mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 13:58:46 +00:00
ef13561d2b
Before ORing the new clock rate with the control register value read from the hardware, the existing clock rate needs to be masked off as otherwise the existing value will interfere with the new one. CC: stable@vger.kernel.org Fixes: 8596124c4c1b ("spi: microchip-core-qspi: Add support for microchip fpga qspi controllers") Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Tudor Ambarus <tudor.ambarus@linaro.org> Link: https://lore.kernel.org/r/20240508-fox-unpiloted-b97e1535627b@spud Signed-off-by: Mark Brown <broonie@kernel.org>
585 lines
16 KiB
C
585 lines
16 KiB
C
// SPDX-License-Identifier: (GPL-2.0)
|
|
/*
|
|
* Microchip coreQSPI QSPI controller driver
|
|
*
|
|
* Copyright (C) 2018-2022 Microchip Technology Inc. and its subsidiaries
|
|
*
|
|
* Author: Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-mem.h>
|
|
|
|
/*
|
|
* QSPI Control register mask defines
|
|
*/
|
|
#define CONTROL_ENABLE BIT(0)
|
|
#define CONTROL_MASTER BIT(1)
|
|
#define CONTROL_XIP BIT(2)
|
|
#define CONTROL_XIPADDR BIT(3)
|
|
#define CONTROL_CLKIDLE BIT(10)
|
|
#define CONTROL_SAMPLE_MASK GENMASK(12, 11)
|
|
#define CONTROL_MODE0 BIT(13)
|
|
#define CONTROL_MODE12_MASK GENMASK(15, 14)
|
|
#define CONTROL_MODE12_EX_RO BIT(14)
|
|
#define CONTROL_MODE12_EX_RW BIT(15)
|
|
#define CONTROL_MODE12_FULL GENMASK(15, 14)
|
|
#define CONTROL_FLAGSX4 BIT(16)
|
|
#define CONTROL_CLKRATE_MASK GENMASK(27, 24)
|
|
#define CONTROL_CLKRATE_SHIFT 24
|
|
|
|
/*
|
|
* QSPI Frames register mask defines
|
|
*/
|
|
#define FRAMES_TOTALBYTES_MASK GENMASK(15, 0)
|
|
#define FRAMES_CMDBYTES_MASK GENMASK(24, 16)
|
|
#define FRAMES_CMDBYTES_SHIFT 16
|
|
#define FRAMES_SHIFT 25
|
|
#define FRAMES_IDLE_MASK GENMASK(29, 26)
|
|
#define FRAMES_IDLE_SHIFT 26
|
|
#define FRAMES_FLAGBYTE BIT(30)
|
|
#define FRAMES_FLAGWORD BIT(31)
|
|
|
|
/*
|
|
* QSPI Interrupt Enable register mask defines
|
|
*/
|
|
#define IEN_TXDONE BIT(0)
|
|
#define IEN_RXDONE BIT(1)
|
|
#define IEN_RXAVAILABLE BIT(2)
|
|
#define IEN_TXAVAILABLE BIT(3)
|
|
#define IEN_RXFIFOEMPTY BIT(4)
|
|
#define IEN_TXFIFOFULL BIT(5)
|
|
|
|
/*
|
|
* QSPI Status register mask defines
|
|
*/
|
|
#define STATUS_TXDONE BIT(0)
|
|
#define STATUS_RXDONE BIT(1)
|
|
#define STATUS_RXAVAILABLE BIT(2)
|
|
#define STATUS_TXAVAILABLE BIT(3)
|
|
#define STATUS_RXFIFOEMPTY BIT(4)
|
|
#define STATUS_TXFIFOFULL BIT(5)
|
|
#define STATUS_READY BIT(7)
|
|
#define STATUS_FLAGSX4 BIT(8)
|
|
#define STATUS_MASK GENMASK(8, 0)
|
|
|
|
#define BYTESUPPER_MASK GENMASK(31, 16)
|
|
#define BYTESLOWER_MASK GENMASK(15, 0)
|
|
|
|
#define MAX_DIVIDER 16
|
|
#define MIN_DIVIDER 0
|
|
#define MAX_DATA_CMD_LEN 256
|
|
|
|
/* QSPI ready time out value */
|
|
#define TIMEOUT_MS 500
|
|
|
|
/*
|
|
* QSPI Register offsets.
|
|
*/
|
|
#define REG_CONTROL (0x00)
|
|
#define REG_FRAMES (0x04)
|
|
#define REG_IEN (0x0c)
|
|
#define REG_STATUS (0x10)
|
|
#define REG_DIRECT_ACCESS (0x14)
|
|
#define REG_UPPER_ACCESS (0x18)
|
|
#define REG_RX_DATA (0x40)
|
|
#define REG_TX_DATA (0x44)
|
|
#define REG_X4_RX_DATA (0x48)
|
|
#define REG_X4_TX_DATA (0x4c)
|
|
#define REG_FRAMESUP (0x50)
|
|
|
|
/**
|
|
* struct mchp_coreqspi - Defines qspi driver instance
|
|
* @regs: Virtual address of the QSPI controller registers
|
|
* @clk: QSPI Operating clock
|
|
* @data_completion: completion structure
|
|
* @op_lock: lock access to the device
|
|
* @txbuf: TX buffer
|
|
* @rxbuf: RX buffer
|
|
* @irq: IRQ number
|
|
* @tx_len: Number of bytes left to transfer
|
|
* @rx_len: Number of bytes left to receive
|
|
*/
|
|
struct mchp_coreqspi {
|
|
void __iomem *regs;
|
|
struct clk *clk;
|
|
struct completion data_completion;
|
|
struct mutex op_lock; /* lock access to the device */
|
|
u8 *txbuf;
|
|
u8 *rxbuf;
|
|
int irq;
|
|
int tx_len;
|
|
int rx_len;
|
|
};
|
|
|
|
static int mchp_coreqspi_set_mode(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
|
|
{
|
|
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
/*
|
|
* The operating mode can be configured based on the command that needs to be send.
|
|
* bits[15:14]: Sets whether multiple bit SPI operates in normal, extended or full modes.
|
|
* 00: Normal (single DQ0 TX and single DQ1 RX lines)
|
|
* 01: Extended RO (command and address bytes on DQ0 only)
|
|
* 10: Extended RW (command byte on DQ0 only)
|
|
* 11: Full. (command and address are on all DQ lines)
|
|
* bit[13]: Sets whether multiple bit SPI uses 2 or 4 bits of data
|
|
* 0: 2-bits (BSPI)
|
|
* 1: 4-bits (QSPI)
|
|
*/
|
|
if (op->data.buswidth == 4 || op->data.buswidth == 2) {
|
|
control &= ~CONTROL_MODE12_MASK;
|
|
if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))
|
|
control |= CONTROL_MODE12_EX_RO;
|
|
else if (op->cmd.buswidth == 1)
|
|
control |= CONTROL_MODE12_EX_RW;
|
|
else
|
|
control |= CONTROL_MODE12_FULL;
|
|
|
|
control |= CONTROL_MODE0;
|
|
} else {
|
|
control &= ~(CONTROL_MODE12_MASK |
|
|
CONTROL_MODE0);
|
|
}
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
|
|
{
|
|
u32 control, data;
|
|
|
|
if (!qspi->rx_len)
|
|
return;
|
|
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
/*
|
|
* Read 4-bytes from the SPI FIFO in single transaction and then read
|
|
* the reamaining data byte wise.
|
|
*/
|
|
control |= CONTROL_FLAGSX4;
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
while (qspi->rx_len >= 4) {
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
|
|
;
|
|
data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
|
|
*(u32 *)qspi->rxbuf = data;
|
|
qspi->rxbuf += 4;
|
|
qspi->rx_len -= 4;
|
|
}
|
|
|
|
control &= ~CONTROL_FLAGSX4;
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
while (qspi->rx_len--) {
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
|
|
;
|
|
data = readl_relaxed(qspi->regs + REG_RX_DATA);
|
|
*qspi->rxbuf++ = (data & 0xFF);
|
|
}
|
|
}
|
|
|
|
static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word)
|
|
{
|
|
u32 control, data;
|
|
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
control |= CONTROL_FLAGSX4;
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
while (qspi->tx_len >= 4) {
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
|
|
;
|
|
data = *(u32 *)qspi->txbuf;
|
|
qspi->txbuf += 4;
|
|
qspi->tx_len -= 4;
|
|
writel_relaxed(data, qspi->regs + REG_X4_TX_DATA);
|
|
}
|
|
|
|
control &= ~CONTROL_FLAGSX4;
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
while (qspi->tx_len--) {
|
|
while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
|
|
;
|
|
data = *qspi->txbuf++;
|
|
writel_relaxed(data, qspi->regs + REG_TX_DATA);
|
|
}
|
|
}
|
|
|
|
static void mchp_coreqspi_enable_ints(struct mchp_coreqspi *qspi)
|
|
{
|
|
u32 mask = IEN_TXDONE |
|
|
IEN_RXDONE |
|
|
IEN_RXAVAILABLE;
|
|
|
|
writel_relaxed(mask, qspi->regs + REG_IEN);
|
|
}
|
|
|
|
static void mchp_coreqspi_disable_ints(struct mchp_coreqspi *qspi)
|
|
{
|
|
writel_relaxed(0, qspi->regs + REG_IEN);
|
|
}
|
|
|
|
static irqreturn_t mchp_coreqspi_isr(int irq, void *dev_id)
|
|
{
|
|
struct mchp_coreqspi *qspi = (struct mchp_coreqspi *)dev_id;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
int intfield = readl_relaxed(qspi->regs + REG_STATUS) & STATUS_MASK;
|
|
|
|
if (intfield == 0)
|
|
return ret;
|
|
|
|
if (intfield & IEN_TXDONE) {
|
|
writel_relaxed(IEN_TXDONE, qspi->regs + REG_STATUS);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (intfield & IEN_RXAVAILABLE) {
|
|
writel_relaxed(IEN_RXAVAILABLE, qspi->regs + REG_STATUS);
|
|
mchp_coreqspi_read_op(qspi);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (intfield & IEN_RXDONE) {
|
|
writel_relaxed(IEN_RXDONE, qspi->regs + REG_STATUS);
|
|
complete(&qspi->data_completion);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mchp_coreqspi_setup_clock(struct mchp_coreqspi *qspi, struct spi_device *spi)
|
|
{
|
|
unsigned long clk_hz;
|
|
u32 control, baud_rate_val = 0;
|
|
|
|
clk_hz = clk_get_rate(qspi->clk);
|
|
if (!clk_hz)
|
|
return -EINVAL;
|
|
|
|
baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * spi->max_speed_hz);
|
|
if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER) {
|
|
dev_err(&spi->dev,
|
|
"could not configure the clock for spi clock %d Hz & system clock %ld Hz\n",
|
|
spi->max_speed_hz, clk_hz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
control &= ~CONTROL_CLKRATE_MASK;
|
|
control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
if ((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA))
|
|
control |= CONTROL_CLKIDLE;
|
|
else
|
|
control &= ~CONTROL_CLKIDLE;
|
|
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mchp_coreqspi_setup_op(struct spi_device *spi_dev)
|
|
{
|
|
struct spi_controller *ctlr = spi_dev->controller;
|
|
struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
|
|
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
control |= (CONTROL_MASTER | CONTROL_ENABLE);
|
|
control &= ~CONTROL_CLKIDLE;
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
|
|
{
|
|
u32 idle_cycles = 0;
|
|
int total_bytes, cmd_bytes, frames, ctrl;
|
|
|
|
cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
|
|
total_bytes = cmd_bytes + op->data.nbytes;
|
|
|
|
/*
|
|
* As per the coreQSPI IP spec,the number of command and data bytes are
|
|
* controlled by the frames register for each SPI sequence. This supports
|
|
* the SPI flash memory read and writes sequences as below. so configure
|
|
* the cmd and total bytes accordingly.
|
|
* ---------------------------------------------------------------------
|
|
* TOTAL BYTES | CMD BYTES | What happens |
|
|
* ______________________________________________________________________
|
|
* | | |
|
|
* 1 | 1 | The SPI core will transmit a single byte |
|
|
* | | and receive data is discarded |
|
|
* | | |
|
|
* 1 | 0 | The SPI core will transmit a single byte |
|
|
* | | and return a single byte |
|
|
* | | |
|
|
* 10 | 4 | The SPI core will transmit 4 command |
|
|
* | | bytes discarding the receive data and |
|
|
* | | transmits 6 dummy bytes returning the 6 |
|
|
* | | received bytes and return a single byte |
|
|
* | | |
|
|
* 10 | 10 | The SPI core will transmit 10 command |
|
|
* | | |
|
|
* 10 | 0 | The SPI core will transmit 10 command |
|
|
* | | bytes and returning 10 received bytes |
|
|
* ______________________________________________________________________
|
|
*/
|
|
if (!(op->data.dir == SPI_MEM_DATA_IN))
|
|
cmd_bytes = total_bytes;
|
|
|
|
frames = total_bytes & BYTESUPPER_MASK;
|
|
writel_relaxed(frames, qspi->regs + REG_FRAMESUP);
|
|
frames = total_bytes & BYTESLOWER_MASK;
|
|
frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
|
|
|
|
if (op->dummy.buswidth)
|
|
idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
|
|
|
|
frames |= idle_cycles << FRAMES_IDLE_SHIFT;
|
|
ctrl = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
if (ctrl & CONTROL_MODE12_MASK)
|
|
frames |= (1 << FRAMES_SHIFT);
|
|
|
|
frames |= FRAMES_FLAGWORD;
|
|
writel_relaxed(frames, qspi->regs + REG_FRAMES);
|
|
}
|
|
|
|
static int mchp_qspi_wait_for_ready(struct spi_mem *mem)
|
|
{
|
|
struct mchp_coreqspi *qspi = spi_controller_get_devdata
|
|
(mem->spi->controller);
|
|
u32 status;
|
|
int ret;
|
|
|
|
ret = readl_poll_timeout(qspi->regs + REG_STATUS, status,
|
|
(status & STATUS_READY), 0,
|
|
TIMEOUT_MS);
|
|
if (ret) {
|
|
dev_err(&mem->spi->dev,
|
|
"Timeout waiting on QSPI ready.\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mchp_coreqspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
{
|
|
struct mchp_coreqspi *qspi = spi_controller_get_devdata
|
|
(mem->spi->controller);
|
|
u32 address = op->addr.val;
|
|
u8 opcode = op->cmd.opcode;
|
|
u8 opaddr[5];
|
|
int err, i;
|
|
|
|
mutex_lock(&qspi->op_lock);
|
|
err = mchp_qspi_wait_for_ready(mem);
|
|
if (err)
|
|
goto error;
|
|
|
|
err = mchp_coreqspi_setup_clock(qspi, mem->spi);
|
|
if (err)
|
|
goto error;
|
|
|
|
err = mchp_coreqspi_set_mode(qspi, op);
|
|
if (err)
|
|
goto error;
|
|
|
|
reinit_completion(&qspi->data_completion);
|
|
mchp_coreqspi_config_op(qspi, op);
|
|
if (op->cmd.opcode) {
|
|
qspi->txbuf = &opcode;
|
|
qspi->rxbuf = NULL;
|
|
qspi->tx_len = op->cmd.nbytes;
|
|
qspi->rx_len = 0;
|
|
mchp_coreqspi_write_op(qspi, false);
|
|
}
|
|
|
|
qspi->txbuf = &opaddr[0];
|
|
if (op->addr.nbytes) {
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
|
|
|
|
qspi->rxbuf = NULL;
|
|
qspi->tx_len = op->addr.nbytes;
|
|
qspi->rx_len = 0;
|
|
mchp_coreqspi_write_op(qspi, false);
|
|
}
|
|
|
|
if (op->data.nbytes) {
|
|
if (op->data.dir == SPI_MEM_DATA_OUT) {
|
|
qspi->txbuf = (u8 *)op->data.buf.out;
|
|
qspi->rxbuf = NULL;
|
|
qspi->rx_len = 0;
|
|
qspi->tx_len = op->data.nbytes;
|
|
mchp_coreqspi_write_op(qspi, true);
|
|
} else {
|
|
qspi->txbuf = NULL;
|
|
qspi->rxbuf = (u8 *)op->data.buf.in;
|
|
qspi->rx_len = op->data.nbytes;
|
|
qspi->tx_len = 0;
|
|
}
|
|
}
|
|
|
|
mchp_coreqspi_enable_ints(qspi);
|
|
|
|
if (!wait_for_completion_timeout(&qspi->data_completion, msecs_to_jiffies(1000)))
|
|
err = -ETIMEDOUT;
|
|
|
|
error:
|
|
mutex_unlock(&qspi->op_lock);
|
|
mchp_coreqspi_disable_ints(qspi);
|
|
|
|
return err;
|
|
}
|
|
|
|
static bool mchp_coreqspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
{
|
|
if (!spi_mem_default_supports_op(mem, op))
|
|
return false;
|
|
|
|
if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
|
|
(op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))) {
|
|
/*
|
|
* If the command and address are on DQ0 only, then this
|
|
* controller doesn't support sending data on dual and
|
|
* quad lines. but it supports reading data on dual and
|
|
* quad lines with same configuration as command and
|
|
* address on DQ0.
|
|
* i.e. The control register[15:13] :EX_RO(read only) is
|
|
* meant only for the command and address are on DQ0 but
|
|
* not to write data, it is just to read.
|
|
* Ex: 0x34h is Quad Load Program Data which is not
|
|
* supported. Then the spi-mem layer will iterate over
|
|
* each command and it will chose the supported one.
|
|
*/
|
|
if (op->data.dir == SPI_MEM_DATA_OUT)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int mchp_coreqspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
|
|
{
|
|
if (op->data.dir == SPI_MEM_DATA_OUT || op->data.dir == SPI_MEM_DATA_IN) {
|
|
if (op->data.nbytes > MAX_DATA_CMD_LEN)
|
|
op->data.nbytes = MAX_DATA_CMD_LEN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
|
|
.adjust_op_size = mchp_coreqspi_adjust_op_size,
|
|
.supports_op = mchp_coreqspi_supports_op,
|
|
.exec_op = mchp_coreqspi_exec_op,
|
|
};
|
|
|
|
static int mchp_coreqspi_probe(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *ctlr;
|
|
struct mchp_coreqspi *qspi;
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
int ret;
|
|
|
|
ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*qspi));
|
|
if (!ctlr)
|
|
return dev_err_probe(&pdev->dev, -ENOMEM,
|
|
"unable to allocate host for QSPI controller\n");
|
|
|
|
qspi = spi_controller_get_devdata(ctlr);
|
|
platform_set_drvdata(pdev, qspi);
|
|
|
|
qspi->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(qspi->regs))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(qspi->regs),
|
|
"failed to map registers\n");
|
|
|
|
qspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
|
|
if (IS_ERR(qspi->clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(qspi->clk),
|
|
"could not get clock\n");
|
|
|
|
init_completion(&qspi->data_completion);
|
|
mutex_init(&qspi->op_lock);
|
|
|
|
qspi->irq = platform_get_irq(pdev, 0);
|
|
if (qspi->irq < 0)
|
|
return qspi->irq;
|
|
|
|
ret = devm_request_irq(&pdev->dev, qspi->irq, mchp_coreqspi_isr,
|
|
IRQF_SHARED, pdev->name, qspi);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "request_irq failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
|
|
ctlr->mem_ops = &mchp_coreqspi_mem_ops;
|
|
ctlr->setup = mchp_coreqspi_setup_op;
|
|
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
|
|
SPI_TX_DUAL | SPI_TX_QUAD;
|
|
ctlr->dev.of_node = np;
|
|
|
|
ret = devm_spi_register_controller(&pdev->dev, ctlr);
|
|
if (ret)
|
|
return dev_err_probe(&pdev->dev, ret,
|
|
"spi_register_controller failed\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mchp_coreqspi_remove(struct platform_device *pdev)
|
|
{
|
|
struct mchp_coreqspi *qspi = platform_get_drvdata(pdev);
|
|
u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
|
|
|
|
mchp_coreqspi_disable_ints(qspi);
|
|
control &= ~CONTROL_ENABLE;
|
|
writel_relaxed(control, qspi->regs + REG_CONTROL);
|
|
}
|
|
|
|
static const struct of_device_id mchp_coreqspi_of_match[] = {
|
|
{ .compatible = "microchip,coreqspi-rtl-v2" },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mchp_coreqspi_of_match);
|
|
|
|
static struct platform_driver mchp_coreqspi_driver = {
|
|
.probe = mchp_coreqspi_probe,
|
|
.driver = {
|
|
.name = "microchip,coreqspi",
|
|
.of_match_table = mchp_coreqspi_of_match,
|
|
},
|
|
.remove_new = mchp_coreqspi_remove,
|
|
};
|
|
module_platform_driver(mchp_coreqspi_driver);
|
|
|
|
MODULE_AUTHOR("Naga Sureshkumar Relli <nagasuresh.relli@microchip.com");
|
|
MODULE_DESCRIPTION("Microchip coreQSPI QSPI controller driver");
|
|
MODULE_LICENSE("GPL");
|