linux-next/lib/raid6/s390vx.uc
Heiko Carstens 18564756ab s390/fpu: get rid of MACHINE_HAS_VX
Get rid of MACHINE_HAS_VX and replace it with cpu_has_vx() which is a
short readable wrapper for "test_facility(129)".

Facility bit 129 is set if the vector facility is present. test_facility()
returns also true for all bits which are set in the architecture level set
of the cpu that the kernel is compiled for. This means that
test_facility(129) is a compile time constant which returns true for z13
and later, since the vector facility bit is part of the z13 kernel ALS.

In result the compiled code will have less runtime checks, and less code.

Reviewed-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
2023-12-11 14:33:07 +01:00

171 lines
3.8 KiB
Ucode

// SPDX-License-Identifier: GPL-2.0
/*
* raid6_vx$#.c
*
* $#-way unrolled RAID6 gen/xor functions for s390
* based on the vector facility
*
* Copyright IBM Corp. 2016
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
*
* This file is postprocessed using unroll.awk.
*/
#include <linux/raid/pq.h>
#include <asm/fpu/api.h>
#include <asm/vx-insn.h>
#define NSIZE 16
static inline void LOAD_CONST(void)
{
asm volatile("VREPIB %v24,7");
asm volatile("VREPIB %v25,0x1d");
}
/*
* The SHLBYTE() operation shifts each of the 16 bytes in
* vector register y left by 1 bit and stores the result in
* vector register x.
*/
static inline void SHLBYTE(int x, int y)
{
asm volatile ("VAB %0,%1,%1" : : "i" (x), "i" (y));
}
/*
* For each of the 16 bytes in the vector register y the MASK()
* operation returns 0xFF if the high bit of the byte is 1,
* or 0x00 if the high bit is 0. The result is stored in vector
* register x.
*/
static inline void MASK(int x, int y)
{
asm volatile ("VESRAVB %0,%1,24" : : "i" (x), "i" (y));
}
static inline void AND(int x, int y, int z)
{
asm volatile ("VN %0,%1,%2" : : "i" (x), "i" (y), "i" (z));
}
static inline void XOR(int x, int y, int z)
{
asm volatile ("VX %0,%1,%2" : : "i" (x), "i" (y), "i" (z));
}
static inline void LOAD_DATA(int x, u8 *ptr)
{
typedef struct { u8 _[16 * $#]; } addrtype;
register addrtype *__ptr asm("1") = (addrtype *) ptr;
asm volatile ("VLM %2,%3,0,%1"
: : "m" (*__ptr), "a" (__ptr), "i" (x),
"i" (x + $# - 1));
}
static inline void STORE_DATA(int x, u8 *ptr)
{
typedef struct { u8 _[16 * $#]; } addrtype;
register addrtype *__ptr asm("1") = (addrtype *) ptr;
asm volatile ("VSTM %2,%3,0,1"
: "=m" (*__ptr) : "a" (__ptr), "i" (x),
"i" (x + $# - 1));
}
static inline void COPY_VEC(int x, int y)
{
asm volatile ("VLR %0,%1" : : "i" (x), "i" (y));
}
static void raid6_s390vx$#_gen_syndrome(int disks, size_t bytes, void **ptrs)
{
struct kernel_fpu vxstate;
u8 **dptr, *p, *q;
int d, z, z0;
kernel_fpu_begin(&vxstate, KERNEL_VXR);
LOAD_CONST();
dptr = (u8 **) ptrs;
z0 = disks - 3; /* Highest data disk */
p = dptr[z0 + 1]; /* XOR parity */
q = dptr[z0 + 2]; /* RS syndrome */
for (d = 0; d < bytes; d += $#*NSIZE) {
LOAD_DATA(0,&dptr[z0][d]);
COPY_VEC(8+$$,0+$$);
for (z = z0 - 1; z >= 0; z--) {
MASK(16+$$,8+$$);
AND(16+$$,16+$$,25);
SHLBYTE(8+$$,8+$$);
XOR(8+$$,8+$$,16+$$);
LOAD_DATA(16,&dptr[z][d]);
XOR(0+$$,0+$$,16+$$);
XOR(8+$$,8+$$,16+$$);
}
STORE_DATA(0,&p[d]);
STORE_DATA(8,&q[d]);
}
kernel_fpu_end(&vxstate, KERNEL_VXR);
}
static void raid6_s390vx$#_xor_syndrome(int disks, int start, int stop,
size_t bytes, void **ptrs)
{
struct kernel_fpu vxstate;
u8 **dptr, *p, *q;
int d, z, z0;
dptr = (u8 **) ptrs;
z0 = stop; /* P/Q right side optimization */
p = dptr[disks - 2]; /* XOR parity */
q = dptr[disks - 1]; /* RS syndrome */
kernel_fpu_begin(&vxstate, KERNEL_VXR);
LOAD_CONST();
for (d = 0; d < bytes; d += $#*NSIZE) {
/* P/Q data pages */
LOAD_DATA(0,&dptr[z0][d]);
COPY_VEC(8+$$,0+$$);
for (z = z0 - 1; z >= start; z--) {
MASK(16+$$,8+$$);
AND(16+$$,16+$$,25);
SHLBYTE(8+$$,8+$$);
XOR(8+$$,8+$$,16+$$);
LOAD_DATA(16,&dptr[z][d]);
XOR(0+$$,0+$$,16+$$);
XOR(8+$$,8+$$,16+$$);
}
/* P/Q left side optimization */
for (z = start - 1; z >= 0; z--) {
MASK(16+$$,8+$$);
AND(16+$$,16+$$,25);
SHLBYTE(8+$$,8+$$);
XOR(8+$$,8+$$,16+$$);
}
LOAD_DATA(16,&p[d]);
XOR(16+$$,16+$$,0+$$);
STORE_DATA(16,&p[d]);
LOAD_DATA(16,&q[d]);
XOR(16+$$,16+$$,8+$$);
STORE_DATA(16,&q[d]);
}
kernel_fpu_end(&vxstate, KERNEL_VXR);
}
static int raid6_s390vx$#_valid(void)
{
return cpu_has_vx();
}
const struct raid6_calls raid6_s390vx$# = {
raid6_s390vx$#_gen_syndrome,
raid6_s390vx$#_xor_syndrome,
raid6_s390vx$#_valid,
"vx128x$#",
1
};