Sebastian Andrzej Siewior 36590c50b2 tracing: Merge irqflags + preempt counter.
The state of the interrupts (irqflags) and the preemption counter are
both passed down to tracing_generic_entry_update(). Only one bit of
irqflags is actually required: The on/off state. The complete 32bit
of the preemption counter isn't needed. Just whether of the upper bits
(softirq, hardirq and NMI) are set and the preemption depth is needed.

The irqflags and the preemption counter could be evaluated early and the
information stored in an integer `trace_ctx'.
tracing_generic_entry_update() would use the upper bits as the
TRACE_FLAG_* and the lower 8bit as the disabled-preemption depth
(considering that one must be substracted from the counter in one
special cases).

The actual preemption value is not used except for the tracing record.
The `irqflags' variable is mostly used only for the tracing record. An
exception here is for instance wakeup_tracer_call() or
probe_wakeup_sched_switch() which explicilty disable interrupts and use
that `irqflags' to save (and restore) the IRQ state and to record the
state.

Struct trace_event_buffer has also the `pc' and flags' members which can
be replaced with `trace_ctx' since their actual value is not used
outside of trace recording.

This will reduce tracing_generic_entry_update() to simply assign values
to struct trace_entry. The evaluation of the TRACE_FLAG_* bits is moved
to _tracing_gen_ctx_flags() which replaces preempt_count() and
local_save_flags() invocations.

As an example, ftrace_syscall_enter() may invoke:
- trace_buffer_lock_reserve() -> … -> tracing_generic_entry_update()
- event_trigger_unlock_commit()
  -> ftrace_trace_stack() -> … -> tracing_generic_entry_update()
  -> ftrace_trace_userstack() -> … -> tracing_generic_entry_update()

In this case the TRACE_FLAG_* bits were evaluated three times. By using
the `trace_ctx' they are evaluated once and assigned three times.

A build with all tracers enabled on x86-64 with and without the patch:

    text     data      bss      dec      hex    filename
21970669 17084168  7639260 46694097  2c87ed1 vmlinux.old
21970293 17084168  7639260 46693721  2c87d59 vmlinux.new

text shrank by 379 bytes, data remained constant.

Link: https://lkml.kernel.org/r/20210125194511.3924915-2-bigeasy@linutronix.de

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-02-02 17:02:06 -05:00
2021-01-24 13:52:02 -08:00
2021-01-10 12:53:08 -08:00
2021-01-24 13:52:02 -08:00
2021-01-24 12:30:14 -08:00
2020-12-16 16:38:41 -08:00
2021-01-10 13:24:55 -08:00
2021-01-08 15:06:02 -08:00
2020-10-17 11:18:18 -07:00
2021-01-15 23:55:16 +01:00
2021-01-24 16:47:14 -08:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
The linux-next integration testing tree
Readme 3.8 GiB
Languages
C 97.5%
Assembly 1%
Shell 0.6%
Python 0.3%
Makefile 0.3%