linux-next/fs/xattr.c
Christian Brauner 39f60c1cce
fs: port xattr to mnt_idmap
Convert to struct mnt_idmap.

Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.

Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.

Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.

Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19 09:24:28 +01:00

1393 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
File: fs/xattr.c
Extended attribute handling.
Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org>
Copyright (C) 2001 SGI - Silicon Graphics, Inc <linux-xfs@oss.sgi.com>
Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/xattr.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/security.h>
#include <linux/evm.h>
#include <linux/syscalls.h>
#include <linux/export.h>
#include <linux/fsnotify.h>
#include <linux/audit.h>
#include <linux/vmalloc.h>
#include <linux/posix_acl_xattr.h>
#include <linux/uaccess.h>
#include "internal.h"
static const char *
strcmp_prefix(const char *a, const char *a_prefix)
{
while (*a_prefix && *a == *a_prefix) {
a++;
a_prefix++;
}
return *a_prefix ? NULL : a;
}
/*
* In order to implement different sets of xattr operations for each xattr
* prefix, a filesystem should create a null-terminated array of struct
* xattr_handler (one for each prefix) and hang a pointer to it off of the
* s_xattr field of the superblock.
*/
#define for_each_xattr_handler(handlers, handler) \
if (handlers) \
for ((handler) = *(handlers)++; \
(handler) != NULL; \
(handler) = *(handlers)++)
/*
* Find the xattr_handler with the matching prefix.
*/
static const struct xattr_handler *
xattr_resolve_name(struct inode *inode, const char **name)
{
const struct xattr_handler **handlers = inode->i_sb->s_xattr;
const struct xattr_handler *handler;
if (!(inode->i_opflags & IOP_XATTR)) {
if (unlikely(is_bad_inode(inode)))
return ERR_PTR(-EIO);
return ERR_PTR(-EOPNOTSUPP);
}
for_each_xattr_handler(handlers, handler) {
const char *n;
n = strcmp_prefix(*name, xattr_prefix(handler));
if (n) {
if (!handler->prefix ^ !*n) {
if (*n)
continue;
return ERR_PTR(-EINVAL);
}
*name = n;
return handler;
}
}
return ERR_PTR(-EOPNOTSUPP);
}
/**
* may_write_xattr - check whether inode allows writing xattr
* @idmap: idmap of the mount the inode was found from
* @inode: the inode on which to set an xattr
*
* Check whether the inode allows writing xattrs. Specifically, we can never
* set or remove an extended attribute on a read-only filesystem or on an
* immutable / append-only inode.
*
* We also need to ensure that the inode has a mapping in the mount to
* not risk writing back invalid i_{g,u}id values.
*
* Return: On success zero is returned. On error a negative errno is returned.
*/
int may_write_xattr(struct mnt_idmap *idmap, struct inode *inode)
{
if (IS_IMMUTABLE(inode))
return -EPERM;
if (IS_APPEND(inode))
return -EPERM;
if (HAS_UNMAPPED_ID(idmap, inode))
return -EPERM;
return 0;
}
/*
* Check permissions for extended attribute access. This is a bit complicated
* because different namespaces have very different rules.
*/
static int
xattr_permission(struct mnt_idmap *idmap, struct inode *inode,
const char *name, int mask)
{
struct user_namespace *mnt_userns = mnt_idmap_owner(idmap);
if (mask & MAY_WRITE) {
int ret;
ret = may_write_xattr(idmap, inode);
if (ret)
return ret;
}
/*
* No restriction for security.* and system.* from the VFS. Decision
* on these is left to the underlying filesystem / security module.
*/
if (!strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN) ||
!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
return 0;
/*
* The trusted.* namespace can only be accessed by privileged users.
*/
if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN)) {
if (!capable(CAP_SYS_ADMIN))
return (mask & MAY_WRITE) ? -EPERM : -ENODATA;
return 0;
}
/*
* In the user.* namespace, only regular files and directories can have
* extended attributes. For sticky directories, only the owner and
* privileged users can write attributes.
*/
if (!strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) {
if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
return (mask & MAY_WRITE) ? -EPERM : -ENODATA;
if (S_ISDIR(inode->i_mode) && (inode->i_mode & S_ISVTX) &&
(mask & MAY_WRITE) &&
!inode_owner_or_capable(mnt_userns, inode))
return -EPERM;
}
return inode_permission(idmap, inode, mask);
}
/*
* Look for any handler that deals with the specified namespace.
*/
int
xattr_supported_namespace(struct inode *inode, const char *prefix)
{
const struct xattr_handler **handlers = inode->i_sb->s_xattr;
const struct xattr_handler *handler;
size_t preflen;
if (!(inode->i_opflags & IOP_XATTR)) {
if (unlikely(is_bad_inode(inode)))
return -EIO;
return -EOPNOTSUPP;
}
preflen = strlen(prefix);
for_each_xattr_handler(handlers, handler) {
if (!strncmp(xattr_prefix(handler), prefix, preflen))
return 0;
}
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(xattr_supported_namespace);
int
__vfs_setxattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct inode *inode, const char *name, const void *value,
size_t size, int flags)
{
const struct xattr_handler *handler;
if (is_posix_acl_xattr(name))
return -EOPNOTSUPP;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->set)
return -EOPNOTSUPP;
if (size == 0)
value = ""; /* empty EA, do not remove */
return handler->set(handler, idmap, dentry, inode, name, value,
size, flags);
}
EXPORT_SYMBOL(__vfs_setxattr);
/**
* __vfs_setxattr_noperm - perform setxattr operation without performing
* permission checks.
*
* @idmap: idmap of the mount the inode was found from
* @dentry: object to perform setxattr on
* @name: xattr name to set
* @value: value to set @name to
* @size: size of @value
* @flags: flags to pass into filesystem operations
*
* returns the result of the internal setxattr or setsecurity operations.
*
* This function requires the caller to lock the inode's i_mutex before it
* is executed. It also assumes that the caller will make the appropriate
* permission checks.
*/
int __vfs_setxattr_noperm(struct mnt_idmap *idmap,
struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
struct inode *inode = dentry->d_inode;
int error = -EAGAIN;
int issec = !strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN);
if (issec)
inode->i_flags &= ~S_NOSEC;
if (inode->i_opflags & IOP_XATTR) {
error = __vfs_setxattr(idmap, dentry, inode, name, value,
size, flags);
if (!error) {
fsnotify_xattr(dentry);
security_inode_post_setxattr(dentry, name, value,
size, flags);
}
} else {
if (unlikely(is_bad_inode(inode)))
return -EIO;
}
if (error == -EAGAIN) {
error = -EOPNOTSUPP;
if (issec) {
const char *suffix = name + XATTR_SECURITY_PREFIX_LEN;
error = security_inode_setsecurity(inode, suffix, value,
size, flags);
if (!error)
fsnotify_xattr(dentry);
}
}
return error;
}
/**
* __vfs_setxattr_locked - set an extended attribute while holding the inode
* lock
*
* @idmap: idmap of the mount of the target inode
* @dentry: object to perform setxattr on
* @name: xattr name to set
* @value: value to set @name to
* @size: size of @value
* @flags: flags to pass into filesystem operations
* @delegated_inode: on return, will contain an inode pointer that
* a delegation was broken on, NULL if none.
*/
int
__vfs_setxattr_locked(struct mnt_idmap *idmap, struct dentry *dentry,
const char *name, const void *value, size_t size,
int flags, struct inode **delegated_inode)
{
struct inode *inode = dentry->d_inode;
int error;
error = xattr_permission(idmap, inode, name, MAY_WRITE);
if (error)
return error;
error = security_inode_setxattr(idmap, dentry, name, value, size,
flags);
if (error)
goto out;
error = try_break_deleg(inode, delegated_inode);
if (error)
goto out;
error = __vfs_setxattr_noperm(idmap, dentry, name, value,
size, flags);
out:
return error;
}
EXPORT_SYMBOL_GPL(__vfs_setxattr_locked);
int
vfs_setxattr(struct mnt_idmap *idmap, struct dentry *dentry,
const char *name, const void *value, size_t size, int flags)
{
struct inode *inode = dentry->d_inode;
struct inode *delegated_inode = NULL;
const void *orig_value = value;
int error;
if (size && strcmp(name, XATTR_NAME_CAPS) == 0) {
error = cap_convert_nscap(idmap, dentry, &value, size);
if (error < 0)
return error;
size = error;
}
retry_deleg:
inode_lock(inode);
error = __vfs_setxattr_locked(idmap, dentry, name, value, size,
flags, &delegated_inode);
inode_unlock(inode);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
if (value != orig_value)
kfree(value);
return error;
}
EXPORT_SYMBOL_GPL(vfs_setxattr);
static ssize_t
xattr_getsecurity(struct mnt_idmap *idmap, struct inode *inode,
const char *name, void *value, size_t size)
{
void *buffer = NULL;
ssize_t len;
if (!value || !size) {
len = security_inode_getsecurity(idmap, inode, name,
&buffer, false);
goto out_noalloc;
}
len = security_inode_getsecurity(idmap, inode, name, &buffer,
true);
if (len < 0)
return len;
if (size < len) {
len = -ERANGE;
goto out;
}
memcpy(value, buffer, len);
out:
kfree(buffer);
out_noalloc:
return len;
}
/*
* vfs_getxattr_alloc - allocate memory, if necessary, before calling getxattr
*
* Allocate memory, if not already allocated, or re-allocate correct size,
* before retrieving the extended attribute. The xattr value buffer should
* always be freed by the caller, even on error.
*
* Returns the result of alloc, if failed, or the getxattr operation.
*/
int
vfs_getxattr_alloc(struct mnt_idmap *idmap, struct dentry *dentry,
const char *name, char **xattr_value, size_t xattr_size,
gfp_t flags)
{
const struct xattr_handler *handler;
struct inode *inode = dentry->d_inode;
char *value = *xattr_value;
int error;
error = xattr_permission(idmap, inode, name, MAY_READ);
if (error)
return error;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->get)
return -EOPNOTSUPP;
error = handler->get(handler, dentry, inode, name, NULL, 0);
if (error < 0)
return error;
if (!value || (error > xattr_size)) {
value = krealloc(*xattr_value, error + 1, flags);
if (!value)
return -ENOMEM;
memset(value, 0, error + 1);
}
error = handler->get(handler, dentry, inode, name, value, error);
*xattr_value = value;
return error;
}
ssize_t
__vfs_getxattr(struct dentry *dentry, struct inode *inode, const char *name,
void *value, size_t size)
{
const struct xattr_handler *handler;
if (is_posix_acl_xattr(name))
return -EOPNOTSUPP;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->get)
return -EOPNOTSUPP;
return handler->get(handler, dentry, inode, name, value, size);
}
EXPORT_SYMBOL(__vfs_getxattr);
ssize_t
vfs_getxattr(struct mnt_idmap *idmap, struct dentry *dentry,
const char *name, void *value, size_t size)
{
struct inode *inode = dentry->d_inode;
int error;
error = xattr_permission(idmap, inode, name, MAY_READ);
if (error)
return error;
error = security_inode_getxattr(dentry, name);
if (error)
return error;
if (!strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN)) {
const char *suffix = name + XATTR_SECURITY_PREFIX_LEN;
int ret = xattr_getsecurity(idmap, inode, suffix, value,
size);
/*
* Only overwrite the return value if a security module
* is actually active.
*/
if (ret == -EOPNOTSUPP)
goto nolsm;
return ret;
}
nolsm:
return __vfs_getxattr(dentry, inode, name, value, size);
}
EXPORT_SYMBOL_GPL(vfs_getxattr);
ssize_t
vfs_listxattr(struct dentry *dentry, char *list, size_t size)
{
struct inode *inode = d_inode(dentry);
ssize_t error;
error = security_inode_listxattr(dentry);
if (error)
return error;
if (inode->i_op->listxattr && (inode->i_opflags & IOP_XATTR)) {
error = inode->i_op->listxattr(dentry, list, size);
} else {
error = security_inode_listsecurity(inode, list, size);
if (size && error > size)
error = -ERANGE;
}
return error;
}
EXPORT_SYMBOL_GPL(vfs_listxattr);
int
__vfs_removexattr(struct mnt_idmap *idmap, struct dentry *dentry,
const char *name)
{
struct inode *inode = d_inode(dentry);
const struct xattr_handler *handler;
if (is_posix_acl_xattr(name))
return -EOPNOTSUPP;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->set)
return -EOPNOTSUPP;
return handler->set(handler, idmap, dentry, inode, name, NULL, 0,
XATTR_REPLACE);
}
EXPORT_SYMBOL(__vfs_removexattr);
/**
* __vfs_removexattr_locked - set an extended attribute while holding the inode
* lock
*
* @idmap: idmap of the mount of the target inode
* @dentry: object to perform setxattr on
* @name: name of xattr to remove
* @delegated_inode: on return, will contain an inode pointer that
* a delegation was broken on, NULL if none.
*/
int
__vfs_removexattr_locked(struct mnt_idmap *idmap,
struct dentry *dentry, const char *name,
struct inode **delegated_inode)
{
struct inode *inode = dentry->d_inode;
int error;
error = xattr_permission(idmap, inode, name, MAY_WRITE);
if (error)
return error;
error = security_inode_removexattr(idmap, dentry, name);
if (error)
goto out;
error = try_break_deleg(inode, delegated_inode);
if (error)
goto out;
error = __vfs_removexattr(idmap, dentry, name);
if (!error) {
fsnotify_xattr(dentry);
evm_inode_post_removexattr(dentry, name);
}
out:
return error;
}
EXPORT_SYMBOL_GPL(__vfs_removexattr_locked);
int
vfs_removexattr(struct mnt_idmap *idmap, struct dentry *dentry,
const char *name)
{
struct inode *inode = dentry->d_inode;
struct inode *delegated_inode = NULL;
int error;
retry_deleg:
inode_lock(inode);
error = __vfs_removexattr_locked(idmap, dentry,
name, &delegated_inode);
inode_unlock(inode);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
return error;
}
EXPORT_SYMBOL_GPL(vfs_removexattr);
/*
* Extended attribute SET operations
*/
int setxattr_copy(const char __user *name, struct xattr_ctx *ctx)
{
int error;
if (ctx->flags & ~(XATTR_CREATE|XATTR_REPLACE))
return -EINVAL;
error = strncpy_from_user(ctx->kname->name, name,
sizeof(ctx->kname->name));
if (error == 0 || error == sizeof(ctx->kname->name))
return -ERANGE;
if (error < 0)
return error;
error = 0;
if (ctx->size) {
if (ctx->size > XATTR_SIZE_MAX)
return -E2BIG;
ctx->kvalue = vmemdup_user(ctx->cvalue, ctx->size);
if (IS_ERR(ctx->kvalue)) {
error = PTR_ERR(ctx->kvalue);
ctx->kvalue = NULL;
}
}
return error;
}
int do_setxattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct xattr_ctx *ctx)
{
if (is_posix_acl_xattr(ctx->kname->name))
return do_set_acl(idmap, dentry, ctx->kname->name,
ctx->kvalue, ctx->size);
return vfs_setxattr(idmap, dentry, ctx->kname->name,
ctx->kvalue, ctx->size, ctx->flags);
}
static long
setxattr(struct mnt_idmap *idmap, struct dentry *d,
const char __user *name, const void __user *value, size_t size,
int flags)
{
struct xattr_name kname;
struct xattr_ctx ctx = {
.cvalue = value,
.kvalue = NULL,
.size = size,
.kname = &kname,
.flags = flags,
};
int error;
error = setxattr_copy(name, &ctx);
if (error)
return error;
error = do_setxattr(idmap, d, &ctx);
kvfree(ctx.kvalue);
return error;
}
static int path_setxattr(const char __user *pathname,
const char __user *name, const void __user *value,
size_t size, int flags, unsigned int lookup_flags)
{
struct path path;
int error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = mnt_want_write(path.mnt);
if (!error) {
error = setxattr(mnt_idmap(path.mnt), path.dentry, name,
value, size, flags);
mnt_drop_write(path.mnt);
}
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE5(setxattr, const char __user *, pathname,
const char __user *, name, const void __user *, value,
size_t, size, int, flags)
{
return path_setxattr(pathname, name, value, size, flags, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE5(lsetxattr, const char __user *, pathname,
const char __user *, name, const void __user *, value,
size_t, size, int, flags)
{
return path_setxattr(pathname, name, value, size, flags, 0);
}
SYSCALL_DEFINE5(fsetxattr, int, fd, const char __user *, name,
const void __user *,value, size_t, size, int, flags)
{
struct fd f = fdget(fd);
int error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = mnt_want_write_file(f.file);
if (!error) {
error = setxattr(file_mnt_idmap(f.file),
f.file->f_path.dentry, name,
value, size, flags);
mnt_drop_write_file(f.file);
}
fdput(f);
return error;
}
/*
* Extended attribute GET operations
*/
ssize_t
do_getxattr(struct mnt_idmap *idmap, struct dentry *d,
struct xattr_ctx *ctx)
{
ssize_t error;
char *kname = ctx->kname->name;
if (ctx->size) {
if (ctx->size > XATTR_SIZE_MAX)
ctx->size = XATTR_SIZE_MAX;
ctx->kvalue = kvzalloc(ctx->size, GFP_KERNEL);
if (!ctx->kvalue)
return -ENOMEM;
}
if (is_posix_acl_xattr(ctx->kname->name))
error = do_get_acl(idmap, d, kname, ctx->kvalue, ctx->size);
else
error = vfs_getxattr(idmap, d, kname, ctx->kvalue, ctx->size);
if (error > 0) {
if (ctx->size && copy_to_user(ctx->value, ctx->kvalue, error))
error = -EFAULT;
} else if (error == -ERANGE && ctx->size >= XATTR_SIZE_MAX) {
/* The file system tried to returned a value bigger
than XATTR_SIZE_MAX bytes. Not possible. */
error = -E2BIG;
}
return error;
}
static ssize_t
getxattr(struct mnt_idmap *idmap, struct dentry *d,
const char __user *name, void __user *value, size_t size)
{
ssize_t error;
struct xattr_name kname;
struct xattr_ctx ctx = {
.value = value,
.kvalue = NULL,
.size = size,
.kname = &kname,
.flags = 0,
};
error = strncpy_from_user(kname.name, name, sizeof(kname.name));
if (error == 0 || error == sizeof(kname.name))
error = -ERANGE;
if (error < 0)
return error;
error = do_getxattr(idmap, d, &ctx);
kvfree(ctx.kvalue);
return error;
}
static ssize_t path_getxattr(const char __user *pathname,
const char __user *name, void __user *value,
size_t size, unsigned int lookup_flags)
{
struct path path;
ssize_t error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = getxattr(mnt_idmap(path.mnt), path.dentry, name, value, size);
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE4(getxattr, const char __user *, pathname,
const char __user *, name, void __user *, value, size_t, size)
{
return path_getxattr(pathname, name, value, size, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE4(lgetxattr, const char __user *, pathname,
const char __user *, name, void __user *, value, size_t, size)
{
return path_getxattr(pathname, name, value, size, 0);
}
SYSCALL_DEFINE4(fgetxattr, int, fd, const char __user *, name,
void __user *, value, size_t, size)
{
struct fd f = fdget(fd);
ssize_t error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = getxattr(file_mnt_idmap(f.file), f.file->f_path.dentry,
name, value, size);
fdput(f);
return error;
}
/*
* Extended attribute LIST operations
*/
static ssize_t
listxattr(struct dentry *d, char __user *list, size_t size)
{
ssize_t error;
char *klist = NULL;
if (size) {
if (size > XATTR_LIST_MAX)
size = XATTR_LIST_MAX;
klist = kvmalloc(size, GFP_KERNEL);
if (!klist)
return -ENOMEM;
}
error = vfs_listxattr(d, klist, size);
if (error > 0) {
if (size && copy_to_user(list, klist, error))
error = -EFAULT;
} else if (error == -ERANGE && size >= XATTR_LIST_MAX) {
/* The file system tried to returned a list bigger
than XATTR_LIST_MAX bytes. Not possible. */
error = -E2BIG;
}
kvfree(klist);
return error;
}
static ssize_t path_listxattr(const char __user *pathname, char __user *list,
size_t size, unsigned int lookup_flags)
{
struct path path;
ssize_t error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = listxattr(path.dentry, list, size);
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE3(listxattr, const char __user *, pathname, char __user *, list,
size_t, size)
{
return path_listxattr(pathname, list, size, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE3(llistxattr, const char __user *, pathname, char __user *, list,
size_t, size)
{
return path_listxattr(pathname, list, size, 0);
}
SYSCALL_DEFINE3(flistxattr, int, fd, char __user *, list, size_t, size)
{
struct fd f = fdget(fd);
ssize_t error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = listxattr(f.file->f_path.dentry, list, size);
fdput(f);
return error;
}
/*
* Extended attribute REMOVE operations
*/
static long
removexattr(struct mnt_idmap *idmap, struct dentry *d,
const char __user *name)
{
int error;
char kname[XATTR_NAME_MAX + 1];
error = strncpy_from_user(kname, name, sizeof(kname));
if (error == 0 || error == sizeof(kname))
error = -ERANGE;
if (error < 0)
return error;
if (is_posix_acl_xattr(kname))
return vfs_remove_acl(idmap, d, kname);
return vfs_removexattr(idmap, d, kname);
}
static int path_removexattr(const char __user *pathname,
const char __user *name, unsigned int lookup_flags)
{
struct path path;
int error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = mnt_want_write(path.mnt);
if (!error) {
error = removexattr(mnt_idmap(path.mnt), path.dentry, name);
mnt_drop_write(path.mnt);
}
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE2(removexattr, const char __user *, pathname,
const char __user *, name)
{
return path_removexattr(pathname, name, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE2(lremovexattr, const char __user *, pathname,
const char __user *, name)
{
return path_removexattr(pathname, name, 0);
}
SYSCALL_DEFINE2(fremovexattr, int, fd, const char __user *, name)
{
struct fd f = fdget(fd);
int error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = mnt_want_write_file(f.file);
if (!error) {
error = removexattr(file_mnt_idmap(f.file),
f.file->f_path.dentry, name);
mnt_drop_write_file(f.file);
}
fdput(f);
return error;
}
/*
* Combine the results of the list() operation from every xattr_handler in the
* list.
*/
ssize_t
generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
{
const struct xattr_handler *handler, **handlers = dentry->d_sb->s_xattr;
unsigned int size = 0;
if (!buffer) {
for_each_xattr_handler(handlers, handler) {
if (!handler->name ||
(handler->list && !handler->list(dentry)))
continue;
size += strlen(handler->name) + 1;
}
} else {
char *buf = buffer;
size_t len;
for_each_xattr_handler(handlers, handler) {
if (!handler->name ||
(handler->list && !handler->list(dentry)))
continue;
len = strlen(handler->name);
if (len + 1 > buffer_size)
return -ERANGE;
memcpy(buf, handler->name, len + 1);
buf += len + 1;
buffer_size -= len + 1;
}
size = buf - buffer;
}
return size;
}
EXPORT_SYMBOL(generic_listxattr);
/**
* xattr_full_name - Compute full attribute name from suffix
*
* @handler: handler of the xattr_handler operation
* @name: name passed to the xattr_handler operation
*
* The get and set xattr handler operations are called with the remainder of
* the attribute name after skipping the handler's prefix: for example, "foo"
* is passed to the get operation of a handler with prefix "user." to get
* attribute "user.foo". The full name is still "there" in the name though.
*
* Note: the list xattr handler operation when called from the vfs is passed a
* NULL name; some file systems use this operation internally, with varying
* semantics.
*/
const char *xattr_full_name(const struct xattr_handler *handler,
const char *name)
{
size_t prefix_len = strlen(xattr_prefix(handler));
return name - prefix_len;
}
EXPORT_SYMBOL(xattr_full_name);
/**
* free_simple_xattr - free an xattr object
* @xattr: the xattr object
*
* Free the xattr object. Can handle @xattr being NULL.
*/
static inline void free_simple_xattr(struct simple_xattr *xattr)
{
if (xattr)
kfree(xattr->name);
kvfree(xattr);
}
/**
* simple_xattr_alloc - allocate new xattr object
* @value: value of the xattr object
* @size: size of @value
*
* Allocate a new xattr object and initialize respective members. The caller is
* responsible for handling the name of the xattr.
*
* Return: On success a new xattr object is returned. On failure NULL is
* returned.
*/
struct simple_xattr *simple_xattr_alloc(const void *value, size_t size)
{
struct simple_xattr *new_xattr;
size_t len;
/* wrap around? */
len = sizeof(*new_xattr) + size;
if (len < sizeof(*new_xattr))
return NULL;
new_xattr = kvmalloc(len, GFP_KERNEL);
if (!new_xattr)
return NULL;
new_xattr->size = size;
memcpy(new_xattr->value, value, size);
return new_xattr;
}
/**
* rbtree_simple_xattr_cmp - compare xattr name with current rbtree xattr entry
* @key: xattr name
* @node: current node
*
* Compare the xattr name with the xattr name attached to @node in the rbtree.
*
* Return: Negative value if continuing left, positive if continuing right, 0
* if the xattr attached to @node matches @key.
*/
static int rbtree_simple_xattr_cmp(const void *key, const struct rb_node *node)
{
const char *xattr_name = key;
const struct simple_xattr *xattr;
xattr = rb_entry(node, struct simple_xattr, rb_node);
return strcmp(xattr->name, xattr_name);
}
/**
* rbtree_simple_xattr_node_cmp - compare two xattr rbtree nodes
* @new_node: new node
* @node: current node
*
* Compare the xattr attached to @new_node with the xattr attached to @node.
*
* Return: Negative value if continuing left, positive if continuing right, 0
* if the xattr attached to @new_node matches the xattr attached to @node.
*/
static int rbtree_simple_xattr_node_cmp(struct rb_node *new_node,
const struct rb_node *node)
{
struct simple_xattr *xattr;
xattr = rb_entry(new_node, struct simple_xattr, rb_node);
return rbtree_simple_xattr_cmp(xattr->name, node);
}
/**
* simple_xattr_get - get an xattr object
* @xattrs: the header of the xattr object
* @name: the name of the xattr to retrieve
* @buffer: the buffer to store the value into
* @size: the size of @buffer
*
* Try to find and retrieve the xattr object associated with @name.
* If @buffer is provided store the value of @xattr in @buffer
* otherwise just return the length. The size of @buffer is limited
* to XATTR_SIZE_MAX which currently is 65536.
*
* Return: On success the length of the xattr value is returned. On error a
* negative error code is returned.
*/
int simple_xattr_get(struct simple_xattrs *xattrs, const char *name,
void *buffer, size_t size)
{
struct simple_xattr *xattr = NULL;
struct rb_node *rbp;
int ret = -ENODATA;
read_lock(&xattrs->lock);
rbp = rb_find(name, &xattrs->rb_root, rbtree_simple_xattr_cmp);
if (rbp) {
xattr = rb_entry(rbp, struct simple_xattr, rb_node);
ret = xattr->size;
if (buffer) {
if (size < xattr->size)
ret = -ERANGE;
else
memcpy(buffer, xattr->value, xattr->size);
}
}
read_unlock(&xattrs->lock);
return ret;
}
/**
* simple_xattr_set - set an xattr object
* @xattrs: the header of the xattr object
* @name: the name of the xattr to retrieve
* @value: the value to store along the xattr
* @size: the size of @value
* @flags: the flags determining how to set the xattr
* @removed_size: the size of the removed xattr
*
* Set a new xattr object.
* If @value is passed a new xattr object will be allocated. If XATTR_REPLACE
* is specified in @flags a matching xattr object for @name must already exist.
* If it does it will be replaced with the new xattr object. If it doesn't we
* fail. If XATTR_CREATE is specified and a matching xattr does already exist
* we fail. If it doesn't we create a new xattr. If @flags is zero we simply
* insert the new xattr replacing any existing one.
*
* If @value is empty and a matching xattr object is found we delete it if
* XATTR_REPLACE is specified in @flags or @flags is zero.
*
* If @value is empty and no matching xattr object for @name is found we do
* nothing if XATTR_CREATE is specified in @flags or @flags is zero. For
* XATTR_REPLACE we fail as mentioned above.
*
* Return: On success zero and on error a negative error code is returned.
*/
int simple_xattr_set(struct simple_xattrs *xattrs, const char *name,
const void *value, size_t size, int flags,
ssize_t *removed_size)
{
struct simple_xattr *xattr = NULL, *new_xattr = NULL;
struct rb_node *parent = NULL, **rbp;
int err = 0, ret;
if (removed_size)
*removed_size = -1;
/* value == NULL means remove */
if (value) {
new_xattr = simple_xattr_alloc(value, size);
if (!new_xattr)
return -ENOMEM;
new_xattr->name = kstrdup(name, GFP_KERNEL);
if (!new_xattr->name) {
free_simple_xattr(new_xattr);
return -ENOMEM;
}
}
write_lock(&xattrs->lock);
rbp = &xattrs->rb_root.rb_node;
while (*rbp) {
parent = *rbp;
ret = rbtree_simple_xattr_cmp(name, *rbp);
if (ret < 0)
rbp = &(*rbp)->rb_left;
else if (ret > 0)
rbp = &(*rbp)->rb_right;
else
xattr = rb_entry(*rbp, struct simple_xattr, rb_node);
if (xattr)
break;
}
if (xattr) {
/* Fail if XATTR_CREATE is requested and the xattr exists. */
if (flags & XATTR_CREATE) {
err = -EEXIST;
goto out_unlock;
}
if (new_xattr)
rb_replace_node(&xattr->rb_node, &new_xattr->rb_node,
&xattrs->rb_root);
else
rb_erase(&xattr->rb_node, &xattrs->rb_root);
if (!err && removed_size)
*removed_size = xattr->size;
} else {
/* Fail if XATTR_REPLACE is requested but no xattr is found. */
if (flags & XATTR_REPLACE) {
err = -ENODATA;
goto out_unlock;
}
/*
* If XATTR_CREATE or no flags are specified together with a
* new value simply insert it.
*/
if (new_xattr) {
rb_link_node(&new_xattr->rb_node, parent, rbp);
rb_insert_color(&new_xattr->rb_node, &xattrs->rb_root);
}
/*
* If XATTR_CREATE or no flags are specified and neither an
* old or new xattr exist then we don't need to do anything.
*/
}
out_unlock:
write_unlock(&xattrs->lock);
if (err)
free_simple_xattr(new_xattr);
else
free_simple_xattr(xattr);
return err;
}
static bool xattr_is_trusted(const char *name)
{
return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
}
static int xattr_list_one(char **buffer, ssize_t *remaining_size,
const char *name)
{
size_t len = strlen(name) + 1;
if (*buffer) {
if (*remaining_size < len)
return -ERANGE;
memcpy(*buffer, name, len);
*buffer += len;
}
*remaining_size -= len;
return 0;
}
/**
* simple_xattr_list - list all xattr objects
* @inode: inode from which to get the xattrs
* @xattrs: the header of the xattr object
* @buffer: the buffer to store all xattrs into
* @size: the size of @buffer
*
* List all xattrs associated with @inode. If @buffer is NULL we returned
* the required size of the buffer. If @buffer is provided we store the
* xattrs value into it provided it is big enough.
*
* Note, the number of xattr names that can be listed with listxattr(2) is
* limited to XATTR_LIST_MAX aka 65536 bytes. If a larger buffer is passed
* then vfs_listxattr() caps it to XATTR_LIST_MAX and if more xattr names
* are found it will return -E2BIG.
*
* Return: On success the required size or the size of the copied xattrs is
* returned. On error a negative error code is returned.
*/
ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs,
char *buffer, size_t size)
{
bool trusted = ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN);
struct simple_xattr *xattr;
struct rb_node *rbp;
ssize_t remaining_size = size;
int err = 0;
#ifdef CONFIG_FS_POSIX_ACL
if (IS_POSIXACL(inode)) {
if (inode->i_acl) {
err = xattr_list_one(&buffer, &remaining_size,
XATTR_NAME_POSIX_ACL_ACCESS);
if (err)
return err;
}
if (inode->i_default_acl) {
err = xattr_list_one(&buffer, &remaining_size,
XATTR_NAME_POSIX_ACL_DEFAULT);
if (err)
return err;
}
}
#endif
read_lock(&xattrs->lock);
for (rbp = rb_first(&xattrs->rb_root); rbp; rbp = rb_next(rbp)) {
xattr = rb_entry(rbp, struct simple_xattr, rb_node);
/* skip "trusted." attributes for unprivileged callers */
if (!trusted && xattr_is_trusted(xattr->name))
continue;
err = xattr_list_one(&buffer, &remaining_size, xattr->name);
if (err)
break;
}
read_unlock(&xattrs->lock);
return err ? err : size - remaining_size;
}
/**
* rbtree_simple_xattr_less - compare two xattr rbtree nodes
* @new_node: new node
* @node: current node
*
* Compare the xattr attached to @new_node with the xattr attached to @node.
* Note that this function technically tolerates duplicate entries.
*
* Return: True if insertion point in the rbtree is found.
*/
static bool rbtree_simple_xattr_less(struct rb_node *new_node,
const struct rb_node *node)
{
return rbtree_simple_xattr_node_cmp(new_node, node) < 0;
}
/**
* simple_xattr_add - add xattr objects
* @xattrs: the header of the xattr object
* @new_xattr: the xattr object to add
*
* Add an xattr object to @xattrs. This assumes no replacement or removal
* of matching xattrs is wanted. Should only be called during inode
* initialization when a few distinct initial xattrs are supposed to be set.
*/
void simple_xattr_add(struct simple_xattrs *xattrs,
struct simple_xattr *new_xattr)
{
write_lock(&xattrs->lock);
rb_add(&new_xattr->rb_node, &xattrs->rb_root, rbtree_simple_xattr_less);
write_unlock(&xattrs->lock);
}
/**
* simple_xattrs_init - initialize new xattr header
* @xattrs: header to initialize
*
* Initialize relevant fields of a an xattr header.
*/
void simple_xattrs_init(struct simple_xattrs *xattrs)
{
xattrs->rb_root = RB_ROOT;
rwlock_init(&xattrs->lock);
}
/**
* simple_xattrs_free - free xattrs
* @xattrs: xattr header whose xattrs to destroy
*
* Destroy all xattrs in @xattr. When this is called no one can hold a
* reference to any of the xattrs anymore.
*/
void simple_xattrs_free(struct simple_xattrs *xattrs)
{
struct rb_node *rbp;
rbp = rb_first(&xattrs->rb_root);
while (rbp) {
struct simple_xattr *xattr;
struct rb_node *rbp_next;
rbp_next = rb_next(rbp);
xattr = rb_entry(rbp, struct simple_xattr, rb_node);
rb_erase(&xattr->rb_node, &xattrs->rb_root);
free_simple_xattr(xattr);
rbp = rbp_next;
}
}