linux-next/drivers/block/brd.c
Christoph Hellwig 3222d8c2a7 block: remove ->rw_page
The ->rw_page method is a special purpose bypass of the usual bio handling
path that is limited to single-page reads and writes and synchronous which
causes a lot of extra code in the drivers, callers and the block layer.

The only remaining user is the MM swap code.  Switch that swap code to
simply submit a single-vec on-stack bio an synchronously wait on it based
on a newly added QUEUE_FLAG_SYNCHRONOUS flag set by the drivers that
currently implement ->rw_page instead.  While this touches one extra cache
line and executes extra code, it simplifies the block layer and drivers
and ensures that all feastures are properly supported by all drivers, e.g.
right now ->rw_page bypassed cgroup writeback entirely.

[akpm@linux-foundation.org: fix comment typo, per Dan]
Link: https://lkml.kernel.org/r/20230125133436.447864-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02 22:33:34 -08:00

511 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Ram backed block device driver.
*
* Copyright (C) 2007 Nick Piggin
* Copyright (C) 2007 Novell Inc.
*
* Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
* of their respective owners.
*/
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/highmem.h>
#include <linux/mutex.h>
#include <linux/pagemap.h>
#include <linux/radix-tree.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
/*
* Each block ramdisk device has a radix_tree brd_pages of pages that stores
* the pages containing the block device's contents. A brd page's ->index is
* its offset in PAGE_SIZE units. This is similar to, but in no way connected
* with, the kernel's pagecache or buffer cache (which sit above our block
* device).
*/
struct brd_device {
int brd_number;
struct gendisk *brd_disk;
struct list_head brd_list;
/*
* Backing store of pages and lock to protect it. This is the contents
* of the block device.
*/
spinlock_t brd_lock;
struct radix_tree_root brd_pages;
u64 brd_nr_pages;
};
/*
* Look up and return a brd's page for a given sector.
*/
static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
/*
* The page lifetime is protected by the fact that we have opened the
* device node -- brd pages will never be deleted under us, so we
* don't need any further locking or refcounting.
*
* This is strictly true for the radix-tree nodes as well (ie. we
* don't actually need the rcu_read_lock()), however that is not a
* documented feature of the radix-tree API so it is better to be
* safe here (we don't have total exclusion from radix tree updates
* here, only deletes).
*/
rcu_read_lock();
idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
page = radix_tree_lookup(&brd->brd_pages, idx);
rcu_read_unlock();
BUG_ON(page && page->index != idx);
return page;
}
/*
* Look up and return a brd's page for a given sector.
* If one does not exist, allocate an empty page, and insert that. Then
* return it.
*/
static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
gfp_t gfp_flags;
page = brd_lookup_page(brd, sector);
if (page)
return page;
/*
* Must use NOIO because we don't want to recurse back into the
* block or filesystem layers from page reclaim.
*/
gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
page = alloc_page(gfp_flags);
if (!page)
return NULL;
if (radix_tree_preload(GFP_NOIO)) {
__free_page(page);
return NULL;
}
spin_lock(&brd->brd_lock);
idx = sector >> PAGE_SECTORS_SHIFT;
page->index = idx;
if (radix_tree_insert(&brd->brd_pages, idx, page)) {
__free_page(page);
page = radix_tree_lookup(&brd->brd_pages, idx);
BUG_ON(!page);
BUG_ON(page->index != idx);
} else {
brd->brd_nr_pages++;
}
spin_unlock(&brd->brd_lock);
radix_tree_preload_end();
return page;
}
/*
* Free all backing store pages and radix tree. This must only be called when
* there are no other users of the device.
*/
#define FREE_BATCH 16
static void brd_free_pages(struct brd_device *brd)
{
unsigned long pos = 0;
struct page *pages[FREE_BATCH];
int nr_pages;
do {
int i;
nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
(void **)pages, pos, FREE_BATCH);
for (i = 0; i < nr_pages; i++) {
void *ret;
BUG_ON(pages[i]->index < pos);
pos = pages[i]->index;
ret = radix_tree_delete(&brd->brd_pages, pos);
BUG_ON(!ret || ret != pages[i]);
__free_page(pages[i]);
}
pos++;
/*
* It takes 3.4 seconds to remove 80GiB ramdisk.
* So, we need cond_resched to avoid stalling the CPU.
*/
cond_resched();
/*
* This assumes radix_tree_gang_lookup always returns as
* many pages as possible. If the radix-tree code changes,
* so will this have to.
*/
} while (nr_pages == FREE_BATCH);
}
/*
* copy_to_brd_setup must be called before copy_to_brd. It may sleep.
*/
static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
{
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
if (!brd_insert_page(brd, sector))
return -ENOSPC;
if (copy < n) {
sector += copy >> SECTOR_SHIFT;
if (!brd_insert_page(brd, sector))
return -ENOSPC;
}
return 0;
}
/*
* Copy n bytes from src to the brd starting at sector. Does not sleep.
*/
static void copy_to_brd(struct brd_device *brd, const void *src,
sector_t sector, size_t n)
{
struct page *page;
void *dst;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst + offset, src, copy);
kunmap_atomic(dst);
if (copy < n) {
src += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(dst);
}
}
/*
* Copy n bytes to dst from the brd starting at sector. Does not sleep.
*/
static void copy_from_brd(void *dst, struct brd_device *brd,
sector_t sector, size_t n)
{
struct page *page;
void *src;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src + offset, copy);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
if (copy < n) {
dst += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
}
}
/*
* Process a single bvec of a bio.
*/
static int brd_do_bvec(struct brd_device *brd, struct page *page,
unsigned int len, unsigned int off, enum req_op op,
sector_t sector)
{
void *mem;
int err = 0;
if (op_is_write(op)) {
err = copy_to_brd_setup(brd, sector, len);
if (err)
goto out;
}
mem = kmap_atomic(page);
if (!op_is_write(op)) {
copy_from_brd(mem + off, brd, sector, len);
flush_dcache_page(page);
} else {
flush_dcache_page(page);
copy_to_brd(brd, mem + off, sector, len);
}
kunmap_atomic(mem);
out:
return err;
}
static void brd_submit_bio(struct bio *bio)
{
struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
sector_t sector = bio->bi_iter.bi_sector;
struct bio_vec bvec;
struct bvec_iter iter;
bio_for_each_segment(bvec, bio, iter) {
unsigned int len = bvec.bv_len;
int err;
/* Don't support un-aligned buffer */
WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
(len & (SECTOR_SIZE - 1)));
err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
bio_op(bio), sector);
if (err) {
bio_io_error(bio);
return;
}
sector += len >> SECTOR_SHIFT;
}
bio_endio(bio);
}
static const struct block_device_operations brd_fops = {
.owner = THIS_MODULE,
.submit_bio = brd_submit_bio,
};
/*
* And now the modules code and kernel interface.
*/
static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
module_param(rd_nr, int, 0444);
MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
module_param(rd_size, ulong, 0444);
MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
static int max_part = 1;
module_param(max_part, int, 0444);
MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
MODULE_ALIAS("rd");
#ifndef MODULE
/* Legacy boot options - nonmodular */
static int __init ramdisk_size(char *str)
{
rd_size = simple_strtol(str, NULL, 0);
return 1;
}
__setup("ramdisk_size=", ramdisk_size);
#endif
/*
* The device scheme is derived from loop.c. Keep them in synch where possible
* (should share code eventually).
*/
static LIST_HEAD(brd_devices);
static struct dentry *brd_debugfs_dir;
static int brd_alloc(int i)
{
struct brd_device *brd;
struct gendisk *disk;
char buf[DISK_NAME_LEN];
int err = -ENOMEM;
list_for_each_entry(brd, &brd_devices, brd_list)
if (brd->brd_number == i)
return -EEXIST;
brd = kzalloc(sizeof(*brd), GFP_KERNEL);
if (!brd)
return -ENOMEM;
brd->brd_number = i;
list_add_tail(&brd->brd_list, &brd_devices);
spin_lock_init(&brd->brd_lock);
INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
snprintf(buf, DISK_NAME_LEN, "ram%d", i);
if (!IS_ERR_OR_NULL(brd_debugfs_dir))
debugfs_create_u64(buf, 0444, brd_debugfs_dir,
&brd->brd_nr_pages);
disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
if (!disk)
goto out_free_dev;
disk->major = RAMDISK_MAJOR;
disk->first_minor = i * max_part;
disk->minors = max_part;
disk->fops = &brd_fops;
disk->private_data = brd;
strscpy(disk->disk_name, buf, DISK_NAME_LEN);
set_capacity(disk, rd_size * 2);
/*
* This is so fdisk will align partitions on 4k, because of
* direct_access API needing 4k alignment, returning a PFN
* (This is only a problem on very small devices <= 4M,
* otherwise fdisk will align on 1M. Regardless this call
* is harmless)
*/
blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
/* Tell the block layer that this is not a rotational device */
blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, disk->queue);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
err = add_disk(disk);
if (err)
goto out_cleanup_disk;
return 0;
out_cleanup_disk:
put_disk(disk);
out_free_dev:
list_del(&brd->brd_list);
kfree(brd);
return err;
}
static void brd_probe(dev_t dev)
{
brd_alloc(MINOR(dev) / max_part);
}
static void brd_cleanup(void)
{
struct brd_device *brd, *next;
debugfs_remove_recursive(brd_debugfs_dir);
list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
del_gendisk(brd->brd_disk);
put_disk(brd->brd_disk);
brd_free_pages(brd);
list_del(&brd->brd_list);
kfree(brd);
}
}
static inline void brd_check_and_reset_par(void)
{
if (unlikely(!max_part))
max_part = 1;
/*
* make sure 'max_part' can be divided exactly by (1U << MINORBITS),
* otherwise, it is possiable to get same dev_t when adding partitions.
*/
if ((1U << MINORBITS) % max_part != 0)
max_part = 1UL << fls(max_part);
if (max_part > DISK_MAX_PARTS) {
pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
DISK_MAX_PARTS, DISK_MAX_PARTS);
max_part = DISK_MAX_PARTS;
}
}
static int __init brd_init(void)
{
int err, i;
brd_check_and_reset_par();
brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
for (i = 0; i < rd_nr; i++) {
err = brd_alloc(i);
if (err)
goto out_free;
}
/*
* brd module now has a feature to instantiate underlying device
* structure on-demand, provided that there is an access dev node.
*
* (1) if rd_nr is specified, create that many upfront. else
* it defaults to CONFIG_BLK_DEV_RAM_COUNT
* (2) User can further extend brd devices by create dev node themselves
* and have kernel automatically instantiate actual device
* on-demand. Example:
* mknod /path/devnod_name b 1 X # 1 is the rd major
* fdisk -l /path/devnod_name
* If (X / max_part) was not already created it will be created
* dynamically.
*/
if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
err = -EIO;
goto out_free;
}
pr_info("brd: module loaded\n");
return 0;
out_free:
brd_cleanup();
pr_info("brd: module NOT loaded !!!\n");
return err;
}
static void __exit brd_exit(void)
{
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
brd_cleanup();
pr_info("brd: module unloaded\n");
}
module_init(brd_init);
module_exit(brd_exit);