue's reference.
*/
call = list_entry(rx->to_be_accepted.next,
struct rxrpc_call, accept_link);
write_unlock(&rx->call_lock);
/* We need to gain the mutex from the interrupt handler without
* upsetting lockdep, so we have to release it there and take it here.
* We are, however, still holding the socket lock, so other accepts
* must wait for us and no one can add the user ID behind our backs.
*/
if (mutex_lock_interruptible(&call->user_mutex) < 0) {
release_sock(&rx->sk);
kleave(" = -ERESTARTSYS");
return ERR_PTR(-ERESTARTSYS);
}
write_lock(&rx->call_lock);
list_del_init(&call->accept_link);
sk_acceptq_removed(&rx->sk);
rxrpc_see_call(call);
/* Find the user ID insertion point. */
pp = &rx->calls.rb_node;
parent = NULL;
while (*pp) {
parent = *pp;
call = rb_entry(parent, struct rxrpc_call, sock_node);
if (user_call_ID < call->user_call_ID)
pp = &(*pp)->rb_left;
else if (user_call_ID > call->user_call_ID)
pp = &(*pp)->rb_right;
else
BUG();
}
write_lock_bh(&call->state_lock);
switch (call->state) {
case RXRPC_CALL_SERVER_ACCEPTING:
call->state = RXRPC_CALL_SERVER_RECV_REQUEST;
break;
case RXRPC_CALL_COMPLETE:
ret = call->error;
goto out_release;
default:
BUG();
}
/* formalise the acceptance */
call->notify_rx = notify_rx;
call->user_call_ID = user_call_ID;
rxrpc_get_call(call, rxrpc_call_got_userid);
rb_link_node(&call->sock_node, parent, pp);
rb_insert_color(&call->sock_node, &rx->calls);
if (test_and_set_bit(RXRPC_CALL_HAS_USERID, &call->flags))
BUG();
write_unlock_bh(&call->state_lock);
write_unlock(&rx->call_lock);
rxrpc_notify_socket(call);
rxrpc_service_prealloc(rx, GFP_KERNEL);
release_sock(&rx->sk);
_leave(" = %p{%d}", call, call->debug_id);
return call;
out_release:
_debug("release %p", call);
write_unlock_bh(&call->state_lock);
write_unlock(&rx->call_lock);
rxrpc_release_call(rx, call);
rxrpc_put_call(call, rxrpc_call_put);
goto out;
id_in_use:
ret = -EBADSLT;
write_unlock(&rx->call_lock);
out:
rxrpc_service_prealloc(rx, GFP_KERNEL);
release_sock(&rx->sk);
_leave(" = %d", ret);
return ERR_PTR(ret);
}
/*
* Handle rejection of a call by userspace
* - reject the call at the front of the queue
*/
int rxrpc_reject_call(struct rxrpc_sock *rx)
{
struct rxrpc_call *call;
bool abort = false;
int ret;
_enter("");
ASSERT(!irqs_disabled());
write_lock(&rx->call_lock);
if (list_empty(&rx->to_be_accepted)) {
write_unlock(&rx->call_lock);
return -ENODATA;
}
/* Dequeue the first call and check it's still valid. We gain
* responsibility for the queue's reference.
*/
call = list_entry(rx->to_be_accepted.next,
struct rxrpc_call, accept_link);
list_del_init(&call->accept_link);
sk_acceptq_removed(&rx->sk);
rxrpc_see_call(call);
write_lock_bh(&call->state_lock);
switch (call->state) {
case RXRPC_CALL_SERVER_ACCEPTING:
__rxrpc_abort_call("REJ", call, 1, RX_USER_ABORT, -ECONNABORTED);
abort = true;
/* fall through */
case RXRPC_CALL_COMPLETE:
ret = call->error;
goto out_discard;
default:
BUG();
}
out_discard:
write_unlock_bh(&call->state_lock);
write_unlock(&rx->call_lock);
if (abort) {
rxrpc_send_abort_packet(call);
rxrpc_release_call(rx, call);
rxrpc_put_call(call, rxrpc_call_put);
}
rxrpc_service_prealloc(rx, GFP_KERNEL);
_leave(" = %d", ret);
return ret;
}
/*
* rxrpc_kernel_charge_accept - Charge up socket with preallocated calls
* @sock: The socket on which to preallocate
* @notify_rx: Event notification function for the call
* @user_attach_call: Func to attach call to user_call_ID
* @user_call_ID: The tag to attach to the preallocated call
* @gfp: The allocation conditions.
*
* Charge up the socket with preallocated calls, each with a user ID. A
* function should be provided to effect the attachment from the user's side.
* The user is given a ref to hold on the call.
*
* Note that the call may be come connected before this function returns.
*/
int rxrpc_kernel_charge_accept(struct socket *sock,
rxrpc_notify_rx_t notify_rx,
rxrpc_user_attach_call_t user_attach_call,
unsigned long user_call_ID, gfp_t gfp)
{
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
struct rxrpc_backlog *b = rx->backlog;
if (sock->sk->sk_state == RXRPC_CLOSE)
return -ESHUTDOWN;
return rxrpc_service_prealloc_one(rx, b, notify_rx,
user_attach_call, user_call_ID,
gfp);
}
EXPORT_SYMBOL(rxrpc_kernel_charge_accept);